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Abstract—This paper presents a methodology to accurately
record human finger postures during grasping. The main con-
tribution consists of a kinematic model of the human hand
reconstructed via magnetic resonance imaging of one subject that
(i) is fully parameterized and can be adapted to different subjects,
and (ii) is amenable of in-vivo to joint angle recordings via optical
tracking of markers attached to the skin. The principal novelty
here is the introduction of a soft-tissue artifact compensation
mechanism that can be optimally calibrated in a systematic
way. The high-quality data gathered are employed to study the
properties of hand postural synergies in humans, for the sake
of ongoing neuro-science investigations. These data are analyzed
and some comparison with similar studies are reported. After a
meaningful mapping strategy has been devised, these data could
be employed to define robotic hand postures amenable to attain
effective grasps, or could be used as prior knowledge in lower-
dimensional, real-time avatar hand animation.

I. INTRODUCTION

In the field of robotic grasping with anthropomorphic hands,
robots can learn from the way human grasp. For example,
postural synergies [1] utilized by the human can be mapped
to a robotic hand, so that hand postures can be more easily
commanded. This paper deals with the challenge of how to
suitably record human finger postures during grasps. On the
one hand, it is desirable to have a low-dimensional represen-
tation of the posture. This can be achieved for example by
using a data glove. On the other hand, the poses of the finger
segments should be measured with high accuracy. For this,
optical position measurements of skin markers can be used. To
combine high accuracy with low data dimensionality, optical
position measurements need to be combined with an accurate
kinematic model of the hand. Commonly, such models are
constructed of serial chains of rotation axes whose positions
and orientations are modified by rotations around these axes,
but which are otherwise fixed. This kind of kinematics is quite
suitable for modelling the movement of the skeleton. However,
the skin moves relative to the bones, introducing a soft tissue
artifact (STA) when measuring skeletal movement by tracking
skin markers.

In our previous work [2], magnetic resonance imaging (MRI)
was used to measure the actual amount of STA in different
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hand postures and on different parts of the dorsal skin of the
hand and fingers. It turned out that STA is particularly large
near joints.

Zhang et al. [3] proposed a model of the skin motion that
occurs near joints. Essentially, the model states that the
movement of the skin is smaller, but proportional to the
movement of the adajcent bone. The model by Zhang et
al. is two-dimensional, considering only movement in the
flexion/extension plane. Here, the model is extended to three
spatial dimensions, considering the skin movement near joints
with one as well as two degrees of freedom (DoF). The skin
movement model is validated using aforementioned MRI data
as ground truth.

The skin movement model is incorporated into a 26-DoF
kinematic hand model, where the geometric transformations
from one bone/joint frame to another, as well as to the
associated markers, are implemented using a twist or matrix
exponential parametrization, which has become standard in
robotic applications [4], [5].

This model allows to take into account the differences between
hands of different subjects, by suitably estimating hand geo-
metrical and dimensional parameters with a calibration phase
that minimizes the residual between measured and estimated
bone poses.

An algorithm is developed to reconstruct the joint angles of
large movements, given the estimated geometical and dimen-
sional parameters. For this, an Extended Kalman Filter using
a Gauss-Newton minimization procedure with Levenberg-
Marquardt adjustment for the step length is used. The algo-
rithm takes advantage of the fact that the Jacobian matrix
can be computed particularly straightforward using matrix
exponential parametrization.

The proposed methods are used to reconstruct hand postures
during grasps of imagined objects. The reconstructed poses
are then analyzed by means of Principal Component Analysis
in order to study postural synergies, i.e. covariation schemes
in inter-digit joint positions [1]. Results are compared with
the ones described in [6], where authors focused on central
contributions to hand posture modulation, analyzing a large
number of different imagined grasped objects.

II. DESCRIPTION OF THE KINEMATIC MODEL

The kinematic model of the human hand with respect to
the forearm is devised as a kinematic tree, whose root node
consists of the Cartesian reference frame { B} (rigidly attached
to a bracelet fastened to the forearm) and whose leaves are the
frames fixed to the distal phalanxes of the five fingers, as de-
picted in Figure 1. The five paths to the leaf nodes (phalanxes
distalis, PDs) of the tree have a common segment through the
wrist joint, centered at point W, and then branch out from the
MC, (metacarpal bone of the index) as serial kinematic chains.



As an example, the relative motion of {PD;} with respect to
{B} is influenced by the rotation of joints &,,, &, (two-
DoF wrist joint), &cmc,,. Scmc,, (two-DoF carpometacarpal
ajoint), {mep,, > Emcp,, (two-DoF metacarpophalangeal joint),
&p, (one-DoF interphalangeal joint).

A. Hand posture parameterization

To efficiently parameterize the posture of the j—th phalanx
in the ¢—th finger chain (here expressed as the pose of
frame {F};}), we employ the Product of Exponentials (POE)
formula [7], i.e.
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Here, the Eik’s are the twists of the joints defining the
kinematic chain of the i—th finger, 6; = [0;1 - 01 - - 0;5]T
are the exponential coordinates of the 2 kind [4] for a
local representation of SE(3) for the j—th phalanx in the
i—th finger, and gpp,;(0) is its initial configuration. We
cast the set of local parameterizations (joint angles) needed
for describing the postures of all the fingers in the vector
0 =1[0F ... 0T, 1t is worth noting that i = 1,...,5, since
the human hand has five fingers, while 7 € Z(j), where
Z(j) is the set of the indices (in the form of labels) of the
parent joints to the j—th phalanx in its kinematic chain. As
an example, if we consider ;7 = PPy, the set of indices becomes
I(]) = {w1, wa, CMCla, CMClb, MCPla, MCPlb}.

In accordance with the definition of Eq. (1), it is worth noting
that the twist components have to be expressed in the common
base frame {B} and in the reference posture for the hand,
i.e. when 6;; = 0. Therefore, it is possible to write more
explicitly &;; = b¢;;, where the left superscript describes the
reading frame, in accordance with [8]. Should the joint twist
be more easily expressed in an auxiliary (possibly moving)
frame {A(6)}, we could profitably recover its components
in {B}, in the reference configuration, by employing the
formula

P&y = Ady,, (o) “&ijs 2

where ¢,,(0) is the posture of {A(0)} w.rt. {B} in the
reference configuration and the Adjoint transformation Ad,
RS — RS is a map between different expressions of the same
twist in different reading reference frames.

B. Hand velocity parameterization

The POE parameterization of the hand posture can be prof-
itably employed for computing the rigid-body velocity of each
phalanx. As we shall see, this quantity is key for systematically
calculating the linear velocity of the optical markers attached
to the bone or to the skin.

The rigid-body velocity V;ﬁj of {F;;} in the moving frame

{F;;} is given (as a 4 x 4 matrix) by the following for-
mula
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Fig. 1: Human hand kinematic model.

where wglj; = RE Fi Rp F,; is the skew-symmetric matrix
of the angular velomty components (in {F;;}) of {F;} w.rt.
{B}, and v = RE Py dp F;; are the components (in
{Fi;}) of the Veloc1ty of the origin O, with respect to Op.
Equat10n (3) can be rewritten (as a 6 x1 Vec_:tor) in a convenient
form by factoring out the joint velocities 6; of the i—th finger
as follows

Vi = Jgg (0:) 6, (4)

where the distal Jacobian J gﬁw can be computed as (k =

1.\ j)
J m; Ad7t 5
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where we defined gpi1,p, = ert10k1a ~-~egjengFij (0),

with gj11,r,, = gBF,;(0).

Since we will be interested in calculating the Veloc1ty vp I£ iy

of the origin Op,, w.r.t. Op in {B} components', we also

lI[t is worth observing that the apparently cumbersome expression
B,[O
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define the hybrid rigid-body velocity

B,[O LJ] B ij i
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A convenient form where the joint velocities 6; of the i—th
finger are factored out is given by the following expres-
sion
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C. Modelling bone markers

It is important to realize that frame {F;;} is a generic frame
attached to the j—th phalanx of the i—th finger that is
employed to express its global posture with respect to frame
{B}. Should we prefer to use a different local frame, say
{M,;}, we could simply add a local transformation such
that

J
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It is worth observing that frame {},;} can be selected with
origin coincident with the optical marker rigidly attached
to the same phalanx, as shown in Figure 2 (a). In this
case, only in the position of the origin of the frame {M,;}
really matters. The components ppyy,; of the position vector
OpOyy,; in { B} can be recovered by simply extracting it from
the homogeneous transformation

Rias.. .
gBMU(Hz) = |: BOM” pB:]lWl]:|

It is worth observing that if {1;;} is selected to be parallel
to {Fij}, gF;M,; = F;; M, (al(fj)) where a(éj) € R¥is a
translation vector defining the position of the marker attached
to the bone w.rt. the reference frame {Fj;} attached to the
bone. We cast all the parameters defining the position of all
the bone markers with respect to each bone frame {F;;}, (i =
1,...,5; j € Z(j)) in vector ap.

(10)

D. Modelling joint markers

For optical markers attached to areas of the back of the hand
where the skin stretch with respect to the underlying bone
is not negligible, a kinematic model considering the marker
frame fixed with to some bone would be not motivated and
would give poor results — errors due to this assumptions are
generally referred to, in the literature, as soft-tissue artifacts
(STA). The phenomenon of skin stretch is maximally evident
in correspondence of joints, as shown by the experiments
presented in Sec. [Georg’s experiments]. In order to tackle this
issue directly, we include in our model a skin stretch compen-
sation mechanism that is biomechanically sound.

With reference to Figure 2 (b), we consider an optical marker
attached to the skin above the MCP; joint. Let us denote such
markers as joint markers. For brevity, we contemplate only
the part of the kinematic chain from {MCsy} to {M} and we
set la = CMCy,, 10 = CMCyp, 2a = MCPy,, 2b = MCPy,.
We consider the joint marker as being the leaf of a virtual
kinematic chain described by the following equation

glom(g) — b1t e€1b91befm9m(9m)652;927(92;)91072(192&”1.
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Equation (11) states that joint marker displacement is in-
fluenced by the rotations of the joints above which it is
positioned, besides the rotations of the proximal joints. The
main assumption made in (11) is that the twists describing
the skin stretch mechanisms are equal to those defining the
bone kinematics. However, the rotations of the last joint in the
virtual chain 63, (62,) and 6a5(02p) are (possibly nonlinear)
functions of the joint angles 03, and 6o,. This definition
directly models the relative displacements of the skin with
respect to the underlying bones. To keep things relatively
simple we modeled the skin displacements by the following
linear functions

094(020) = 20024, O (Bap) = capop.

Then, the constant offset transformation g, accounting for
the posture of the marker frame in the initial configuration,
can be written as

I d
92a,m = |:0T 26{7m
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and can be recovered by direct inspection of Figure (2).
The other constant part gjp 2, is known from the kinematic
chain in its initial configuration. It is worth observing that
the displacement of each joint marker is characterized by the
five parameters p, d, h, ca, and cop. The three parameters p, §
and h are the cylindrical coordinates of the marker position in
the initial configuration, while cg, and cgp describe the skin
displacement (ca, = cop = 0, marker fixed to the proximal
bone; ¢, = cop = 1, marker fixed to the distal bone).
These kinds of parameters for all joint marker can be cast
in the vector a; and can be calibrated once as described in
Sec. IV.

It is important to note that, given the joint marker direct
kinematics described in eq. (11), the rigid-body velocity of the
marker frame can be computed by combining the contributions
of (i) the kinematic chain of the bones szo,w and (ii) the
Jacobian 85/80 of the joint speeds 0 of virtual chain with
respect to the independent joint speeds 6 as follows
. ~ ~ 00 :
10m (0,0) = Jlmoﬂn[ela,91b792a(62a)792b(92b)]% 0
06)

(14)

When the linear model in eq. (12) is adopted for the descrip-
tion the skin displacement, the explicit expression for 96,/00
is given by

o0

= = diag(1, 1, caq, c2p).

5)
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Then, the hybrid version of eq. (14), can be recovered as
shown in eq. (7), and will be useful in the computation of the
residual Jacobian, as it will be explained in Sec. V, eq. (24).

III. VALIDATION OF THE SKIN MOVEMENT MODEL USING
MAGNETIC RESONANCE IMAGING

We have used magnetic resonance imaging (MRI) to measure
skin movement in dependence of bone movement [2]. Here we
use the MRI data as ground truth to validate the skin movement
model described in Sec. II-D.

A. Measurement of skin movement

MRI-sensitive Soledum oil capsules (Casella-med, Cologne,
Germany; spheroids with diameter 7 mm and long axis 10 mm)
are attached to the skin on the dorsal side of the hand of
one subject (Fig. 3). For the validation of the skin movement
model, the capsules centered over the metacarpophalangeal
(MCP), proximal interphalangeal (PIP) and distal interpha-
langeal (DIP) joints are considered. MRI images of 20 dif-
ferent hand postures are recorded (n, = 20). The postures are
chosen such that each joint is moved through its whole range
of motion. The volumes of the bones and of the capsules are
segmented from the MRI images.

One posture (flat hand) is designated as the reference posture.
To give anatomical meaning to the marker movement, bone
coordinate systems (BCS) are placed manually for each bone
in the reference posture. According to the recommendations
of the International Society of Biomechanics [9], the z-axis
points in palmar direction, the y-axis in proximal and the
z-axis in radial direction. The BCS of the bones in the
other posture are determined using a point cloud registration
algorithm by Hillenbrand [10].

(b)

Fig. 3: Placement of the MRI-sensitive markers on the skin.
For validating the marker movement model, markers near the
MCP, PIP and DIP joints are considered.

The position of each skin marker is measured as the mean
of the coordinates of the capsule volume weighted by the
intensity values:

1
Pm = =< 9iZs,
Dicv Yi ;

where p, € R? is the resulting vector containing the position
coordinates of the skin marker, g; is the intensity value (=
grey value) at the ¢-th volume element of the capsule volume
V, and z; € R3 contains the coordinates of the i-th volume
element.

The amount of uncompensated soft tissue artefact (STA) is
quantified as the distance between the marker in the reference
posture and the marker in another posture, both expressed in
the BCS:

P B
sk = |I" Pmk — " Pm,ret |,
wheres;, is the amount of uncompensated STA in posture k,

Bpm k is the position of the marker with respect to bone B
in posture k and Bpm,ref is the position of the marker with



respect to the bone in the reference posture. Note that the
soft tissue artefact of markers on joints can be calculated
with respect to either the proximal or the distal bone. Without
loss of generality, we choose to calculate with respect to the
proximal bone. The mean amount of uncompensated STA and
its standard deviation over all postures is shown for each joint
in the second column of Table I.

B. Identification of joint axes

Based on biomechanical literature, previous work [11] and
everyday observation, the PIP and DIP joints are modelled
with one axis of rotation (1 DoF), and the MCP joints with two
intersecting orthogonal axes of rotation (2 DoF). The positions
and orientations of the rotation axes are identified separately
for each joint.

In 1-DoF joints, the modelled pose PTD,mod,k of the distal
bone D with respect to the proximal bone P in posture k is
results from a rotation of an initial pose PTD,O around the
rotation axis of the joint:

P P P P
Tp,mod,k = r0t4><4( Pal, = G1, q1k) b0,

where Pp,; € R? is a point on the rotation axis, Ya; € R? is
the Cartesian orientation of the rotation axis, g1k is the joint
angle in posture k and the operator rotyx4(p, a, q) produces a
4 x 4 rotation matrix that describes a general rotation around
an axis defined by the orientation a, a point on the axis p and
a rotation angle ¢:

rotzxsz(a,q) (p —rotsxs(a,q)p)
0 0 O 1 ’

I‘Ot4><4(p?a/7 q) = (

where rotsxs(a,q) is a 3 x 3 matrix that describes a rotation
around an axis with orientation a that passes through the origin
of the coordinate system [12]:

rotsx3(a,q) =
c+ca?,
dazay+a,s,

daga, —ays,

dazay—a.s,
/
c+c ai,
/
Caya, +ays,

daza,+ays
daya, —ags
c+c a?

3

with
c=-cosq, ¢ =1—cosq, s=sing,
T
a = (az,ay,a;)", and||a|| = 1.
As initial pose, the measured pose in the reference posture is

taken:
P P
TD,O = TD,refa

and the joint angles are defined to be zero in the reference
posture.

In 2-DoF joints, the rotation takes place around two rotation
axes:

P P P
TD mod,k = rotyxs ( Dal, = 1, Q1k)
P P P
rotaxs (" paz, Daz, qar) "Tbo-
The assumption of intersecting orthogonal axes imposes the
following constraints:

P P P P
Pal = Daz and “a; az = 0.

The residual transformation Tg;g j, between the modelled
bone pose PTD,mO(Lk and the measured bone pose PTDJ€ is
calculated by multiplying one transformation with the inverse
of the other,

P P —1
Taiggk = Tok ( TDmod,k)

and is split into a rotation Rgig; € SO3 and a translation

taig k € R3:
Raig ke taik
O1><3 1

From these, the rotational residual 7, ; and the translational
residual 7, are calculated:

B

where the angle of the rotation is calculated from the trace of
the rotation matrix, i.e., from the sum of diagonal elements
[12]:

ek = angle(Raig k) and 7, = ||taifr &

angle(R) = arccos (;[trace(R) - 1]) .

The optimal axis positions PpaLopt and Ppagppt, the opti-
mal axis orientations Pa1,opt and Pagyopt and the optimal
jOil’lt angles Ql,opt = (q11,0pt7 .. '7q1np,opt) and QZ,opt =
(g21,0pt - - - 7Qan70pt) are identified by minimising the mean
weighted sum of rotational and translational residuals:

argmin
Ppa1,FPai, Q1

(Ppal,opta Pal,opta Ql,opt) =

n
1 P
P P P
P E we T k(5 a1, Qi) F we ek Pat, - A1, Gik)
P =1

and

P P P P
( Pal,opts Pa2,0pty Ql,opts @2 opt, Ql,opta Q2,opt) =
1 np

argmin
Ppa1,Ppaz, Pa1,Paz, Q1, Q2 "p =1
P P
(wr rk(Car, a2, qik, g2k)  +

P P P P
wtrt,k( Pa1, Pa2, a1, a2,Q1k,(J2k))’

respectively.

We choose the following values for the weights w, and
Wy

wy =1 degfl,

wy = 1mm™!.

Note that the optimisation can be accelerated by optimising the
joint angles q1x and gy, respectively, in a nested optimisation
in each iteration of the position and orientation optimisation,
especially if nj is large. We use this nested optimisation
approach with the simplex algorithm by Nelder and Mead [13],
as implemented in the Matlab fininsearch function.



C. Compensation of skin movement

In order to compensate the STA, the skin movement is
modelled as described in Sec. II-D. The model states that the
skin marker rotates around the same rotation axis or axes as
the adjacent bone, albeit with a smaller rotation angle that is
proportional to the bone rotation angle.

The PIP and DIP joints are modelled with one degree of
freedom (DoF):

P P
( pm’f“)d’k) = rotaxa ("par, Tar, ¢ qur) ( leo) ;

and the MCP joints are modelled with two DoF:
Ppm,mod,k _ t P P
i = rotyxs ("pa1, " a1, c1q1x)

P, P ¥ Pmo
rotyxs (" paz, a2, ¢2 qok) ( 1 ) :

where Pm,mod,k 15 the modelled marker position in posture
k,

Poat is a point on the first rotation axis,

Pa, is the Cartesian orientation of the first rotation axis,

c1 is the skin movement proportionality factor for the first
rotation axis,

q1k is the bone rotation angle around the first rotation axis,
Ppag is the a point on the second rotation axis,

P, is the Cartesian orientation of the second rotation axis,
co is the skin movement proportionality factor for the second
rotation axis, and

g2k is the bone rotation angle around the second rotation
axis.

The amount Syegiqual,« Of residual STA is calculated as the dis-
tance between the modelled marker position and the measured
marker postition:

Sresidual,k = ||Ppm,k - Ppm,mod,k||~

As described in Sec. II-D, the initial marker position Ppmo and
the proportionality factors c¢; and ¢, can be optimised to best
describe the skin movement. As a starting point, the initial
marker position is assumed to be equal to the marker position
in the reference posture, and the proportionality factors are
assumed to be 0.5:

P P
Pmo,start = Pm,ref,
Cl,start = 057

C2 start — 0.5.

The mean amount of residual STA at the starting point and
its standard deviation over all postures is shown in the third
column of Table I.

The optimal skin movement parameters Ppmo,opt, Cl,0pt and
C2,0pt Minimise the mean amount of residual STA over all
postures:

P _
[ Pmo0,opty C1,0pt» CZ,opt] =
np

: § : P
argmin Sresidual,k:( Pmo, C1, cZ)a (16)
Ppmo, €1, c2 Np k=1

mean STA (mm) £+ SD optimised
joint uncompen- default optimised Cross- parameters
name sated values values validated ¢l c2
MCP1 3.2 +2.6 23 +15 20&%14 25+£15 05 04
MCP2 6.8 +4.0 37 423 32417 37417 0.5 0.8
PIP2 2.5 £33 14 +10 08 04 1.1 +06 0.8
DIP2 1.7 £1.9 1.1 £0.6 09 +£04 1.1 £05 0.6
MCP3 6.6 £5.0 2.8 +2.1 2012 22413 06 1.2
PIP3 3.6 £4.4 1.7 £1.1 14 +£0.9 1.6 £09 0.6
DIP3 1.7 £1.6 1.7 £1.2 1.2 £09 1.1 £09 04
MCP4 72 5.4 3.1 425 20+13 24412 08 0.7
PIP4 3.0 £3.6 1.7 £1.2 1.5 £1.1 1.6 £1.2 0.6
DIP4 1.7 £1.7 1.2 +£0.8 1.0 +£0.7 1.1 £0.7 0.6
MCP5 6.9 +4.5 46 +24 28 +16 35 +£1.8 05 0.2
PIP5 2.9 £3.1 23414 17412 19413 0.7
DIP5 2.1 £1.7 1.7 £1.1 1.3 +£1.0 14 +1.0 0.7
mean 3.8 £3.3 2.3 £1.5 1.7 £1.1 1.9 +1.1

TABLE I: Validation of the skin movement model using MRI
measurement as ground thruth. The second to fifth columns
show the mean and standard deviation over all postures of
the amount of STA - uncompensated, compensated with
default parameters, compensated with optimised parameters
and compensated with optimised parameters in a leave-one-
out cross-validation. The sixth and seventh column show the
optimised values of the skin movement proportionality factors.

where n, is the number of postures. The simplex algorith by
Nelder and Mead [13], as implemented in Matlab, is used to
find the optimal parameters.

The mean amount of residual STA using the optimised
parameters and its standard deviation over all postures, as
well as the values of the optimal proportionality factors are
shown in the fourth, sixth and seventh column of Table I,
respectively.

A leave-one-out cross-validation is performed to check against
overfitting of the data. For this, the skin movement parameters
are optimised according to Eq. 16, using all postures except
one (“training set”). The residual STA is calculated for the
omitted hand posture (“test set”). This procedure is repeated
nyp times, each time omitting another posture from the training
set.

The mean and standard deviation of the cross-validated
amounts of residual STA are shown in column five of Ta-
ble 1.

The results show that the measured reference marker position
is a good starting point for the initial marker position and that
0.5 is a good starting point for the proportionality factor: mod-
elling the skin movement with these values already reduces the
amount of STA of the investigated subject on average from 3.8
to 2.3 mm. Still, optimising the parameters is useful, further
reducing the STA to 1.7 mm. The cross-validated residual
is only slightly higher than the optimised residual; i.e., the
parameters generalise well on unknown joint postures.

IV. CALIBRATION OF SUBJECT-SPECIFIC STATIC
PARAMETERS

When regarding hand movement over time, some properties
of the hand change while other properties are static. For
example, when modelling the joints of the fingers as simple
rotation axes, the positions and orientations of the axes in a



reference posture are static, while the rotation angles around
these axes vary during the movement. There are additional
static parameters when skin movement is modelled in addition
to bone movement.

In order to reconstruct realistic values of the joint angles from
marker data, the kinematic model employed should mimic
as closely as possible the actual kinematics of the subject
being recorded. Once the optimal topology of the kinematic
model has been selected [11], this amounts to identifying
(i) the subject specific geometric parameters ac, related to
the positions and orientations of the joint axes, which affect
the twist coordinates &;, and (ii) the parameters ap and aj
controlling the location of the bone and the joint markers,
respectively, with respect to the hand kinematic structure. It is
worth noting that the parameters defining the skin compensa-
tion mechanisms in eq. (12) are elements of a ; and are treated
like all the other parameters.

Let y, denote the vector containing the coordinates of all
the markers measured by the Motion Capture system at
time instant k. Moreover, let f(xy;aq,ap,ay) represent the
corresponding coordinates when the joint angle values are set
to x; and the static parameters are set to the values a¢g, ap and
ay. At time instant k it is possible to define the residual

ey =r(zr;ag,ap,ay) == yr — f(zr;ag,ap,ay), (17)

expressing the instantaneous misfit between measurements and
estimates provided by the model. By considering a number
N, of training hand postures it is convenient to cast all the
corresponding residuals in a unique vector R as follows

R(z;ag,ap,az) = [r{ ry -1 -1y )0, (18)

and set x = [z{ 3 .-z} ]", such that the following cost

function, that is a scalar measure of misfit, can be intro-
duced

]T

Np

1 1
g('r;aGaaBan) = iRTR = = ngrk

3 19)
k=1

At this point, the calibration of the skeletal and marker

parameters can be framed as the following constrained least-
squares minimization problem

(x50, ap,a%) = argmin g(z;aq, ap,ay), (20)

2, €Dy
a€Dgy

where D, represents a feasibility region for the generic value
x, of joint angles at instant k, and a € D, can be expanded
as ag € Dq,, aBp € Dy and ay € D,,. It is important
to observe that all the above requirements can be written
explicitly as box constraints, e.g. xy, € D, <= I, < x =< up,
where [, and wuy are physiological joint angle bounds for
the hand that can be recovered from [14]. The other regions
Dy, Day and D, can be defined as tolerance regions around
nominal and/or most likely values. These that can be estimated
through direct measurements, e.g. with a caliper, and can be
employed as initial guesses of the numerical minimization
procedure. In our implementation, the solution of problem (20)
is obtained employing a primal-dual interior point method
based on [15].

It is worth observing that, besides the optimal values of the
skeletal and marker associated parameters ay, and aj,a’,

respectively, the solution of (20) provides, as a costly by
product, the optimal joint angles values z* corresponding
to the N, training poses. Even if these values are actually
discarded, since their values for a continuous movement is
found as described in Sec. V, their inclusion as variables
in (20) is an obliged stage, since no a priori informed estimate
can be made on joint angle values corresponding to a given
hand posture.

V. POSTURE RECONSTRUCTION

The problem of computing joint angle values given marker
coordinates is sometimes tackled as one of inverse kinematics.
However, if uncertainty in the model description and noisy
measurements are to be treated as intrinsic features and not as
an afterthought, it is more appropriate to cast the problem in
the general framework of probabilistic inference.

Let = denote the vector of all latent variables in the model.
In our analysis = represent joint angles, and z; denote their
values at time instant k. Geometric parameters ag, bone
marker parameters ap and joint marker parameters a; are
considered as known from the previously described calibration
procedure, and their values will not change during the posture
reconstruction process.

Let then y denote the vector obtained by casting the co-
ordinates of all markers measured by the Motion Capture
system, and let y; represent their values at time instant k.
The objective of our analysis is to estimate the most likely
state Z11|k+1, and its confidence interval in the form of a
covariance matrix Py qx41, given the measurements up to
time instant k£ + 1 as well as prior information Zy. The
notation here used is standard in probabilistic inference and it
is based on [16].

The two pillars of probabilistic inference are: (i) the process
model and (ii) the observation model. In our case, the pro-
cess model, i.e. the model describing the state transition is
unknown with no controlled inputs, since only the kinematics
of movement is considered. Therefore, modeling noise vy at
instant k as a Gaussian process with zero mean and covariance
Vi, we can describe the process model as a random walk in
the state

Tpy1 = T+, Uk ~ Ny(0; Vi) 2D

The observation model, relating the latent state zj; and the
measurements ¥y, both at time instant &, is given by the direct
kinematics relationship

yr = f(zr) +wr,  wi ~ Noy(0; W) (22)

The misfit between marker coordinates measured by the mo-
tion tracking system and estimates provided by the direct
kinematics are modeled as a Gaussian process with zero
mean and covariance Wj. Therefore, introducing the notion
of residual r(y,x) := y — f(x), it is possible to write, at time
instant &,

r(yk, oK) = Yk — flan) = wr, e~ N (0; W) (23)

By differentiating eq. (23), the equation relating the Jacobian
of the residual J,.(z) and the kinematic (positional) Jacobian



Jy(zx) is obtained
Jr(z) = —Jg(z).

Since Js(x) can be composed using the elemental hybrid
B,[Owm, .
Jacobians Jg A[fi M”], computed as in (7), for all the markers,

eq. (24) provide]s an closed-form solution to the computation
of the important matrix J,.(x).

(24)

The recursive estimation procedure is based on a iterative
Extended Kalman Filter (EKF) described as follows. Starting
from an initial estimate &, with state covariance Py, the
prediction step, based on the linear process dynamics (21),
produces

(25)
(26)

1k = Tlk,
Pryar = P + Vi

Therefore, the prior density over the latent variable space
is

P(ra1lyre) = No(@ps1ik; Prgje)s (27)

which includes measurements only up to y. The subsequent
correction step is based on the maximization of the posterior
density p(xg+1|y1.k+1) obtained when also yy11 is included.
This density, up to a normalizer in Bayes rule 1, can be written
as

P(@ra1lyresr) = DN (0 W) No (kg1 ks Pegre)  (28)

The maximum a posteriori estimate Tjix41 is the value
of xr4+1 which maximizes the above expression for given
Yr+1 (contained in rg41) and 1 )x. By denoting for clarity
the sought for value #jyqx41 simply with z, the maxi-
mization of (28) is equivalent to minimizing w.rt. = the
function — log(p(x|y1.x+1)) which, up to an additive constant,
is

(@) = 37 (s 2 Wik (s, o)+

1 - T p—1 . @)
+ 5(3? — Thgk) Pk+1|k($ = Ty1|k)
It is worth noting that function h(z) plays the role of a
cost function where the first term encourages explaining the
measurements from the motion tracking system, while the
second term suggests staying close to the prior which, due
to (21), is the solution at the preceding time step, thus avoiding
motion discontinuities. Due to the nonlinearity of the residual
r(yg+1,x) W.rt. x, caused by the nonlinearity of the direct
kinematics model f(z), the minimization of (29) leads to a
nonlinear least-squares problem. This problem can be easily
handled by modern trust-region methods [17], [18]. These
methods progressively minimize (29) by iteratively minimizing
quadratic models of it built at each step and following a policy
of acceptance/rejection of the step based on the agreement
between the reduction in the nonlinear function and its ap-
proximant.

It is worth noting that, at each step of the method (inner loop
of the numerical method of minimization) the Gauss-Newton
step is calculated as

s=—H(z)"'V(2), (30)

where the gradient vector V(z) and the Hessian matrix H (z)
are

V(z) = Jo(2)" Wi i r(yrgr, ) + Pk,_luk(l‘ — Tptilk)
31

H(z) = Jo(2)" W Jo(x) + ijrlllk (32)
It can be proved that the posterior covariance Ppyijx+1 =
H (%} 41)k+1), that is the Hessian evaluated at the MAP
solution.

It is worth observing that the EKF is a special case of our
iterative EKF, corresponding to a single step taken in the
minimization of h(z) in eq. (29). In fact, the EKF performs a
linearization of the residual r(ygy1, x), thus obtaining already
a quadratic model of h(x), which converges in one iteration.
However, while in the KF the residual is actually linear and
the above procedure is optimal, the EKF, neglecting O(||z||?)
terms in the observation model, can lead to inaccurate results.
It is therefore advisable to employ the iferative EKF to im-
prove accuracy through additional iterations until convergence
and/or as long as the computational effort is acceptable.

VI. EXPERIMENTS AND RESULTS

The models and techniques described in the previous sections
have been used to reconstruct hand poses in experiments
conducted by subjects with an optical tracking system. These
techniques should be thought as tools to improve hand pose
reconstruction since they allow to take into account differences
in hand shape and dimensions, skin movement, as well as to
vary the number of DoFs used for the kinematic hand model
in use. The latter aspect, for example, enables to face the
study of synergies and their dependency on kinematic model
dimension. More specifically, although a complete movement
can be reconstructed, we focus on ‘“static” grasping poses.
To analyze reconstruction outcomes, we consider, respectively,
only 24 out of 26 DoFs of the kinematic model previously
described (wrist DoFs are neglected) and only 15 DoFs,
chosen as in [6]; Principal Component Analysis (PCA) has
been performed for both cases and Principal Components
(PCs, or synergies) obtained and results are compared with
the ones presented in [6]. In [6] authors first analyzed hand
postural synergies [1] for grasping by means of PCA. In this
work, authors focused on central contributions to hand posture
modulation, analyzing a large number of different imagined
grasped objects, thus avoiding any mechanical interference as
it would result from the contact with real elements. They
demonstrated that only a few linear combinations of hand
DoFs (in this case a 15 DoF kinematic model was considered)
is sufficient to take into account most of the variance in the
set.

A. Materials and Methods

1) Experimental task: Subjects were instructed to shape their
right hand as to grasp a certain amount of objects (n = 20,
Table II) which were not physically present during the ex-
periment. Pictures of the objects were instead shown on a
computer screen, and the subject was asked to grasp them as



1. Bucket 11. Hammer

2. Calculator 12. Ice cube

3. Chalk 13. Jar lid

4. Cherry 14. Light bulb

5. Computer mouse 15. Pen

6. Dinner plate 16. Rope

7. Espresso cup 17. Telephone handset
8. Fishing rod 18. Tennis racket

9. Frisbee 19. Toothpick

10. Hair dryer 20. Wrench

TABLE II: List of objects used in the task

if they want to use them in a specific, priorly agreed upon
way.

The subject was asked to imagine the object floating in space
at a distance of about 10 —20 cm ahead of the subject’s frontal
plane, in the same configuration which was shown in the
picture. The subject was seated on a chair, and their forearm
rested on the armrest. While waiting at the rest position, the
subject was asked to keep their hand in a position as “flat” as
possible. When they reached the grasp configuration, they were
asked to wait a few seconds before coming back to the rest
position again. Each subject performed a total of six trials for
each of the objects; all trials were presented in random order.
These six trials were preceded by a few training trials, in order
for them to be familiar with all the pictures presented.

Four right-handed subjects (two males and two females, age in
the interval 20 to 30 years) participated in this study. All sub-
jects gave informed consent, and the protocols were approved
by the ethical committee of the University of Pisa.

A single trial was timed as follows:

« at first, the picture of one object was shown for 3 seconds

« then, after removing the picture, the subject waited 2 sec-
onds before hearing a “beep” sound

o when they heard the beep, they moved to perform the
grasp, stopped at the final configuration for a few seconds,
and then came back

« the whole cycle (between the presentation on the screen
of two consecutive objects) lasted 12 seconds.

B. Experimental Procedure and Data Analysis

Hand posture was obtained with the identification procedure
described in Section V, measuring the position of optical
markers using an optical motion capture system (Phase Space,
San Leandro, CA — USA) composed of 10 stereo-cameras
at 480 Hz, undersampling in post-processing down to 15 Hz
and then smoothing the reconstructed postural angles with a 5
samples moving average filter. Subsequently, a selection of the
actual frame to consider for a specific grasp has been carried
out, based on the timing of object pictures presentation, via
visual inspection.

The protocol for marker placement is as follows (see Figure 4
for an illustration):

« a rapid prototyping plastic bracelet strapped on the wrist
in order to obtain a local (proximal) frame of the hand

Fig. 4: The hand of one subject after all markers have been
placed, showing the protocol for marker placement.

at each time step

« one marker is placed on each “bone” as considered in the
model of Section II

« one marker is placed on each “joint” in the following list:

— Thumb: carpometacarpal (CMC),
phalangeal (MCP), inter-phalangeal (IP)
Index: MCP, proximal-inter-phalangeal (PIP)
Middle: MCP, PIP

Ring: PIP

Little: PIP

metacarpo-

1) Data Analysis: Let consider first the analysis with the
model with 15 DoFs. In this case the percentage of variance
accounted for by each principal component (table III) and
the cumulative variance (table IV) are similar to the values
reported in [6]. Of course differences between subjects can
occur (see e.g. subject T.C.). The values we obtained are
slightly smaller compared to [6], possibly because we do
not reduce intra-object variability thus considering all the
repetitions for each object grasp in data analysis. However the
main result is that with only three synergies ~ 80% of data
variance is taken into account for all subjects (except for T.C.),
thus suggesting a reduction of the 15 DoFs to be recorded: in
other terms, since synergies express the constraints in inter-
digit movement due to both peripheral and central factors [1],
the dimensionality of the DoFs that can be independently
controlled by the nervous system is smaller than the one due
to purely mechanical kinematic space [19]. Considering the
covariation matrix as reported in Figure 5, what is noticeable is
that MCP (MetaCarpo-Phalangeal) angles of adjacent fingers
as well the PIP (Proximal-Interphalangeal )angles are highly
related to each other, with the extent of correlation decreasing
with the separation between pairs of fingers. This result is
comparable to the one in [6]. Same considerations can be
drawn for the 24 DoF covariation matrix, as it is reported
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Fig. 5: Gray scale plot of the covariance matrices for all
subjects analyzing 15 DoFs. For sake of clarity and to enhance
result comparison, the same naming in [6] is adopted; the term
ABD refers to the adduction/abduction degrees of freedom,
MCP to metacarpo-phalangeal joints, PIP to the proximal-
interphalangeal joints, DIP to distal-interphalangeal joints.

in Figure 6. In this case, as expected, the ~ 80% of data
variance is taken into account with more synergies, more
specifically with five synergies (except for T.C.) — cf. table V
and table VI; however, the proportion of effective DoFs (as
it results from the number of the synergies engaged to get
~ 80% of data variance accounted for) and the number of
DoFs used to describe the kinematic model is pretty the same
of the one observed for the 15 DoF case. In Figure 8 and
Figure 10 the distribution of the angular differences for all
joint angles between hand posture reconstructed from the first
two PCs in 15 and 24 DoFs, respectively, and the actual
posture recorded; in both cases, for a large percentage of
poses (> 70%), the angular difference in degrees is within
+5. This result suggests that, although with the differences
due to the kinematic model in use, the first two PCs are
the most important for the reconstruction. This can be also
observed from Figure 7 and Figure 9, where the distribution
of normalized amplitudes of the first five PCs for 24 and 15
DoF models are reported, respectively. The amplitudes are
normalized to the maximum (absolute) value of the first PC.
Notice that the amplitude to the third through the fifth PCs
are uniformly small, although they contribute to the variance
accounted for (this fact is especially true for the 24 DoF
model). All these results are coherent with the one reported
in [6]. Finally, in Figure 11, postural synergies defined by
the first two principal components in 24 DoFs are reported.
The central hand posture is the average over 120 postures
(20 different objects 6 times each) for one subject (A.C.).
The postures to the right and left are for the maximum and
minimum values of the first principal component (PC1), while
other principal components have been set to zero. The postures
at the fop and bottom are the same for the second principal
component (PC2). As in [6], along the PC1 (horizontal) axis,
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Fig. 6: Gray scale plot of the covariance matrices for all
subjects analyzing 24 DoFs. Gray scale plot of the covariance
matrices for all subjects analyzing 15 DoFs. For sake of clarity
and to enhance result comparison, the same naming in [6]
is adopted; the term ABD refers to the adduction/abduction
degrees of freedom, MCP to metacarpo-phalangeal joints,
PIP to the proximal-interphalangeal joints, DIP to distal-
interphalangeal joints.

it is possible to observe a gradual closure of the end: at
one extreme, it is noticeable an extension and abduction of
the fingers at the MCP joint (PC1 max), while at the other
extreme, MCP joint flexion and adduction is observed (PC1
min). Along the PC2 (vertical) axis, with PIP joint flexion
and MCP joint extension while moving toward PC2 min. The
thumb abduction and internal rotation decrease towards PC2
max. This result suggests that the model of synergy still works
in spite of the dimension of the kinematic model in use, with
many similarities across models with a different number of
DoFs.

Subjects PC, PC, PC; PCy PC;
AC 67.1 13.5 7.2 2.8 2.5
MB 48.9 18.1 12.9 5.2 3.7
TC 32.7 20.6 12.0 8.6 7.4
DR 57.3 13.9 10.7 4.1 33

TABLE III: Percent variance accounted for by each principal
component in 15 DoFs

Subjects PC,; PC, PC; PC,4 PC;
AC 67.1 80.6 817.7 90.5 93.0
MB 48.9 67.0 79.9 85.1 88.8
TC 32.7 533 65.3 73.9 81.3
DR 57.3 71.2 81.9 86.0 89.3

TABLE IV: Cumulative percent variance accounted for by 15
DoFs PCs
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angles between hand posture reconstructed from the first 2
PCs in 15 DoFs and the actual posture recorded. The data are
for all objects from one subject (D.R.).
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Subjects PC, PC, PC;3 PC, PCs
AC 55.6 13.2 7.3 5.3 4.5
MB 40.0 16.1 12.3 5.9 5.2
TC 27.9 17.3 12.1 7.4 6.3
DR 45.7 13.6 94 7.4 5.0

TABLE V: Percent variance accounted for by each principal
component in 24 DoFs

VII. CONCLUSIONS AND FUTURE WORK

In this work a complete procedure to reconstruct human hand
posture is presented The kinematic hand model in use is fully
parameterized and it allows to take into account differences
in subject hands. Furthermore, the introduction of a soft-

Subjects PC, PC, PCs3 PC, PCs
AC 55.6 68.7 76.1 81.3 85.8
MB 40.0 56.1 68.4 74.3 79.5
TC 27.9 453 57.4 64.8 71.1
DR 45.7 59.3 68.7 76.1 81.1

TABLE VI: Cumulative percent variance accounted for by 24
DoFs PCs

PC, PC PC PC PC,
40— 40— 40— 40— 40

0 1910191019101
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Fig. 9: Distribution of normalized amplitudes of the first five

principal components in 24 DoFs. These amplitudes have been

normalized to the maximum (absolute) value of the first PC.

The data shown are for one subject (D.R.).
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tissue artifact compensation mechanism makes the procedure
amenable of in-vivo to joint angle recordings via optical
tracking of markers attached to the skin. The parametrization
structure of the model has then been exploited to reconstruct
hand poses in experiments, aiming at analyzing postural syn-
ergies in grasping, using kinematic models with a different
number of degrees of freedom. Results are compared to the
ones reported in [6], showing a significant coherence in the
synergies obtained, independently form the dimensionality of
the kinematic description in use. In conclusion, this paper
offers a useful tools that can be used to investigate more in
depth and with more accuracy the synergy concept; the final
results, after the definition of meaningful mapping strategy,
might drive the definition of robotic hand postures able to
realize effective grasps, or be used as a priori information
for hand avatar animation [20] or for the improvement of
the design and the performance of glove-based Hand Pose
Reconstruction (HPR) systems [21], [22].
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