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Abstract 

Long term or even permanent settlement on different planets of the solar system is a fascina-

tion for mankind. Some researchers contemplate that planetary settlement is a necessity for 

the survival of the human race over thousands of years. The generation of food for self-

sufficiency in space or on planetary bases is a vital part of this vision of space habitation. The 

amount of mass that can be transported in deep space missions is constrained by the 

launcher capability and its costs.  

The space community has proposed and designed various greenhouse modules to cater to 

human culinary requirements and act as part of life support systems. A survey of the different 

greenhouse space concepts and terrestrial test facilities is presented, drawing a list of meas-

urable factors (e.g. growth area, power consumption, human activity index, etc.) for the eval-

uation of greenhouse modules. These factors include tangible and intangible parameters that 

have been used in the development of an evaluation method on greenhouse concepts as a 

subsystem of planetary habitats. 

 

 

Überblick 

Permanente Ansiedlungen auf anderen Planeten unseres Sonnensystems faszinieren die 

Menschheit schon seit langem. Einige Forscher behaupten sogar, dass Siedlungen auf an-

deren Planeten für das Überleben der Menschheit über Tausende von Jahren notwendig 

sind. Die Erzeugung von Nahrung im Weltraum oder in planetaren Habitaten ist für die 

Selbstversorgung der Crew unverzichtbar und ein essentieller Bestandteil aller Visionen von 

extraterrestrischen Kolonien. Ohne Selbstversorgung sind zukünftige Habitate auf Lieferun-

gen von der Erde angewiesen, die jedoch durch die Kapazität der Trägersysteme und die 

entstehenden Kosten begrenzt sind. 

Zahlreiche Entwürfe für Greenhouse-Module als Nahrungsquelle und Teil der Lebenserhal-

tungssysteme planetarer Habitate wurden bereits von Wissenschaftlern vorgeschlagen. In 

der vorliegenden Arbeit wird eine Erfassung verschiedener Greenhouse-Konzepte und ter-

restrischer Testanlagen durchgeführt. Weiterhin erfolgt die Erstellung einer Liste messbarer 

Vergleichsfaktoren (z.B. Anbaufläche, Energiebedarf). Die Faktoren beinhalten quantitative 

und qualitative Parameter und werden für die Bewertung ausgesuchter Greenhouse-

Konzepte mit einer geeigneten Bewertungsmethode genutzt. 
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1 Introduction 

1.1 Motivation and Structure of Work 

The continuous provision of food for the crew in spacecraft around or even beyond Earth is a 

challenge. Today’s astronauts are addicted on resupply vessels from Earth to get provided 

with food. The launch costs of resupply vessels are generally high and therefore, the launch-

es occur rarely and only when necessary. Therefore, the provision of fresh fruit and vegeta-

bles is limited to the time after the arrival of resupply. Consequently, today’s space dishes 

mainly consist of dehydrated and thermo-stabilized food. However, a diet high in fresh fruit 

and vegetables provides excellent nutrition content to help maintain the health and well-being 

of astronauts and cosmonauts, whilst also providing significant benefits on the crew’s psy-

chological health. 

The production of food during crewed space missions can reduce the required resupply 

mass for short duration missions and are an asset for long duration missions to other plane-

tary bodies of our solar system. Until now several experiments were conducted in this re-

search field and several terrestrial test facilities of greenhouse modules exist. In addition a 

large number of conceptual designs of greenhouses for food production in space are pub-

lished. Some of them are simple concepts, while others are detailed designs including calcu-

lations and simulations. 

One task of this thesis is the establishment of a comprehensive list of plant growth cham-

bers, greenhouse module concepts and terrestrial test facilities. A methodology for the anal-

ysis and evaluation of greenhouse modules will be developed. Therefore, a comprehensive 

list of measurable factors will be implemented. The proposed methodology will be tested on 

selected greenhouse modules. 

Scientific background related to greenhouse modules is investigated in Chapter 2. The envi-

ronmental conditions in free space and on Moon and Mars are explained in the first subchap-

ter, followed by the listing of metabolic and physiological requirements of humans in the se-

cond subchapter. Greenhouse modules are usually part of the environmental control and life 

support subsystem (ECLSS) of spacecraft or planetary habitats. Consequently, the different 

types of ECLSS are investigated during this thesis, see the third subchapter. An overview 

over past and present food provision during space mission is given in the fourth subchapter. 

A greenhouse module subsystem definition is provided in the fifth subchapter.  

Another task of this thesis is the development of an analysis and evaluation strategy. Chap-

ter 3 explains the developed analysis and evaluation methodology in the first subchapter. 

The selected analysis method, the Morphological Analysis, is described in the second sub-

chapter. The third subchapter provides two suitable methods for the evaluation of green-

house module, the Equivalent System Mass (ESM) concept and the Analytical Hierarchy 

Process (AHP). The ESM concept was developed by NASA researchers to evaluate different 

ECLSSs, while the AHP is a more general evaluation method. The fourth subchapter estab-

lishes measurable factors related to greenhouse modules. Therefore, the proposed factors 

are categorized in four major sections, fundamental, environmental, agricultural and interface 

factors. A detailed description for each factor is provided by the fourth subchapter. Finally, 

the AHP is selected for an exemplary evaluation of greenhouse module concepts.  



Introduction 

Previous Work 

2 

A demonstration of the developed methodology is executed in Chapter 4. The first subchap-

ter offers a list of flown plant growth chambers, greenhouse module concepts and terrestrial 

test facilities. Furthermore, three greenhouse modules are selected for the demonstration 

and a detailed description is given for each. The second subchapter defines the goal of the 

exemplary evaluation. In the third subchapter evaluation criteria are selected out of the pre-

viously established compilation of measurable factors and formed to a criteria hierarchy. Af-

terwards the selected criteria are weighted for the following AHP. Therefore, local and global 

weighting values for each element of the hierarchy are calculated. The fourth subchapter 

provides the result of the evaluation of the three selected greenhouse modules based on the 

previously established weightings. 

Chapter 5 discusses the results of this thesis and describes potential future tasks for the im-

provement of the developed methodology. 

In Chapter 6 a summary of this thesis is given. 

1.2 Previous Work 

This thesis is part of the greenhouse research efforts expedited by the department of System 

Analysis Space Segment of the Institute of Space System of the German Aerospace Center 

(DLR) Bremen. During the last few years the research plans are evolved and preliminary re-

search in the field of greenhouse modules was conducted. 

The goal of the efforts is to enforce the research in bio-regenerative life support systems with 

the focus on food production with greenhouse modules. However, the ability of plants to puri-

fy water, absorb carbon dioxide and generate oxygen will be investigated too. Therefore, the 

system analysis of existing greenhouse module concepts and terrestrial test facilities is an 

essential part to determine advantages and disadvantages of different subsystem solutions. 

The design, construction and testing of a high-efficient food producing greenhouse module is 

the long term target of the research conducted by the greenhouse project team of the DLR 

Bremen.  

Bachelor, master and diploma thesis related to different topics of the research field were su-

pervised by the researchers of the DLR Bremen during the last year. Leigh Glasgow from the 

Cranfield University finished his master thesis in July 2011. His task was the development of 

a phase A design of an innovative greenhouse. Muhammad Shoaib Malik also from the 

Cranfield University analyzed power and illumination subsystems suitable for the lighting of 

plants in greenhouse modules in his master thesis, September 2011. Markus Dorn from the 

University of Applied Science in Dresden investigated plant species and cultivation methods 

for the usage in greenhouse modules for space application during his bachelor thesis. He 

finished his work in September 2011. 

Besides the author of this thesis, three other students are currently working on their thesis 

regarding greenhouse modules at the DLR Bremen. Thereby, a market analysis for the use 

of greenhouse modules in different terrestrial areas is executed and investigations in the 

monitoring of plant development and growing are accomplished.  

Plans for the design and construction of a laboratory at the DLR Bremen for further research 

in the field of greenhouses are becoming concrete. Thereby, systems for greenhouse mod-

ules will be developed and their influence on plant development and growing will be investi-

gated. 
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2 Scientific Background 

Chapter 2 provides fundamental scientific background required for the following parts of this 

thesis. In the first subchapter the environmental conditions in free space, on Moon and on 

Mars are summarized. The second subchapter describes the physiological, metabolic and 

other requirements for the survival of human beings. In the third subchapter an overview over 

Environmental Control and Life Support Systems is given. The fourth subchapter describes 

the development of food provision during the last decades. The fifth subchapter defines the 

different subsystems of greenhouse modules and explains their functions. 

2.1 Environmental Conditions 

2.1.1 Free Space Environment 

The environment in free space is different from that on Earth. This topic is extensively dis-

cussed in several publications. However, in this subchapter the effects of  

- magnetic fields, 

- radiation, 

- vacuum and  

- gravity 

 in free space are briefly described. 

Magnetic fields in free space are originated by planets, stars or other celestial bodies. The 

intensity of magnetic fields lowers with increasing distance from the origin. Consequently, 

effects of magnetic fields on spacecraft have to be considered wisely in close range or on the 

surface of celestial bodies. According to reference [1], the trapped charged particles in the 

magnetosphere of celestial bodies, like the Van Allen belts around Earth, has the main effect 

on spacecraft. Furthermore, magnetic fields interact with spacecraft and cause magnetic in-

duction in their systems. That has to be considered during the design process [1].  

In reference [1] radiation is defined as all kinds of particle and wave radiation, and can be 

divided into electromagnetic and ionizing radiation. The electromagnetic radiation is the 

combination of rays of the whole spectrum: gamma-rays, X-rays, UV, visible light, infrared 

and radio waves. Inside the solar system nearly the whole electromagnetic radiation is emit-

ted by the Sun. However, in close range to planets, moons, asteroids and comets the radia-

tion emitted by them affects the spacecraft too. The energy density of the electromagnetic 

radiation of the Sun at a distance of one Astronomical Unit (AU) from the Sun is 1368 W/m² 

[1]. 

The ionizing radiation consists of solar cosmic rays, galactic cosmic rays and the Van Allen 

Belts in the near Earth environment. The solar cosmic rays are produced by the sun as solar 

wind or solar flares and mainly consist of protons and electrons. The galactic cosmic rays are 

emitted by distant stars and galaxies and contain high energetic heavy particles like protons, 

α-particles and heavy nuclei. The Van Allen belts are regions in the Earth magnetic field, 

where high energetic electrons and protons are caught and oscillate along the magnetic field 

lines. The interaction of high energetic radiation with living cells can cause physical damage 

to the cells and mutations of the DNA. On Earth humans, animals and plants are protected 

against the effects of cosmic radiation by the magnetic field and the atmosphere. In free 

space environment, living creatures have to be protected against the effects of radiation. Fur-
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thermore, the impact of radiation on structural materials has to be considered in the design of 

spacecraft [1]. 

According to reference [1], the vacuum in free space influences the heat transfer and the ma-

terials of spacecraft. Due to the very low density of particles in free space, convective and 

conductive heat transfer between the spacecraft and the environment are negligible. Howev-

er, conductive heat transfer between parts of the spacecraft exists. Consequently, spacecraft 

can emit and absorb heat only via radiation. That has to be considered in the design process 

of spacecraft. In addition to the impact of vacuum on the heat transfer mechanisms, it also 

affects the materials of spacecraft. Three different physical and chemical processes are re-

sponsible for changes in materials: outgassing, sublimation and diffusion. Due to the outgas-

sing, materials lose gaseous components. Sublimation is problematic for materials with a 

high vapor pressure: the higher the vapor pressure, the more the mass loss. Outgassing and 

sublimation can result in a lower stiffness, hardness and durability. Solid materials without a 

gas layer between them can be affected by cold welding caused by diffusion of atoms of the 

used materials into each other; this can result in malfunctions of mechanisms [1]. 

Humans, animals and plants originated on Earth are adapted to the existent gravity field. 

Therefore, reference [1] declares the state of microgravity in free space as the most dramatic 

environmental condition. Reduced gravity causes several effects on the human body, e.g. 

bone mass and muscle loss. Plants are also affected by reduced gravity. Due the failure of 

the gravity-sensing system the plants can lose their normal relative orientation of shoot and 

root. The gravitational force of the Earth can be imitated by spacecraft, due to the rotation of 

sections with a defined angular velocity resulting in a centripetal acceleration [1]. 

2.1.2 Local Environment of Moon and Mars 

The properties of other planets and moons and the conditions on their surfaces vary from the 

Earth’s. Moon and Mars are probable targets for the first long-time or even permanent 

crewed base. Therefore, this subchapter describes the properties and environmental condi-

tions of Moon and Mars and compares the conditions to that on Earth. The general proper-

ties, the magnetic field, the radiation, the atmosphere, the surface temperature as well as the 

composition of the local soil are discussed. A comparison of properties between Earth, Moon 

and Mars is shown in Table 2-1. 

The Moon is the sole natural satellite orbiting around Earth. According to reference [2], he 

has a radius of 1738 kilometers and surrounds the Earth in a mean distance of 384400 kilo-

meters in 27.32 days. The Moon’s gravity constant has a value of 1.62 m/s2; this is around 

one sixth of the Earth’s. Earth and Moon have the same mean distance from the Sun; hence 

both have the same mean solar constant of 1368 W/m2. However, opposed to Earth the 

Moon’s day and night at the equator have a length of 14 Earth days each [1]. The poles of 

the Moon are subject to a half-year day-night-cycle. Due to the low gravity, the Moon cannot 

maintain an atmosphere. The temperature on the surface at the equator ranges from 120 °K 

during night to 380 °K during day [2]. Nevertheless, at the poles the temperature can fall to 

40 °K in permanently shaded craters [1]. As a consequence of absent atmosphere and mag-

netic field, the Moon receives twice as much UV radiation the Earth does and a higher 

amount of ionizing radiation. The lunar soil consists of 42 % oxygen, 21 % silicone, 13 % 

iron, 8 % calcium, 7 % aluminum and 6 % magnesium. Usually, these elements are bound in 
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oxides. Basically it is feasible to extract hydrogen, oxygen, water and other useful materials 

out of the soil, but the processes require either high power or high temperatures [1]. 

Mars is the fourth planet of our solar system as seen from sun. He surrounds the Sun in 

686.98 days in a distance of 1.54 AU [1]. Phobos and Demios are the names of the two 

moons orbiting around the Mars. The Martian equatorial radius is around 3396 kilometers. 

Due to the higher distance from the Sun, the mean intensity of the solar radiation is 615 

W/m2. However, the orbit of Mars is more eccentric than the Earth’s; hence the solar con-

stant varies from 493 W/m2 at aphelion to 718 W/m2 at perihelion [1]. Mars possesses a thin 

atmosphere consisting of 95.3 % carbon dioxide, 2.7 % nitrogen and 1.6 % argon. The mean 

surface pressure of the atmosphere is around 6 mbar [3]. The mean surface temperature is 

210 °K, but the temperature varies from 130 °K to 300 °K, depending on the region [1]. Due 

to the thin atmosphere and the low concentration of ozone, the UV radiation reaching the 

Martian surface is higher than reaching the surface of the Earth. Mars maintains a magnetic 

field, but it is not strong enough to keep the particles of ionizing radiation outside the atmos-

phere. The atmosphere itself provides protection against ionizing radiation, but the level of 

protection varies with the composition and dimension of the atmosphere [1]. The Martian soil 

consists of 43 % oxygen, 21 % silicone, 13 % iron, 8 % potassium, 5 % magnesium, 4 % cal-

cium, 3 % aluminum and 3 % sulfur [1].  

Table 2-1: Properties of Earth, Moon and Mars 

 Earth Moon Mars  

Equatorial Radius 6378 km 1738 km 3396 km 

Mean Surface Gravity 9.81 m/s
2
 1.62 m/s

2
 3.72 m/s

2
 

Mean Distance from Sun 149.6 * 10
6
 km 149.6 * 10

6
 km 227.9 * 10

6
 km 

Mean Solar Constant  1368 W/m
2
 1368 W/m

2
 615 W/m

2
 

Atmospheric Composition 78 % N2 

 21 % O2 

 0.93 % CO2 

none 95.3 % CO2 

 2.7 % N2 

 1.6 % Ar 

Mean Surface Pressure 1 bar 3 * 10
-15

 bar 0.006 bar 

Mean Surface Temperature 288 °K day: 380 °K 

 night: 120 °K 

210 °K 

Reference [4] [2] [3] 
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2.2 Human Requirements 

In this subchapter the requirements of humans are summarized, which are divided into phys-

iological, metabolic and miscellaneous requirements. Temperature, relative humidity, pres-

sure and composition of the atmosphere are physiological requirements, while food and wa-

ter are metabolic requirements. The miscellaneous requirements are the result of the effects 

of light, radiation, noise, vibration and human factors. 

Physiological requirements are necessary for the survival of human beings and have to be 

guaranteed at any time. Basically, humans can resist a wide span of temperature assuming 

optimal clothing. For long durations an ambient temperature from 18.3 to 26.7 °C is the opti-

mal zone for humans, in which their performance of routine activities is not affected by ther-

mal stress [5]. Relative humidity stands in close relation to the temperature. The optimal rela-

tive humidity of the ambient air is between 25 % and 70 % [6]. Is the relative humidity below 

25 %, the air is too dry to maintain nominal functioning of mucous membranes over a long 

duration. Exceeds the relative humidity the limit of 70 %, the crew comfort is reduced and the 

condensation of water on surfaces is increased [5]. The combination of the optimal tempera-

ture range and the optimal humidity range forms the comfort box for humans, as seen in Fig-

ure 2-1. 

 

Figure 2-1: Temperature and humidity ranges for best comfort of humans [6] 

Atmospheric pressure and composition are basic requirements to allow human lungs to pro-

vide enough oxygen for all organs and functions of the human body. Thereby, a strong rela-

tion between the absolute atmospheric pressure and the partial oxygen pressure exist. Fig-

ure 2-2 illustrates the relationship between the percentage of oxygen and the total air pres-

sure of a breathable atmosphere. Is the partial pressure of oxygen too low, humans are af-

fected by hypoxia, while they suffer from hyperoxia when the partial pressure is too high [7]. 

For long term space missions an Earth-like atmospheric composition and pressure is suita-

ble. Therefore, the total air pressure of manned spacecraft should range from 99.9 to 102.7 

kPa with a partial oxygen pressure of 19.5 to 23.1 kPa and a partial nitrogen pressure of 79 

kPa. The ECLSS has to assure, that the partial pressure of carbon dioxide does not exceed 

0.4 kPa [6]. A higher carbon dioxide percentage results in increased respiration, heart rate, 

blood flow to brain as well as hearing loss, mental depression, headache, dizziness, nausea, 

decreased visual discrimination and unconsciousness [6]. 

For maintaining the atmospheric requirements it has to be considered, that humans convert 

oxygen to carbon dioxide. Humans need a definite amount of oxygen per day, depending on 

their activity level, sex, and size. The relation is shown in Table 2-2. The amount of required 
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oxygen ranges from 0.52 to 1.11 kg per person and day [8]. The carbon dioxide output of 

humans is between 0.726 and 1.226 kg per person and day [6]. 

 

Figure 2-2: Breathable percentage of oxygen as a function of total pressure [7] 

The metabolic requirements are demands of humans for missions that last longer than a few 

hours. The metabolic load of a person depends on his/her activity level, sex and, age, body 

mass and height. Exemplary values for the metabolic load of different activity levels are 

shown in Table 2-2. However, the metabolic load is calculated with the equation for the En-

ergy Efficiency Ratio (EER) for men 19 years and older [5]: 

    [     ⁄ ]               [ ]                 (               [  ]  

             [ ])         (1) 

and for women 19 years and older with the equation: 

    [     ⁄ ]               [ ]                 (               [  ]  

           [ ])          (2) 

Table 2-2: Human metabolic load and oxygen requirements [8] 

Activity level 

Metabolic Load 

[kcal/(CM*d)] 

Oxygen Requirements 

[kg/(CM*d)] 

Low Activity 2618 0.78 

Nominal Activity 2822 0.84 

High Activity 3223 0.96 

5
th
 Percentile Nominal 

Female 
1812 0.52 

95
th
 Percentile Nominal 

Male 
3718 1.11 

 

The demands of water and food per day depend on the metabolic load. According to refer-

ence [8], the daily fluid intake can be assumed from 1.0 to 1.5 milliliters per kcal. However, 

the minimum fluid intake has to be at least 2 liters per person and day. Reference [5] de-

clares, that 50 to 55 % of the daily energy intake shall be provided by carbohydrates. There-
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by, complex carbohydrates (e.g. starches) have to be preferred and simple sugars should not 

exceed 10 % of the total carbohydrate intake. Furthermore, 12 to 15 % [8]  and not more 

than 35 % [5] of the daily energy intake has to be delivered by proteins. The suitable ratio of 

animal and plant based proteins is 3:2. Higher and lower intakes of proteins can amplify 

space-induced musculoskeletal changes. The daily energy intake provided by fat should 

range from 25 to 35 % [5] with a ratio of 1:1.5 to 2:1 for polysaturated, monosaturated and 

saturated fat [8]. A detailed compilation of the daily energy intake through macronutrients 

(carbohydrates, protein, fat, cholesterol and fiber) is shown in Appendix 2-1. In addition to 

macronutrients humans require several micronutrients like vitamins and minerals. A detailed 

list of the recommended intake of them is shown in Appendix 2-2: Recommended Micronutri-

ent Daily Dietary Intake. Altogether each person needs 0.5 to 0.86 kg (dry mass) food per 

day [6]. 

Besides the physiological and metabolic requirements are others, which are grouped under 

miscellaneous requirements. The necessities of humans for light, radiation shielding, noise 

and vibration protection as well as human factors are part of this group. The description of 

these requirements is neglected by this thesis. However, the references [5] and [8] provide 

further information about this topic. 

2.3 Environmental Control and Life Support Systems 

The Environmental Control and Life Support System (ECLSS) is a subsystem of crewed 

spacecraft. The task of the ECLSS is the maintenance of all human requirements, as dis-

cussed in the previous subchapter, to assure the survival, optimal work performance and 

comfort of the crew. According to reference [9], the ECLSS can be split into the functional 

parts atmosphere management, water management, food supply and waste management, 

as shown in Figure 2-3. However, the systems for crew safety and Extravehicular Activities 

(EVAs) are also part of the ECLSS. 

The atmosphere management maintains the desired percentage of nitrogen and oxygen for 

the crew and removes the carbon dioxide from the air. Furthermore, this part of the ECLSS 

controls the temperature, humidity and pressure of the atmosphere. The ventilation and filtra-

tion of the air is also a function of the atmosphere management. 

The food supply has to provide enough nourishment to assure the desired daily nutritional 

intake of each crewmember. The production, processing, storage and distribution of the food 

are also tasks of this part of the ECLSS.  

The water management is responsible for the provision, storage and distribution of potable 

and hygiene water with the anticipated temperature. It has also the duty of filtering the water 

and treating the liquid feces of the crew. 

The waste management stores and recycles the solid feces of the crew, the waste of food 

production, packaging, expendable parts and residual substances from payloads and water 

processing. 

The crew safety consists of several functions, which provide welfare for the crew. Parts of the 

crew safety are systems for fire detection and suppression as well as shielding against radia-

tion, micrometeoroids and space debris. In addition the crew safety is responsible for the 

treating of contaminations inside spacecraft.  
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Figure 2-3: Tasks and interfaces of life support systems [9] 

Environmental Control and Life Support Systems can be classified on their required relative 

supply mass as open, partly closed or closed loop systems. Crewed spacecraft with an open 

loop ECLSS need a constant resupply of all goods required for the survival of the crew, see 

Figure 2-4 (derived from table IV.2 of reference [6]). Traditionally, open loop ECLSS are used 

in transfer vehicles and during short missions. The ECLSS of the Vostok, Voskhod, Soyuz, 

Mercury, Gemini and Apollo casuples are examples for open loop systems. Partly closed 

ECLSS can be achieved by closing the water, oxygen and carbon loops. Each closed loop 

reduces the required relative resupply mass. The closure of the water loop due to the recy-

cling of the waste and wash water reduces the relative supply mass to 45 %. A regenerative 

carbon dioxide absorption and the production of oxygen out of carbon dioxide reduce the rel-

ative resupply mass by 15 %, respectively 10 % [6]. An exemplary partly closed system is the 

International Space Station (ISS). Due to the closing of the carbon loop by the use of food 

production from recycled wastes and the elimination of all leakage and needs of spare parts, 

a closed loop ECLSS can be implemented. Currently, no closed ECLSS for space application 

exists. However, some terrestrial testbeds achieved nearly closed ECLSS for a limited dura-

tion. A detailed analysis of this testbeds can be found in Chapter 4.1. 

 

Figure 2-4: Reduction of relative supply mass by successive loop closure [6]  
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Closure of the individual loops can be achieved with Physico-Chemical (P/C) or Biological 

Life Support Systems (BLSS). Physico-chemical life support systems use physical or chemi-

cal processes to fulfill the tasks of an ECLSS. They are capable of accomplishing the tasks 

of the atmosphere, water and waste management and close the water and oxygen loop [10]. 

Several technologies for P/C life support systems exist. Available P/C systems for the water 

management are shown in Appendix 2-3: P/C Technologies for the Water Management, 

while P/C technologies for air revitalization are shown in Appendix 2-4: P/C Technologies for 

Air Revitalization. P/C systems are not capable to produce food, therefore, biological sys-

tems are necessary. A BLSS uses plants, algae or other creatures to produce food and fulfill 

the tasks of the atmosphere, water and waste management. However, the design and opera-

tion of a BLSS is complex and the mass of such systems is high. When a combination of P/C 

systems and BLSS are used in a crewed spacecraft, the ECLSS is a hybrid system, while a 

life support system containing only BLSS is called Controlled Ecological Life Support System 

(CELSS). Figure 2-5 shows the cumulative mass of different forms of ECLSS as a function of 

the mission duration, and the break even points at which one system is more suitable than 

another [11].  

 

Figure 2-5: Cumulative mass of different ECLSS as a function of mission duration [11] 

Hence, nonregenerable systems are only applicable for short duration missions, regenerable 

P/C systems are suitable for mid duration mission, and hybrid or CELSS are required for long 

duration missions like permanent bases on other planets. 

2.4 Survey on Past and Present Food Provision in Crewed Spacecraft 

The food provision for humans in crewed spacecraft changed in the past decades with the 

increasing mission duration. This subchapter illustrates the evolution of food provision sys-

tems from Apollo to the space stations Mir and ISS. According to reference [12], the provi-

sion of high nutritional, well-balanced food for all members of the crew is important to assure 

their welfare and possibility to work in space and during Extravehicular Activities (EVAs). 

Food for astronauts has to be easy to prepare, but still attractive to eat. Furthermore, the 

food must be small in volume, low in weight and low in waste to reduce launch and operation 

costs. Besides the delivery of nutrients, food preparation, cooking and eating together are 

important social events for the crew of spacecraft. Therefore, a suitable eating place is re-

quired inside the spacecraft [12]. 
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The Apollo spacecraft were designed for crewed missions to the Moon, including a landing 

and EVAs on the lunar surface. The crew of an Apollo mission consisted of three astronauts; 

two of them were assigned for the lunar surface mission segment. The whole mission time 

was supposed to be not longer than 14 days. The food system design for the Apollo space-

craft was based on the experiences of the Mercury and Gemini programs [12]. Food during 

the Apollo missions was available in four different forms, bite-sized, rehydratables and semi-

solid thermostabilized food, and beverage powder. The bite-sized food was dehydrated small 

cubes with different tastes like meat, cheese and fruits. The cubes were rehydrated with sali-

va inside the mouth. Rehydratables were precooked and dehydrated meals, which could be 

rehydrated with water in less than 15 minutes. Tuna, salmon or chicken salads, and shrimp 

cocktail were available as rehydratables. The semisolid thermostabilized food was served in 

flexible metal tubes and consisted of high-nutrient fluids. Figure 2-6 shows a typical Apollo 

food package. Inside the Apollo spacecraft was no dedicated area for food preparation and 

consumption. However, the food provision evolved during the Apollo program. During later 

missions new kinds of flavors were introduced and sandwiches were available too [12]. 

The food for the Soviet Salyut missions was prepared to last up to 18 months and consisted 

primarily of canned, dehydrated and in aluminum tubes stored meals. The meals rotated in a 

six day cycle. In addition to the food the cosmonauts took vitamin pills. Fresh food was 

sometimes provided by visiting crews. During the Salyut missions several small plant growth 

chambers were tested for the usage of growing fresh food in space [12]. The food of the Sal-

yut program has improved over time. From Salyut 7 on a pantry system replaced the pre-

cooked and packed food. A folding table for preparing and eating food was installed inside 

the work compartment. Two electrical ovens and tools for the meal preparation were also in-

cluded in the eating table. Furthermore, the cosmonauts were allowed to select their food by 

themselves within a calculated caloric ratio [12].  

According to reference [12], the American Skylab space station had a dedicated food pro-

cessing and eating area, the wardroom. Figure 2-7 shows the Skylab food tray, which could 

be placed into a table inside the wardroom, which was located in the center, so that all three 

crewmembers could eat together at the same time. In addition to the table and food prepar-

ing tools, the wardroom had a freezer and a refrigerator. The astronauts were able to select 

their food from rehydratables, thermostabilized and frozen meals. Beverages were also 

available. Each astronaut had his own food tray, where they could heat their meals individu-

ally. The trays consisted of four small and four large openings for holding the food packages, 

and one opening to hold a plastic bottle filled with beverages. Three of the large openings 

were able to heat the food packages [12]. 

 

Figure 2-6: Apollo space food [13] 

 

Figure 2-7: Skylab food tray [13]
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During the missions of the Space Shuttle the food of the astronauts consisted of rehydrata-

bles, thermostabilized, irradiated and fresh food. The astronauts could select their menu 

several months before the flight. They were able to combine meals out of over 200 food 

items. After the selection, the meals were analyzed on their nutritional content and corrected 

by NASA physicians. The usual short mission durations allowed the provision of a variety of 

fresh food, such as bread, fruits and vegetables. The fresh food was stored inside the fresh 

food locker. Each crewmember had his own locker tray which contained his meals. On the 

middeck of the Shuttle a galley rack was installed, which included an oven, a rehydration 

unit, a water dispenser for hot and cold water, and the provision of hygiene water. There was 

no dedicated eating area inside the Space Shuttle. Astronauts had to use a food service tray 

attached to their legs to prepare their food [12], see Figure 2-8. 

The food consumed on board the Mir space station was storable for up to 18 months due to 

dehydration. Usually, the food was chopped in bite-sized pieces and packed in plastic bags. 

The periodic resupply with Progress spacecraft allowed the delivery of fresh food for the Mir 

crew. The cosmonauts were allowed to select their food for each day, as long as it met the 

nutritional requirements. In addition to the food, vitamins were applied due taking pills. Inside 

the Mir base block a food cabinet existed, which included a refrigerator and an eating table. 

The table was used to prepare the meals. The Russians continued their research in plant 

growth chambers and small greenhouses for space applications. Therefore, several plant 

growth chambers were tested aboard the Mir station. These chambers provided some fresh 

food for the crew [12].  

 

Figure 2-8: Space Shuttle food tray [13] 

 

Figure 2-9: ISS food container [13] 

The ISS food facility is similar to the Mir’s, because of its location inside the Russian Zvezda 

module. It consists of a table, hot water dispenser, food storage and heaters. Usually, the 

meals are a combination of thermostabilized rehydratables, intermediate moisture, and pre-

cooked, fresh and irradiated food. Beverages are also provided. Each crewmember can cre-

ate an own menu, based on a 16-day rotation. Therefore, several food items from Russia, 

USA, Europe and Japan can be combined. In addition to the normal meals, each crewmem-

ber has a bonus container which can be filled with any food that meets the microbiological 

requirements [12]. Figure 2-9 shows a filled food container for the ISS. 
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2.5 Greenhouse Module Subsystems 

2.5.1 Classification 

Comparable to spacecraft, greenhouse modules can be divided into several subsystems. 

However, the existing greenhouse module subsystem classifications are not consistent, be-

cause each research team established their own nomenclature. Consequently, this chapter 

describes the classification of greenhouse module subsystems used in this thesis. The se-

lected approach is a fundamental classification, in which every subsystem has its own tasks. 

Nevertheless, some subsystems could be merged, because of their close relations to each 

other. 

The ten subsystems of greenhouse modules are the Plant Cultivation Subsystem (PCS), the 

Nutrient Delivery Subsystem (NDS), the Harvest & Cleaning Subsystem (HCS), the Atmos-

phere Control Subsystem (ACS), the Water Control Subsystem (WCS), the Lighting Control 

Subsystem (LCS), the Thermal Control Subsystem (TCS), the Structures & Mechanisms 

Subsystem (SMS), the Power Control & Distribution Subsystem (PCDS) and the Command & 

Data Handling Subsystem (CDHS). They can be assigned to three groups of subsystem, as 

shown in Figure 2-10. The groups are named Agricultural Subsystems, Environmental Con-

trol Subsystems and Fundamental & Interface Subsystems. 

 

Figure 2-10: Classification of Greenhouse Module Subsystems 

2.5.2 Fundamental & Interface Subsystems 

The fundamental & interface subsystems are the framework of the greenhouse module. The 

Structures and Mechanisms Subsystem, the Power Control & Distribution Subsystem and the 

Command & Data Handling Subsystem are part of this subsystem category. 

The functions of the Structures & Mechanisms Subsystem (SMS) of greenhouse modules 

and spacecraft are similar. According to reference [14], the SMS is the mechanical support of 

all other subsystems. The structures have to withstand all applied loads during the whole 

mission. In addition the radiation shielding is part of the SMS. Furthermore, the SMS is re-

sponsible for all mechanisms used in greenhouse modules. 
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Unlike the electrical power system (EPS) of spacecraft, the Power Control & Distribution 

Subsystem (PCDS) of greenhouse modules does not generate or store electrical power, it 

only controls and distributes the electrical power provided by the electrical power system of 

the habitat [15]. However, greenhouse modules can contain batteries or other power supply 

for cases of emergency. The power demand of greenhouse modules depends on the power 

consumption of the other subsystems. In general the Environmental Control Subsystems 

have the highest demands, especially the LCS. The PCDS has to supply each of the other 

subsystems with the voltage they need, to assure the subsystems can work as desired. 

The Command & Data Handling Subsystem (CDHS) of greenhouse modules has to fulfill the 

same functions as in every spacecraft: receiving, validating, decoding and distributing of 

commands to other subsystems and gathering, processing and formatting of data as well as 

data storage. Security interfaces and computer health monitoring are also functions of the 

CDHS [16]. Due to maintain optimal growth conditions for plants in greenhouse modules the 

CDHS has to interpret the signals of several sensors to send suitable commands to each 

subsystem. The higher the level of automation of the greenhouse, the higher is the complexi-

ty of the CDHS. Furthermore, when the CDHS is a physical part of the greenhouse module, it 

has to be protected against the high humidity and temperature inside the greenhouse. The 

CDHS of greenhouse modules can also be part of the habitat CDHS. 

2.5.3 Environmental Control Subsystems 

The purpose of the environmental control subsystems is the maintenance of all environmen-

tal conditions, which are required either by humans or plants. Especially the optimal growth 

environment is necessary for the plants to achieve a high yield. Usually the subsystems of 

this group are combined in the ECLSS of the spacecraft, but it is suitable to split the func-

tions into different subsystems when analyzing greenhouse modules. This subsystem group 

consists of the Atmosphere Control Subsystem, the Water Control Subsystem, the Lighting 

Control Subsystem and the Thermal Control Subsystem. 

The Atmosphere Control Subsystem (ACS) is responsible for the air management of the 

greenhouse module. This responsibility covers the monitoring and control of the humidity, the 

composition and the pressure of the air. Furthermore, the ACS has to filter the air and has to 

assure, that the air circulates through the whole greenhouse module. Especially the humidity 

and the air composition have a great impact on the growth rate of plants. Usually, the ACS of 

greenhouse modules is connected to the ECLSS of the habitat to allow gas exchange. 

The Water Control Subsystem (WCS) monitors and regulates the water distribution and wa-

ter quality. The main task of the WCS is the delivery of the desired amount of water to every 

plant in the greenhouse module to achieve an optimal growth rate. The water quality is also 

important for the growth rate of plants. The WCS of greenhouse modules have a connection 

to the water management system of the habitat. However, the WCS must be capable to store 

a defined amount of water for cases of emergency. 

The task of the Lighting Control Subsystem (LCS) is to provide and maintain the illumination 

of the greenhouse module. Therefore, it must be considered the lighting for the crew and the 

lighting for plants. The crew needs light for the work inside the greenhouse module, while 

plants need special lighting for an optimal growth rate. The growth rate depends on the light 

spectrum, the light intensity and the illumination phases. The required lighting conditions dif-

fer between plant species, consequently the LCS has to provide the optimal lighting condi-
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tions for each plant species for the maximum yield. When the greenhouse module uses the 

sun as a light source, the LCS has to regulate the irradiation of the sunlight. 

In spacecraft, the Thermal Control Subsystem (TCS) maintains the temperature of all com-

ponents at every time of the mission within their limits [17]. In general the TCS of greenhouse 

modules has to fulfill the same functions. In greenhouse modules the critical elements for the 

TCS are the plants. Different plant species have different requirements on the temperature; 

consequently, different temperature zones in the greenhouse module can exist and the TCS 

has to maintain the requirements of each zone. The thermal insulation of the greenhouse 

module is also part of this subsystem. The insulation has to ensure that the heat loss to the 

environment and to other parts of the habitat is as low as possible to reduce the energy de-

mand of the TCS. However, depending on the lighting source, special cooling devices are 

necessary to protect the plants from overheating. 

2.5.4 Agricultural Subsystems 

Agricultural subsystems encompass all subsystems directly related to the plants. Parts of this 

subsystem group are the Plant Cultivation Subsystem, the Nutrient Delivery Subsystem and 

the Harvest & Cleaning Subsystem. 

The Plant Cultivation Subsystem (PCS) supports the plants during all development stages. 

The PCS contains the growth medium for the plants, the plants themselves and can be di-

vided into root and shoot zone. The design of the PCS is directly affected by the selected 

plant cultivation method and the used growth medium. Furthermore, the PCS has to ensure, 

that the plants have a solid stand in the growth medium and grow as desired. Generally, the 

plant cultivation system consists of several growth units, which are separated from each oth-

er and have their own environmental conditions and nutrient composition depending on the 

plant species and development stage. 

The Nutrient Delivery Subsystem (NDS) is responsible for the mixture of the plants’ nutrients. 

As every plant species has other requirements concerning the nutrients, a special nutrient 

mixing system is required. The nutrient solution has to be distributed to every plant in the 

greenhouse module in the desired amount and composition. The storage of nutrients is also 

part of the NDS. Furthermore, the nutrient production can be part of the NDS of greenhouse 

modules, but usually this task is fulfilled by the waste treatment system of the habitat. 

The task of the Harvest & Cleaning Subsystem (HCS) is the provision of all tools and materi-

als that are necessary for harvesting and cleaning the cultivated plants. Therefore, the HCS 

has to have a waste storage system to temporarily store the inedible parts of plants, before 

they are distributed to the waste treatment system of the habitat. The crop gathered from 

plants has to be packed after the harvesting and cleaning procedure. Consequently, the HCS 

has to provide the tools for the packaging. Afterwards the packed crop has to be stored. 
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2.6 Summary 

Chapter 2 presents a brief overview over the required scientific background for the analysis 

and evaluation of greenhouse modules within planetary outposts. The challenges of the envi-

ronmental conditions in free space, on Moon and on Mars are described.  

Furthermore, the human requirements are discussed with respect to the required amount of 

food, water and oxygen. In addition the atmospheric pressure, composition and relative hu-

midity required for long duration missions are explained. 

The third subchapter discusses the different kinds of Environmental Control and Life Support 

Subsystems compared to the mission duration. Consequently, for long duration or even per-

manent missions to other planetary bodies of the solar system, greenhouse modules are a 

necessity. 

A summary of past and present food provision systems shows the evolution of these systems 

over the last decades of spaceflight, from the Apollo program to the ISS. 

In the fifth subchapter a classification of all greenhouse module subsystems is established. 

Therefore, each category and the related subsystems are described. In addition the functions 

and tasks associated with each subsystem are explained. 
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3 Development of an Analysis and Evaluation Strategy 

This chapter starts with the explanation of the methodology of the developed analysis and 

evaluation strategy in the first subchapter. In the second subchapter the chosen analysis 

method, the Morphological Analysis (MA) is described, followed by the explanation of two 

suitable evaluation methods in the third subchapter. The fourth subchapter describes the 

analysis and evaluation factors considered during this thesis. 

3.1 Methodology 

The methodology of the proposed analysis and evaluation strategy consists of four steps: 

- Data Acquisition, 

- System Analysis, 

- Evaluation and  

- Discussion.  

They are described in the following paragraphs. Each of these steps has subordinated tasks, 

as shown in Figure 3-1. 

 

Figure 3-1: Methodology of the developed analysis and evaluation strategy 

The first step, the Data Acquisition, starts with a set of concepts considered for the analysis 

and evaluation. After the definition of the set, data and information about the concepts have 

to be gathered and investigated. Depending on the quantity, quality and reliability of the data, 

it has to be considered which of the concepts are selected for the system analysis. 

The system analysis is the second step, during which the results of the first step are ana-

lyzed with a suitable analysis method and defined analysis criteria. The definition of the anal-

ysis criteria depends on the goals of the analysis and evaluation strategy, and on the availa-

ble data concerning the selected concepts. Potential analysis criteria are described in detail 

in Chapter 3.4. After the definition of the criteria, an analysis method has to be chosen. In 

this thesis the Morphological Analysis is selected for the system analysis. An explanation of 

the MA can be found in Chapter 3.2. The result of this step is a list of analyzed concepts.  
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At the beginning of the third step, the evaluation, the analyzed concepts of the previous step 

has to be split into different groups of concepts, depending on their purpose. Only concepts 

with the same purpose can be evaluated and compared to each other. To evaluate the con-

cepts, evaluation criteria has to be defined. Usually, these criteria are a subset of the analy-

sis criteria. Various evaluation methods exist and the analyst has to select an appropriate 

method. During this thesis the Equivalent System Mass (ESM) and the Analytical Hierarchy 

Process (AHP) are considered to be suitable for the evaluation of greenhouse module con-

cepts. Both methods are described in Chapter 3.3. The output of the evaluation step is a list 

of rated concepts. However, when the result does not fit to the expected outcome or other 

reasons exist, the evaluation criteria and method can be adjusted. When adjustments are 

made, the evaluation has to be repeated. 

In the fourth step, the discussion, the results of the analysis and evaluation have to be 

checked on their consistency and interpreted by the analyst. The outcome of this step of the 

strategy is a ranking of the investigated concepts.  

3.2 Analysis Method – The Morphological Analysis 

The Morphological Analysis was developed “by Fritz Zwicky, the famous astrophysicist and 

jet engine pioneer, to describe a technique for identifying, indexing, counting, and parameter-

izing the collection of all possible devices to achieve a specified functional capability.” [18]  

According to reference [19], the procedure of a MA consists of four phases: 

Phase 1: Formulation of the problem, 

Phase 2: Identification of all characteristic parameters, 

Phase 3: Subdivision of each parameter into all possible options, 

Phase 4: Analysis and evaluation of all possible parameter-option combinations. 

In the first phase a precise formulation of the problem or the wanted functional capability has 

to be established. 

In the second phase, the identification of all characteristic parameters, all parameters which 

affect the problem have to be identified.  

During the third phase of the MA, the subdivision of each parameter into all possible options, 

the Morphological Box is constructed. The Morphological Box is the main tool of the MA and 

visualizes all parameters and their options in a table. The options have to be carefully select-

ed, so that only one option per parameter is feasible at the same time. An exemplary box is 

shown in Table 3-1. A number of possible options    exist for each parameter  . The green 

highlighted options in Table 3-1 form one out of   possible configurations.  

 Usually the fourth phase, the analysis and evaluation of all possible parameter-option com-

binations, is done by a separate evaluation method. The number of combinations   for a giv-

en Morphological Box can be calculated by multiplying the number of options of each param-

eter. For the example in Table 3-1 the formula is:  

                .       (3) 
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Table 3-1: Exemplary Morphological Box with m Parameters and n Options 

Option 
Parameter 

  

Parameter 

  

Parameter 

  
  

Parameter 

  

1                   

2                   

3                   

           

                     

Exemplary configuration               

 

Reference [20] states, that the MA has the following advantages: 

- Richness of data. MA can provide a multitude of combinations and permutations of a 

given problem. 

- Systematic analysis. This technique allows a systematic analysis of current and future 

structures of a system. 

3.3 Evaluation Methods 

This subchapter describes the evaluation methods and concepts suitable for the evaluation 

of greenhouse modules. In Chapter 3.3.1 the Equivalent System Mass evaluation concept is 

explained, follow by the description of the Analytical Hierarchy Process in Chapter 3.3.2. 

3.3.1 Equivalent System Mass 

The Equivalent System Mass (ESM) is an evaluation concept for the ranking of trade study 

options. This method was developed by the National Aeronautics and Space Administration 

(NASA) for their Advanced Life Support (ALS) Program to find out which of several options 

has the lowest launch costs, depending on a set of parameter and properties. 

According to reference [21], the ESM is used to calculate the transportation costs of an ALS 

system. All system parameter are converted to a mass equivalent, to avoid using currencies 

for comparisons, because transportation costs are proportional to the system mass. The cal-

culated ESM value of a system represents the system mass and appropriate portions of sup-

porting system mass. Pressurized volume, power generation, cooling and crewtime are typi-

cal supporting system factors.  

The calculation of an ESM value consists of iteration with the following six steps [21]: 

1. Determining of analysis objectives, 

2. Determination of the mission of interest and related assumptions, 

3. Determination of the system characteristics that should be captured in the analysis, 

4. Definition of the system extent and level of detail, 

5. Application of data, 

6. Interpretation of the results. 

During the first step, the determination of analysis objectives, the objectives of the ESM 

computation are defined to determine the mission of interest and system characteristics re-
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lated to the trade study. Furthermore, the objectives have to be defined in an appropriate 

level of detail to avoid complications during the computation. 

The second step, the determination of the mission of interest and related assumptions, is 

used to make assumptions about the operating environment, the subsystem of interest and 

the surrounding system. NASA defines several assumptions and missions of interest in two 

reports: the Advanced Life Support Systems Integration, Modeling, and Analysis Reference 

Missions Document (ALS RMD, [22]) and the Advanced Life Support Baseline Values and 

Assumptions Document (ALS BVAD, [23]).  

According to reference [21], the determination of the system characteristics that should be 

captured in the analysis is the third step in the process of calculating an ESM value. During 

this step the analyst decides which characteristics are investigated during the trade study 

based upon the objectives. Characteristics might be excluded from the study due to a lack of 

data or other means. Usually, the characteristics are based upon the function, the availability, 

the gravity dependence, the noise levels, the safety, the radiation susceptibility or other pa-

rameters of the investigated system. 

In the fourth step, the definition of the system extent and level of detail, the analyst has to 

define the investigated systems to a level of detail necessary for an appropriate comparison 

of the characteristics of interest between the systems. However, functional differences be-

tween the system options can complicate the identification of a suitable level of detail for the 

calculation of an ESM value. 

The application of data, the sixth step, is necessary to adjust the data gathered from re-

searchers, technology developers or scientific publications for the evaluation with the ESM 

method. Reference [21] states the development status adjustment and the system scaling as 

the most common types of data modification in an ESM analysis. However, data adjustments 

are not limited to both of these. To achieve a reliable result with an ESM evaluation, all study 

options have to be normalized to the same development state. Therefore, the analyst has to 

assume the future development and the essential parameters of a technology. Usually, data 

received from researchers and system developers has to be scaled to an appropriate size for 

the ESM study. The scaling factor commonly is a system specific parameter like the mass 

flow rate. After determining the scaling factor, all parameter values of the investigated system 

have to be adjusted. However, some systems can require more than one scaling factor. 

The interpretation of the results is the final step in the ESM process. All results of the proce-

dure have to be interpreted and described in an appropriate style concerning all assumptions 

made during the ESM calculation. 

The ESM of a system is calculated as the sum of the ESM of each subsystem of the system 

of interest. The parameters required for the ESM equation:  

    ∑ [(        )  (        )  (       )  (       )  (           )  
 
   

(            )  (           )] ,     (4) 

are shown in Table 3-2. 

The initial mass    consists of any mass in subsystem i, that is not time- or event-dependent 

and not part of the volume, power and cooling terms. The mass for the structure of pressur-

ized volume, for the generation of power and for the provision of cooling is accounted in the 

associated terms. The initial volume     parameter pertains any pressurized volume required 
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to house and access subsystem i. The parameter for the required power of subsystem i is   . 

The cooling term    pertains the heat rejection required for subsystem i.     is the parameter 

for the crewtime required to operate and maintain subsystem i. The time- or event-dependent 

mass      consists of any mass that is dependent on the mission duration and progress. 

Consumables, spare parts and process expendables are examples for this mass term. The 

time- or event-dependent volume      is the required pressurized volume associated 

with     . The stowage factors      and       pertain all equipment required to secure the 

system, which can be racks, trays or other equipment. The equivalency factors      ,     ,      

and       are the ratio of the resource cost, in units of mass, to resource use. In the ALS 

BVAD document ( [23]) numerical values and assumptions for the calculation of the stowage 

and equivalency factors can be found. 

The reliability of an ESM analysis depends on the accuracy of the input data used for the 

calculation of the ESM value, as well as on the modification of the data. The ESM evaluation 

method is a cost metric. Therefore, the ESM is not capable of taking into account the reliabil-

ity, safety and performance of the investigated systems. Furthermore, it is not feasible to 

evaluate qualitative properties of a system with the ESM equation. Consequently, reference 

[21] concludes that the ESM concept should not be the only evaluation method used to com-

pare and evaluate trade study options. 

Table 3-2: Explanation of ESM equation parameter [21] 

Parameter Unit Name 

    kg Equivalent System Mass value 

    kg Initial mass of subsystem i 

     kg/kg Initial mass stowage factor for subsystem i 

    m
3
 Initial volume of subsystem i 

     kg/m
3
 

Mass equivalency factor for the pressurized volume support infrastructure 

of subsystem i 

   kWe Power requirement of subsystem i 

     kg/kWe 
Mass equivalency factor for the power generation support infrastructure 

of subsystem i 

   kWth Cooling requirement of subsystem i 

     kg/kWth Mass equivalency factor for the cooling infrastructure of subsystem i 

    CM-h/y Crewtime requirement of subsystem i 

D y Duration of the mission segment of interest 

      kg/CM-h Mass equivalency factor for the Crewtime of subsystem i 

     kg/y time- or event-dependent mass of subsystem i 

      kg/kg time- or event-dependent mass stowage factor of subsystem i 

     m
3
 time- or event-dependent volume of subsystem i 
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3.3.2 Analytical Hierarchy Process 

The Analytic Hierarchy Process (AHP) was developed by T. L. Saaty in the 1970s and is 

used in multiple criteria decision making problems. It involves the reduction of complex deci-

sions to a series of pairwise comparisons. After synthesizing the results, decision-makers 

arrive at the best decision with a clear rationale for that decision. 

According to reference [24], the AHP can be divided into six steps: 

1. Illustration of the decision making problem, 

2. Pairwise comparison of criteria, 

3. Ranking of the criteria and alternatives, 

4. Verification of the consistency of the evaluation, 

5. Interpretation of the results, 

6. Sensitivity analysis of the results. 

In the first step, the illustration of the decision making problem, a hierarchy of criteria, sub-

criteria has to be developed by the decision analyst. Figure 3-2 shows an exemplary hierar-

chy for an AHP. At the top of the hierarchy stands the focus or goal of the decision making 

problem and at the bottom are all possible alternatives or solutions listed. Between the focus 

and the alternatives is the hierarchy of criteria and subcriteria, which affect the decision mak-

ing process. The elements of the hierarchy have to be defined by the analyst. Therefore, 

three principles have to be considered [24]: 

1. The elements of the same level of the hierarchy has to be independent to each other, 

2. The number of elements on the same level is limited to nine, this makes the compari-

son of the elements easier, 

3. The elements of the hierarchy should represent the complete decision making prob-

lem. 

 

Figure 3-2: Example hierarchy for an AHP [25] 

The second step, the pairwise comparison of criteria, is the key element of the AHP. The rat-

ing system shown in Table 3-3 is used to determine how important one element is over an-

other element of the same level of the hierarchy. The system is a combination of a ratio scale 

from 1 to 9 and a semantic scale.  
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Table 3-3: The rating system for the pairwise comparison [25] [26] 

Intensity of  

importance on an 

absolute scale 

Definition Explanation 

1 Equal importance 
Two activities contribute equally to 

the objective 

3 
Moderate importance of one over an-

other 

Experience and judgment slightly 

favor one activity over another 

5 Essential or strong importance 
Experience and judgment strongly 

favor one activity over another 

7 Very strong importance 

An activity is strongly favored and 

its dominance demonstrated in 

practice 

9 Extreme importance 

The evidence favoring one activity 

over another is of the highest pos-

sible order of affirmation 

2, 4, 6, 8 
Intermediate values between the two 

adjacent judgments 
When compromise is needed 

Reciprocals 

If activity i has one of the above num-

bers assigned to it when compared 

with activity j, then j has the reciprocal 

value when compared with i 

A reasonable assumption 

 

The result of the pairwise comparison is a set of matrices, which represents the ratings of 

each comparison. For each level of the hierarchy a separate matrix is needed. This results in 

four matrices for the example shown in Figure 3-2, one to compare the criteria I, II and III and 

one for each set of subcriteria. Table 3-4 shows an exemplary comparison matrix with    el-

ements, the values     are the intensities of importance for each comparison. 

Table 3-4: Comparison matrix with n elements [27] 

               

                 ⁄            ⁄  

                   ⁄  

          

                   

      ∑   

 

   

    ∑   

 

   

      

 

The third step of the AHP is the ranking of the criteria and alternatives. The ratings of the 

pairwise comparison are weighted to establish a ranking list of criteria and alternatives. In the 

AHP the weighted ratings are named priorities. The priorities are classified as local or global. 

Local priorities show the impact of elements of a lower level of the hierarchy with respect to 
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the upper level. The local priorities are the basis for the global priorities. The global priority 

shows the impact of each element of one level of the hierarchy with respect to the focus of 

the decision making problem. The calculation of the ranking of criteria and alternatives is dif-

ferent for qualitative and quantitative criteria. Consequently, both calculations are described 

in the following paragraphs [27].  

For qualitative criteria the calculation of the priorities    is based on reference [27] and starts 

by dividing each rating of the comparison matrix     by the sum of its column    to achieve a 

normalized value. An exemplary normalized comparison matrix is shown in Table 3-5. After-

wards the sum of each row    of the normalized comparison matrix is divided by the number 

of elements in the row  . The result of this calculation is the local priority of each element 

with respect to the element of the upper level. 

The calculation has to be executed with each comparison matrix of the decision making 

problem to achieve all local priorities. The global priority of a subcriterion can be calculated 

by multiplying his local priority with the local priority of the criterion in the upper level. 

Table 3-5: Normalized comparison matrix with weighted scores w [27] 

                     

        ⁄       ⁄         ⁄     ∑     ⁄

 

   

       ⁄  

        ⁄       ⁄         ⁄     ∑     ⁄

 

   

       ⁄  

             

        ⁄       ⁄         ⁄     ∑     ⁄

 

   

       ⁄  

Σ            

 

The calculation of the ranking of criteria and alternatives of quantitative criteria starts with the 

normalization of these values. Therefore, two formulas exist. When a high value is better for 

the focus of the analysis than a low one (e.g. a big area is better than a small one), the for-

mula: 

    
   
∑   

         (5) 

has to be used for the normalization. Is a low value better than a high one (e.g. usually low 

costs are better than high ones), the formula:  

   
 

   
(
 

   
 

 

   
   

 

   
)⁄      (6) 

has to be used.  

Table 3-6 shows an exemplary matrix for the calculation of local priorities of quantitative crite-

ria [27].  
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Table 3-6: Weighted and overall alternative scores [27] 

              Σ 

                           

 

According to reference [24], during the fourth step, the verification of the consistency of the 

evaluation, the calculated scores of the previous step are checked on their consistency. 

Evaluations are consistent, when the requirements dominance, transitivity and invariance are 

met. The fulfillment of the dominance requirement is achieved, when the alternative with the 

best rank is presented as the solution of the decision making problem. The invariance cannot 

be verified in the AHP. Consequently, the verification of the consistency of the evaluation of 

the AHP contains the testing of the transitivity. The more elements are in the hierarchy, the 

more complicate is the fulfillment of the requirement.  

The calculation of the inconsistency is based on the calculation of the eigenvalue of each el-

ement and is described in detail in reference [27]. However, a short description of the calcu-

lation procedure is described in the following. The first step is the calculation of the eigenval-

ue of each element. Therefore, the mean value   ̅ has to be calculated for each element. Af-

terwards, the mean value is used to determine the eigenvalues   , see Table 3-7. 

Table 3-7: Mean matrix and eigenvalue of each element [27] 

                 ̅    

                            ̅  ∑      

 

   

      ̅       ⁄  

                            ̅  ∑      

 

   

      ̅       ⁄  

             

                            ̅  ∑      

 

   

      ̅       ⁄  

 

A decision is consistent, when the maximum eigenvalue      is equal to the number of ele-

ments  . When the maximum eigenvalue is greater than the number of element, inconsisten-

cy exists. The maximum eigenvalue is calculated with the formula: 

     
∑   
 
   

 
.        (7) 

The consistency index    can be calculated out of the maximum eigenvalue and the number 

of elements: 

   
      

   
.        (8) 

To judge whether a discrepancy can be tolerated, the consistency relationship    is estab-

lished as the division of the consistency index and the random consistency  : 
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.           (9) 

The random consistency is given as a function of the size of the matrix, see Table 3-8. Dis-

crepancies can be tolerated, when        is achieved. Is       , the evaluation and/or 

the hierarchy has to be reviewed. 

Table 3-8: Random consistency R as a function of the size of the matrix [27] 

Size of the   

matrix 
1 2 3 4 5 6 7 8 9 10 

Random    

consistency R 
0.00 0.00 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 

 

In the fifth step, the interpretation of the results, it has to be considered, that the AHP is a 

subjective decision making tool. The pairwise comparison is based on individual experiences 

and knowledge, the layout of the hierarchy also has a big impact on the results of the AHP. 

The interpretation itself can be done by several types of diagrams, graphs and tables. 

Reference [24] describes the sensitivity analysis of the results as the sixth step in the AHP. 

The sensitivity analysis examines the impacts of changes in the weighting of criteria on the 

ranking of the alternatives. Due to continuous changing of the weight of each criteria, borders 

are determined, at which the ranking of the alternatives changes. The results of the AHP are 

steady, when small changes in the weights do not affect the ranking. The values of the pair-

wise comparison have to be reconsidered, when the results are unsteady. 

The AHP is an effective evaluation method for the quantitative examination of unstructured 

problems, also with the integration of quantitative values. Furthermore, the AHP is a flexible 

tool which allows individuals and groups to define problems according to their approvals and 

receive a subjectively preferred solution. The incorporation of expert knowledge can lead to 

objectivation of the subjective solution. In addition, the AHP permits the revision of the stabil-

ity and consistency of the solution [27]. 

Reference [27] summarizes the advantages of the AHP as followed: 

- Unity: The AHP is single, easy to understand and flexible model for the analysis of  

unstructured problems. 

- Complexity: The AHP combines deductive and system approaches for the analysis of  

 complex problems. 

- Interdependency: The AHP can handle interdependencies of system elements and  

 can break existing paradigm. 

- Hierarchy Structure: The AHP incorporates the natural cognitive tendency to order  

elements in categories and to group similar elements on the same hierarchy 

level. 

- Measurement: The AHP provides a scale to measure immaterial criteria and a  

method for the determination of priorities. 

- Consistency: The AHP incorporates the logical consistency of evaluations, which are 

 used for the determination of priorities. 

- Synthesis: The AHP provides a general approximation of the desirability of each  

alternative. 
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- Compromises: The AHP incorporates the relative importance of system parameters  

 and therefore, allows the selection of that alternative, which is most suitable  

 for the goals of the decision analyst. 

- Interpretation and Consensus: During an AHP is no necessity to achieve a  

consensus, but rather the AHP achieves a representative solution out of a  

sequence of evaluations. 

- Repeatability: The AHP allows the decision analyst to improve the problem definition,  

 the problem evaluation and the problem comprehension through repetitions. 

3.4 Definition of Analysis and Evaluation Factors 

3.4.1 Factor Categorization 

The factor categorization is based on the definition of greenhouse module subsystems estab-

lished in Chapter 2.5. Consequently, each criterion is part of one of the four categories: Agri-

cultural Factors, Environmental Factors, Fundamental Factors or Interface Factors. Despite 

the combination of Fundamental & Interface Subsystems to one group in the subsystem cat-

egorization, the related analysis and evaluation factors are split into two separate groups. 

Furthermore, the factors of each category are divided into qualitative and quantitative factors. 

For latter, suitable units based on the International System of Units (SI) are established. The 

values of the quantitative factors of the investigated concepts have to be converted into SI 

units to improve the comparability. For quantitative factors all possible options are described, 

whether they are reasonable or not. The following subchapters, one per category, describe 

each criterion in detail. 

3.4.2 Fundamental Factors 

3.4.2.1 Definition 

Fundamental factors are established to analyze and evaluate the different aspects of the 

structures & mechanisms subsystem, the power distribution subsystem and the command & 

data handling subsystem. Eight fundamental factors are considered for the use in the analy-

sis and evaluation of greenhouse module concepts, six qualitative and two quantitative fac-

tors. The Structures & Mechanisms Subsystem (SMS) is analyzed and evaluated by the fac-

tors module shape, arrangement of growth area, distribution of aisles, module structure, 

adaptability of internal configuration, level of automation, specific cultivation volume and 

complexity. There are no factors for the analysis and evaluation of the Power Distribution and 

Control Subsystem (PCDS) in this category, because the factors concerning the PCDS are 

part of the interface factors category. During this thesis no factors related to the Command & 

Data Handling Subsystem (CDHS) are investigated, because the design of the CDHS is 

generally the same for each greenhouse module. Table 3-9 shows the summary of all fun-

damental factors separated into qualitative and quantitative factors. 
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Table 3-9: List of Fundamental Factors 

Qualitative Factors Quantitative Factors 

Module Shape Module Mass 

Arrangement of Growth Area Dimensions 

Distribution of Aisles Specific Cultivation Volume 

Module Structure Complexity 

Adaptability of Internal Configura-

tion 

 

Level of Automation  

 

3.4.2.2 Module Shape 

Greenhouse modules can have various shapes. The module shape affects the arrangement 

of the growth area, the overall growth area and the ratios growth area and growth volume per 

total volume. Furthermore, the module mass significantly depends on the shape. Feasible 

are:  

- prismatic,  

- hemispherical, 

- spherical or 

- irregular 

shapes. 

Prismatic modules are typically chosen, when the modules are fully integrated on Earth and 

launched with rockets. However, the size of prismatic modules integrated on Earth is restrict-

ed to the size of launcher fairings. The base of prisms can be elliptical, polygonal, hemi-

spherical or circular. Today’s modules for space stations are usually prisms with a circular 

base, also named cylinders. This results from the aerodynamic cylindrical shape of rockets in 

which cylindrical modules have the highest volume efficiency. Due to the experience gained 

during the design and construction of space stations in the last decades, prisms and espe-

cially cylindrical ones are a well-known design. Consequently, the development and con-

struction costs for these types are relatively low compared to other shapes.  

A hemispherical, or dome like design can be used to cover a big area while keeping the 

mass of the construction low. Therefore, a framework of lightweight materials is covered with 

a Kevlar based shell. Usually, hemispherical modules are launched as individual components 

and have to be assembled at the destination. Consequently, dome greenhouses are only 

suitable when a growth area of several hundred square meters is required to feed the crew.  

A spherical shape is another option for the design of greenhouse modules. A concept for a 

module with a spherical shape was investigated by NASAs Johnson Space Center in 1989 to 

be installed at Lacus Veris on Moon [28]. Thereby, an inflatable outer shell was proposed to 

form the sphere. The sphere himself was buried half into the lunar, while the upper half was 

covered with regolith-filled tubes to protect the crew against radiation. A similar module could 

be used as a greenhouse with several floors. An inflatable sphere is light weight and there-

fore, can reduce the launch and transportation costs. However, the sphere has to be enfold-
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ed and anchored at the destination which requires a digging device. Furthermore, the sphere 

has to be outfitted with the required systems at the destination which causes a high work 

load on the crew.  

Irregular shapes are theoretically feasible, but until now no concept for a greenhouse module 

with an irregular shape exists. However, each design with an irregular shape has to be inves-

tigated in detail on the usefulness for greenhouse modules. When the benefits of the irregu-

lar shape exceed that of regular shapes, it can be considered for greenhouse designs. 

3.4.2.3 Arrangement of Growth Area 

The arrangement of growth area inside greenhouse modules is an important factor for max-

imizing the yield, because the internal configuration defines the ratios growth area and 

growth volume per total volume. The maximum growth height is also affected by the ar-

rangement of growth area. There are several ways to arrange the cultivation area inside 

greenhouse modules:  

- plain growth area, 

- growth area allocated on shelves, 

- conveyor like growth area or 

- rotating cylinder. 

The simplest type of arrangement is a plain growth area, which is similar to the field agricul-

ture on Earth. The volume efficiency of this arrangement is low, because the growth height of 

most of the food plants is lower than one meter. Therefore, a field like growth area is less 

suitable for extraterrestrial greenhouse modules. A plain growth area is only applicable for 

tall growing plants like trees or bushes, but these plants are less considered for the use in 

space until now. 

Shelf configurations are stacked plain growth areas. Consequently, the ratio of growth vol-

ume per total volume is significantly higher compared to plain growth area configurations. 

The height of the different levels of the shelf can vary, so that plants with different growth 

heights can be cultivated. Usually, each level of the shelf has its own environmental control 

system which provides light, water, air and nutrients to the plants. It is also feasible to divide 

each level of the shelf into separated sections, which could be useful to separate different 

plant species from each other. 

The levels of shelves can be integrated horizontally or angled. A horizontal shelf, see Figure 

3-3, provides the same growth height to all plants on it. When a change in available growth 

height is needed, the whole level has to be moved into another position, or all plants on the 

level have to be switched into another level with an appropriate height. Angled shelves solve 

this problem due to their sloped levels. In angled shelves, see Figure 3-4, the plants start as 

seedling at the narrow end of the level. While the plants grow they were moved by hand or 

automatically to the broad end of the level. The angle and the growth height is designed in a 

way, that the plants are matured and ready for harvesting when reaching the broad end of 

the level. Once the angle and growth height of a level is adjusted to the plant species it pro-

duces a continuous food output without reconfiguration. Consequently, the work load for an-

gled shelves is lower compared to horizontal shelves. 

The width of all shelf constructions is restricted to the nominal arm length of crew members 

to assure an ergonomic acceptable work. When the shelves are wider than the nominal 
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length of an arm, some kind of drawers are required. However, drawers need free space to 

be pulled out of the shelf. Consequently, the width of shelves with drawers depends on the 

aisle width. 

 

Figure 3-3: Growth area arrangement - Horizontal 

shelves 

 

Figure 3-4: Growth area arrangement - Angled 

shelves 

The conveyor type growth area arrangement is a development of the Institute for Biomedical 

Problems of the Russian Academy of Sciences. The archetypes of this growth area ar-

rangement are the conveyors which led to the rise in productivity of assembling units in the 

machinery industry. In greenhouses with conveyor type arrangement of growth area plants 

are located on the conveyor and forwarded during their growing stages. The growth area is 

arranged in a spiral cylinder with a conveyor located on the axis. The cultivated plants start 

as seedlings in the lowest part of the construction and are conveyed to the highest part dur-

ing their growth. 

The dimensions of the spiral are a function of the crop growth curve. Consequently, each 

plant species need a unique spiral cylinder. Figure 3-5 shows the cross section of spiral cyl-

inder designs for cabbage, carrot, tomato and pepper. The plants themselves are grouped on 

root modules. The plants of one root module are planted and harvested at the same time. 

The advantage of conveyor type growth areas is the up to 30 % increase in yield compared 

to a plain growth area with the same lighting input and size. The higher efficiency is the result 

of better light concentration towards the convex growth area and the widening of the space 

between the leaves of different plants. In addition to the higher yield, the nearly double re-

duction of required volume compared to a plain growth area. Planting and harvesting is al-

ways performed at the same position which reduces the crew time required for these actions 

and allows automation. However, the conveyor which carries the plants increases the com-

plexity of the greenhouse module [29]. 

 

Figure 3-5: Conveyor type growth area for different plants, adapted from [29] 
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The rotating cylinder arrangement was developed by the Canadian company Omega Garden 

International. As shown in Figure 3-6, the plants are cultivated on the inner wall of the cylin-

der, while the light source is located on the rotation axis of the cylinder. Consequently, all 

plants have the same distance from the lamps. While the cylinder is rotating, the root medi-

um of the plants is dipped into a water-nutrient mixture when reaching the reservoir at the 

bottom. This arrangement type is volume efficient and furthermore, the rotation has a positive 

effect on the yield. The plants have to counter different gravity vectors during the rotation 

which leads to bigger and stronger plants. In addition, the plants’ growth rates are higher 

than without rotation [30]. However, the low gravity on Moon and Mars would reduce these 

benefits. The disadvantage of the rotation cylinders is their relatively inflexibility, because 

plants with different growth heights need uniquely scaled cylinders. Furthermore, the con-

cave shape of the growth area leads to reduced space for the top leaves of the plants which 

reduces the photosynthetic efficiency. 

 

Figure 3-6: The Volksgarden concept of Omega Garden International [30] 

3.4.2.4 Distribution of Aisles 

The consideration of the aisle distribution is primarily required for shelves as accommodation 

for the growth area. The width of the aisles has to be considered on ergonomic and clear-

ance reasons. They have to provide enough room for the crew to do their work in a proper 

way. However, the more room is used for aisles, the smaller is the overall growth area. Con-

sequently, the size and distribution of aisles is a compromise between ergonomics and max-

imization of growth area. All in the following discussed distributions are commonly used for 

prismatic module shapes, whereby the prisms base can have every shape discussed in 

Chapter 3.4.2.2. To simplify matters, the following figures show the cross section of a prism 

with a rectangular base. The following configurations are considered for the use in prismatic 

greenhouse module designs: 

- center aisle two shelves, 

- two aisles center shelf, 

- two aisles three shelves or 

- flexible aisle moveable shelves. 

In the center aisle two shelves configuration the shelves are located at the walls of the mod-

ule while the aisle is centered between them, see Figure 3-7. This configuration is not suita-

ble when the module is docked only at one side to the habitat, due to emergency reasons. 
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When the sole aisle is blocked, crew members can be trapped inside the module and cannot 

escape. Furthermore, when this aisle distribution is under investigation for cylindrical mod-

ules, it has to be considered that the volume and area for plant growing in the shelves is rela-

tively low due to the curved shaped. 

The configuration two aisles center shelf has a large centered shelf and two aisles, one at 

each side of the shelf, shown in Figure 3-8. All cables and pipes are located in the center of 

the module which is advantageous for this configuration, because no extra space is required 

to deliver energy, water, air and nutrients to separated shelves. However, this configuration 

is not suitable for cylindrical modules, in which the aisle would be too small due to the curved 

shape of the module structure. 

A configuration with two aisles and three shelves is a combination of the two previous de-

scribed aisle distributions. The two outer shelves are smaller compared to the center shelf. In 

case of emergency, the two aisles assure a way out for the working crew member inside the 

greenhouse module. Due to the restrictions for the width of aisles and shelves explained ear-

lier, a configuration with outer shelves and two or more aisles is required for large green-

house modules. Reference [31] propose such a configuration of four shelves and three aisles 

for the Lunar FARM concept described in Chapter 4.1.3. The developer of the BIO-Plex facili-

ty at NASAs Johnson Space Center selected the two aisles three shelves configuration for 

their Biomass Production Chamber [32]. 

The flexible aisle moveable shelves configuration is an adaption of a shelf design often found 

in libraries and archives. Thereby, all shelves are moveable on rails and only one aisle ex-

ists. The shelves can be moved by hand or motor-driven. Consequently, the position of the 

aisle is flexible and depends on the position of the shelves. Originally, this configuration was 

designed to save space and therefore to achieve a higher packing density compared to nor-

mal shelf configurations with aisles on each side of the shelves. The flexible aisle moveable 

shelves configuration used in greenhouses has a high ratio of growth volume to total volume, 

because only one aisle is required and therefore more space for the cultivation of plants is 

available. However, the connection of moveable shelves to the electrical power, water, nutri-

ents and air distribution systems is complicated and increases the complexity of the configu-

ration. Nevertheless, the higher growth area compared to other configurations of the same 

size can exceed the increase in complexity and mechanisms, especially in large greenhouse 

modules. 

 

Figure 3-7: Center 

aisle two shelves con-

figuration, derived 

from [32] 

 

Figure 3-8: Two aisles 

center shelf configura-

tion, derived from [32] 

 

Figure 3-9: Two aisles 

three shelves configu-

ration, derived from 

[32] 

 

Figure 3-10: Side aisle 

moveable shelves 

configuration, derived 

from [32] 
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3.4.2.5 Module Structure 

The module structure affects several other parameters, but mainly the mass and complexity. 

Table 3-10 shows the estimated total mass of different types of module structure for an inter-

nal volume of 655 m3. The structure of greenhouse modules can be:  

- rigid, 

- semi-deployable, 

- fully deployable or 

- made out of in situ materials.  

Rigid structural designs are the common way for the construction of crewed modules. Ac-

cording to reference [31], the advantages of rigid structures are the confidence in the tech-

nology and the pre-installation and verification of all equipment before launch. In addition a 

first set of plants can be planted and grown during the transfer to assure a continuous har-

vesting cycle from the arrival at the destination. However, rigid structures have to be strong 

enough to withstand the loads during launch from Earth. Therefore, the mass of rigid struc-

tures is significantly higher than for other structural designs. Reference [31] estimates the 

mass of a rigid greenhouse module with a length of 12 meters, a diameter of 8 meters and 

an internal volume of 655 cubic meters to around 8000 kg. Furthermore, the dimensions of 

rigid structures are defined by the fairings of available launch systems. 

Semi-deployable or hybrid designs of greenhouses has a rigid structural compartment and 

attached deployable sections. Hybrid designs combine the advantages of rigid and deploya-

ble structures with a moderate mass. The mass and volume of semi-deployable designs are 

less than for rigid ones, while it is still possible to preinstall systems and plants. The deploy-

ing mechanisms increase the complexity. In addition, the interface between the rigid and the 

deployable sections increase the complexity even more and are weak spots for leakages. 

Consequently, the complexity of hybrid designs exceeds that of fully deployable systems. 

However, a semi-deployable greenhouse module with dimensions of 12 meters length, 8 me-

ters diameter and an internal volume of 655 cubic meters would have a mass around 5500 

kg [31].  

Fully deployable or inflatable structures are currently under investigation by all space agen-

cies and some companies. Modules with deployable structures usually are packed to a rela-

tively small volume and unfolded at the target location, which reduces the mass of the mod-

ule, but increases the complexity due to the required deploying mechanisms. Reference [31] 

estimates the mass of a fully deployable greenhouse module with a length of 14 meters, a 

diameter of 8 meters and an internal volume of 655 cubic meters to around 1200 kg. Inflata-

ble structures usually have a shell out of Kevlar combined with other elastic polymeric mate-

rials. The materials make the shell flexible, light weight and strong enough to withstand the 

environmental conditions [31]. In fully deployable modules plants cannot be planted until the 

structure is completely enfolded, which is disadvantageous, because deployable greenhous-

es need a setup time before the first plants can be harvested. The nutrition of the crew for 

this timespan has to be covered with stored food.  
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Table 3-10: Estimated mass for different structural types for a volume of 655 m
3
, derived from [31] 

Rigid 8000 kg 

Semi-deployable 5500 kg 

Deployable 1200 kg 

 

The usage of in situ materials is also possible to build greenhouse modules on other plane-

tary bodies. Thereby, the materials can be applied on pre-fabricated structures to shield the 

crew against radiation or the materials are used to create construction components for the 

greenhouse. In addition, the local terrain, like caves, tunnels, lava tubes, mountains and cra-

ters himself can be used as structures. Therefore, a pressurized environment is created by 

sealing the existing terrain formations against the environment to provide a suitable atmos-

phere for plants and humans. Module structures which use or are out of in situ materials 

would reduce the launch mass of greenhouse modules significantly. Consequently, the costs 

for these modules are lower than for pre-fabricated modules. However, further research in 

the usage of in situ materials is required before greenhouse modules build out of them are 

feasible [28]. 

3.4.2.6 Adaptability of Internal Configuration 

The internal configuration has to support the plants during all growth stages. To maximize 

the yield of the cultivated plants, the internal configuration has to be adapted while the plant 

is growing. Furthermore, it is essential that the configuration is somehow adaptable to differ-

ent plant species. Especially, the adaptableness of the growth height is necessary to assure 

a customizable internal configuration. The internal configuration of greenhouses can be clas-

sified as: 

- inflexible, 

- semi-flexible or 

- flexible. 

Inflexible internal configuration cannot be adapted once they are assembled. Consequently, 

the grow height is given through the design of the greenhouse’s internal configuration. This 

type of internal configuration does not increase the complexity of the module, but the achiev-

able yield is lower compared to semi-flexible and flexible configurations. 

In semi-flexible designs the crew can adjust some parameters of the internal configuration 

during the mission to change the plant configuration. Furthermore, semi-flexible designs pro-

vide some options to react on unscheduled events. Depending on the mechanisms used for 

the adaptableness, the complexity of the greenhouse module can increase. 

Flexible internal configurations are fully adaptable to a broad spectrum of parameter settings, 

which increases the amount of required mechanisms and systems significantly. However, the 

increase in yield and the ability to change the plant configuration in every way can legitimate 

the higher complexity of the greenhouse module. 
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3.4.2.7 Level of Automation 

Automation of processes inside greenhouse modules is important to reduce the crew time 

required to plant, cultivate and harvest plants. Crew time is valuable during space missions, 

see Chapter 3.4.5.10, and all systems which can reduce the work load of the crew have to be 

investigated on their applicability [33]. Nevertheless, a higher level of automation would in-

crease the complexity of greenhouse modules. Furthermore, the direct interaction with plants 

can satisfy psychological needs of the crew, see Chapter 3.4.5.11., subsequently the level of 

automation of greenhouse modules has to be considered wisely. 

Depending on the integrated systems, greenhouse modules can have: 

- none, 

- partial or  

- full  

automation. 

In greenhouses without any automation processes like planting, harvesting, nutrient mixing, 

and monitoring are performed by crew members, which generates high work load. The com-

plexity of greenhouse modules without any automation systems would be very low compared 

to the other types of automation. However, such greenhouse modules are not suitable for 

planetary habitats, in which the crew size and consequently the available work power are re-

stricted. 

Partial automation is common in today’s greenhouse module concepts. Thereby, some tasks 

are fulfilled by computers and control algorithms. The automatically control of temperature, 

lighting, humidity, ventilation, nutrient mixture and water supply is well known and was tested 

in several terrestrial testbeds. A partial automation should be the least level of automation for 

greenhouse modules proposed for future planetary habitats.  

Fully automated greenhouse modules cover all tasks required to maintain the food produc-

tion at the predicted level. Besides the monitoring and controlling of environmental and met-

abolic conditions, fully automated greenhouses have the ability to plant and harvest the culti-

vated plants without the help of crewmembers. Consequently, the work load on the crew is 

limited to monitoring and programming the automation processes. However, greenhouse 

modules with full automation have a high complexity compared to the other two types.  

3.4.2.8 Module Mass, Dimensions and Volumes 

The module mass directly affects the costs of greenhouse modules. Especially, the launch 

and transfer costs depend on the mass of the modules. The heavier the module, the higher 

are the costs. Furthermore, the overall mass per module should not exceed the launch ca-

pacity of available launch systems. The proposed unit for the module mass is kilogram, kg. 

The module dimensions are required for the calculation of overall and pressurized volume. 

Typical dimensions are length, height, width and diameter. Dimensions are commonly meas-

ured in meter, m. 

For the analysis of the volume of greenhouse modules total volume, pressurized volume and 

the ratio of growth volume per total volume have to be considered. The total volume is calcu-

lated by the outer dimensions of the module and is mainly required for the selection of the 

launch system and fairing. The pressurized volume is any volume that contains an atmos-
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pheric pressure suitable for humans and/or plants. The factor specific cultivation volume is 

established to evaluate the efficient use of volume. Growth volume is the volume which can 

be used for plant cultivation. It is calculated by the multiplication of the growth area in square 

meters with the appropriate maximum growth height in meters. The higher the ratio of cultiva-

tion volume per total volume, the higher is the efficient use of volume. All volumes are re-

ported in cubic meters, m3. 

3.4.2.9 Complexity 

The complexity of greenhouse modules depends on the number of different elements, on the 

amount of interconnections between the elements, on the functionality of the interconnec-

tions, and on the time dependency of the elements. The more elements are implemented in 

the greenhouse, the more interconnections are between these elements. Furthermore, the 

higher the time dependency of these elements, the higher is the complexity of the green-

house module. 

A highly complex system has a greater potential for failures compared to systems with a low-

er complexity. However, a higher complexity often results in reduced work load for the crew 

and in higher yields. Therefore, the performance of greenhouse modules with a high level of 

complexity can exceed those of low complexity and can be applicable for the use in planetary 

habitats. Nevertheless, the complexity of systems cannot be measured as a pure value. 

Consequently, the analysis of a greenhouses complexity is generally subjective. During this 

thesis the complexity of greenhouse concepts is evaluated by comparing the concepts to 

each other. 

3.4.3 Environmental Factors 

3.4.3.1 Definition 

The defined set of environmental factors encompasses all analysis and evaluation factors 

related to the environmental control subsystems described in Chapter 2.5. Therefore, the en-

vironmental factors concern the atmosphere control subsystem, the water control subsystem, 

the lighting control subsystem and the thermal control subsystem. There were ten environ-

mental factors identified during this thesis, five qualitative and five quantitative. The Air Con-

trol Subsystem (ACS) is analyzed and evaluated with the factors atmospheric composition, 

trace gas treatment, humidity, atmospheric pressure and the concentrations of carbon diox-

ide and oxygen. There are no environmental factors defined for the analysis of the Water 

Control Subsystem (WCS) during this thesis, because the design of this system is nearly the 

same in every greenhouse module. However, some factors related to the WCS are part of 

the interface factors category, because they describe the interface of the WCS with the habi-

tat. For the evaluation of the Lighting Control Subsystem (LCS) the factors lighting type, light-

ing strategy and photosynthetic period are established. The type of temperature control and 

the air temperature are used to analyze and evaluate the TCS of greenhouse modules. Table 

3-11 shows a summary of all environmental factors split into two columns, one for qualitative 

factors and one for quantitative factors. 
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Table 3-11: List of Environmental Factors 

Qualitative Factors Quantitative Factors 

Lighting Type Photosynthetic Period 

Lighting Strategy Humidity 

Atmospheric Composition Air Temperature 

Trace Gas Treatment Atmospheric Pressure 

Temperature Control Carbon Dioxide and Oxygen Partial 

Pressure 

3.4.3.2 Lighting Type 

The lighting system provides radiation, the sole source of energy for plants to grow and de-

velop. In this thesis the word “light” is used for the photosynthetically active radiation (PAR) 

and not for the radiation that is visible to the human eye. PAR is defined as the radiation with 

wavelengths useful for photosynthesis of plants. The human eye can respond to wavelengths 

from 380 to 720 nanometers, while the wavelength of PAR is between 400 and 700 nanome-

ters. However, sometimes the range is from 350 to 850 nanometers [34]. 

The sources of light can be broadly divided into:  

- electrical,  

- hybrid or 

- natural lighting. 

Electrical lighting includes all sources which are electrically powered and convert electricity to 

radiation. The sole source of radiation in natural lighting systems is the sun. Hybrid lighting 

systems combine natural and electrical sources of radiation. 

 

Figure 3-11: Spectrum of the Photosynthetic Active Radiation (PAR) [34] 

Electrical Lighting 

High-intensity discharge (HID) lamps excite gas atoms with an arc to emit radiation. The 

wavelength of the radiation depends on the excited gas. The irradiance of HID lamps is high 

compared to fluorescent and incandescent lamps, but it is difficult to provide a uniform radia-

tion distribution, because HID lamps are point sources. Consequently, the radiation has to be 

distributed with reflectors over the whole growth area. There are three types of HID lamps for 



Development of an Analysis and Evaluation Strategy 

Definition of Analysis and Evaluation Factors 

38 

the provision of radiation to plants: high-pressure sodium lamps, metal halide lamps and 

mercury lamps [34]. 

High-pressure sodium (HPS) lamps produce radiation through exciting of highly concentrated 

sodium vapor and a small amount of mercury with an electrically powered arc. The spectrum 

of the emitted radiation is mainly between 550 and 650 nanometers, but low emission be-

tween 400 and 500 nanometers is also produced, see Figure 3-12. Hence, there is low emis-

sion in blue wavelengths. Therefore, lamps with higher irradiance in the blue spectrum have 

to be added to the lighting systems to provide this spectrum to the plants. HPS lamps have a 

high PAR efficiency compared to fluorescent, incandescence and other HID lamps. In addi-

tion, the lifetime of HPS lamps is high and their intensity is reduced slowly as the lamp ages 

[34]. 

Metal halide (MH) lamps excite vapors of metal halides (iodides of thorium, thallium, of sodi-

um) and small portions of mercury to produce radiation. The wavelengths of the emitted pho-

tons depend on the gas inside the tube of the MH lamps. The main radiation output of MH 

lamps is between 400 and 700 nanometers. The spectrum of a MH lamp compared to PAR is 

shown in Figure 3-13. The disadvantages of MH lamps are the differences in spectral distri-

bution of different lamps and the spectral shift when the lamps age. The PAR efficiency of 

MH lamps is slightly lower than that of HPS lamps. The average lifetime of MH lamps ranges 

from 12000 hours for 1000 W lamps to 20000 hours for 400 W lamps. The intensity of MH 

lamps decreases rapidly over time. After half of the lifetime the intensity is only 75 % of new 

lamps [34]. 

In mercury lamps vapor of mercury is excited by an electrical arc. The emitted photons have 

a bluish spectrum. Mercury lamps have a long average lifetime of 24000 hours, but after half 

of the lifetime, the output is only 70 to 85 % compared to new lamps. The biggest disad-

vantage of mercury lamps is the significantly low PAR efficiency. Unless UV or blue wave-

lengths are required, mercury lamps are less recommended for the lighting of plants [34]. 

Fluorescent lamps are long glass tubes filled with mercury vapor under low pressure and an 

inert gas, usually argon. At each end of the glass tube is an electrode. When a proper volt-

age is applied on the electrodes, an electric arc between them is generated. The arc excites 

the mercury ions and when they fall back to the ground state, radiation mainly at a wave-

length of 253.7 nanometers is emitted. Photons with this wavelength are not suitable for 

plants. Therefore, the inner wall of the glass tube is coated with fluorescent powder, usually 

phosphor. The phosphor is activated by the incoming photons and emits new photons pri-

marily at longer wavelengths suitable for plant growing. The spectrum of fluorescent lamps 

depends on the used phosphor mixture for the coating; the spectrum of a cool white fluores-

cent lamp is shown in Figure 3-14. Fluorescent lamps provide a continuous and uniformly 

distributed radiation when placed closed together. The PAR efficiency of fluorescent lamps is 

generally high, but is affected by the ambient temperature. The maximum output of fluores-

cent lamps is at a temperature of 38°C. Therefore, the ambient temperature has to be slightly 

below 38°C to provide the maximum output. However, the low operating temperature reduc-

es the heat input into the growing area. During the operation the coating of the electrodes is 

evaporated, mainly during the start-up. Consequently, the frequency of turning the lamps on 

and off affects the lifetime. During the first 100 hours of operation, the output of fluorescent 

lamps decreases rapidly. After this period the degradation is more continuous, leading to 70 

% or less after 6000 hours [34]. 
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Incandescent Lamps utilize heated bodies to emit light. The light of incandescent lamps is 

blackbody radiation. Consequently, the wavelengths of the photons depend on the tempera-

ture of the heated element. To create light useable by plants a temperature above 2600°K is 

required. In commercial incandescent lamps filaments made of tungsten are heated with 

electricity to a temperature between 2770 and 3050°K. The higher the voltage, the higher the 

temperature raises. The spectrum of the emitted photons has a large component of wave-

lengths in the infrared spectral band. Figure 3-15 shows the comparison of the spectrum of 

an incandescent lamp and PAR. Hence, most of the electrical energy used by incandescent 

lamps is converted to heat, therefore, the efficiency of these lamps is low and not competitive 

to over lamp types. In addition, the heat generated by of incandescent lamps has to be re-

moved out of the growth area to avoid damaging of the plants. The lifetime of commercially 

available incandescent lamps ranges from 700 to 1000 hours and the output at the end of life 

is about 85 % of the original. The very low lifetime and efficiency compared to other lamp 

types leads to the conclusion that incandescent lamps are not recommended for the use in 

lighting systems [34]. 

Low-pressure sodium (LPS) lamps are similar to HPS lamps. Contrary to HPS lamps, the 

pressure in LPS lamps is lower and no mercury vapor is present. Thus, only the excited so-

dium provides the radiation output of LPS lamps. The spectrum of the radiation is limited to 

wavelengths around 589 nanometers, see Figure 3-16. The output of LPS lamps is not high 

enough to provide sufficient lighting for plants. Therefore, LPS lamps are not recommended 

as radiation sources for plant growing [34]. 

Xenon lamps are able to most nearly duplicate the solar spectrum and irradiance. However, 

xenon lamps are expensive and generate ozone, which is toxic to plants and humans. The 

spectrum of the emitted photons has large quantities of infrared radiation. Infrared radiation 

cannot be used by plants and increases the cooling requirements for the growth area. Con-

sequently, xenon lamps have only limited use in experimental growth chambers and are not 

recommended for the use in high productive greenhouses [34]. 

Sulfur Lamps, also known as microwave-powered lamps, are electrodeless lighting devices. 

Generally, a sulfur lamp consists of a quartz bulb filled with sulfur vapor and small amounts 

of argon vapor. The vapor is excited by microwaves generated by a magnetron. The excita-

tion of the atoms results in an emission of photons [35]. The spectrum of sulfur lamps is 

comparable to the suns. However, the intensity of the infrared band is lower for sulfur lamps. 

The spectrum of a sulfur lamp compared to PAR is shown in Figure 3-17. Consequently, the 

heat production of microwave-powered sulfur lamps is low. The advantages of sulfur lamps 

are their small size and their nearly sun-like spectrum. The efficiency for the conversion of 

electrical energy to radiation is higher than for HPS lamps, but due to the low efficiency of the 

magnetron the overall efficiency is lower than that of HPS lamps. The average lifetime of sul-

fur lamps is around 20000 and the degradation of the radiation output is relatively low, lead-

ing to 90 % of the original value [34]. 

Light-emitting diodes (LED) are semiconductor devices which convert electricity to radiation. 

There are three types of LEDs suitable as radiation sources for plants: discrete LEDs, print-

ed-circuit LEDs, and phosphor-based LEDs. LEDs are a comparatively new technology. The 

efficiency, lifetime and output are still increasing, while the costs are decreasing through the 

raising demands. The small size, high efficiency and long lifetime compared to other lighting 

sources make them very interesting for the usage in plant growing systems. Unlike other 
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lamp types, the light output of LEDs is current controlled. Hence, the brightness directly af-

fects the required power consumption [34].  

Discrete LEDs emit photons with wavelengths in a narrow spectrum, depending on the con-

struction material. Usually, the spectral band is only 50 to 100 nanometers wide. Conse-

quently, LEDs with different colors are required to provide the light spectrum that plants 

need. In past studies red, yellow-green and blue LEDs were used in combination. For the 

spectrum from blue to green (460 - 550 nm) indium gallium nitride (InGaN) and for the spec-

trum from yellow to red (560 – 630 nm) aluminum gallium indium phosphide (AlGaInP) is 

used as the base material. Figure 3-18 shows the spectrum of a blue, a yellow and a red dis-

crete LED compared to PAR. According to reference [36], commercially available LEDs with 

more than 20 % efficiency are available and efficiencies over 50 % are expected in the next 

decade. 

The printed-circuit LEDs are small and applied on wafers in large numbers. This type of LED 

has no plastic lenses like discrete LEDs. The package density of printed-circuit LEDs is high, 

reaching up to 132 LEDs in an area of 6.25 cm2. This technique provides bright light levels. 

Furthermore, each LED can be fabricated out of different materials, and therefore, different 

colors are feasible. Consequently, the color mixture of printed-circuit LED arrays can be 

adapted to the spectral needs of plants. However, it is not possible to replace a single broken 

LED. To repair a printed-circuit LED, the whole array has to be replaced by a new one [37]. 

Phosphor-based LEDs, also known as white LEDs, are the combination of the common LED 

technology with the technique of fluorescent lamps. Usually, a single blue LED made of galli-

um nitride (GaN) is used together with different mixtures of phosphor to generate a uniform, 

sun-like white light. Therefore, the inner side of the bulb of a bluish LED is coated with a 

phosphor mixture. The phosphor starts to emit a broad spectrum of light when hit by the pho-

tons generated by the LED. The broad spectrum from 500 to 700 nanometers could make 

this type of LEDs suitable for plant growing. However, this technology is currently under de-

velopment to replace the commonly used incandescent lamps in household. Consequently, 

progress in the commercialization of the technique is expected in the near future [36]. 
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Figure 3-12: HPS lamp spectrum compared to PAR 

(orange line) [34] 

 

Figure 3-13: MH lamp spectrum compared to PAR 

(orange line), derived from [38] 

 

Figure 3-14: Fluorescent lamp spectrum compared 

to PAR (orange line) [34] 

 

Figure 3-15: Incandescent lamp spectrum com-

pared to PAR (orange line) [34] 

 

Figure 3-16: LPS lamp spectrum compared to PAR 

(orange line) [34] 

 

Figure 3-17: Sulfur lamp spectrum compared to 

PAR (orange line), derived from [38] 

 

Figure 3-18: Spectrum of blue, yellow, red discrete LEDs compared to PAR (orange line) [34] 



Development of an Analysis and Evaluation Strategy 

Definition of Analysis and Evaluation Factors 

42 

Natural Lighting 

The utilization of sunlight is the basic form for providing plants radiation. All plants originated 

on Earth are adapted to use the energy provided by the Sun’s radiation. Greenhouses with 

natural lighting systems are established all over the world to grow food in a controlled envi-

ronment. Furthermore, natural lighting systems have the lowest power demands, compared 

to electrical and hybrid lighting. Hence, the use of sunlight for growing plants in space and on 

other planetary bodies looks promising. There are two ways of using the sun as radiation 

source: direct natural lighting and indirect natural lighting. 

In direct natural lighting systems the sunlight passes windows or transparent walls to reach 

the growth area. Comparable to electrical lighting systems, direct natural lighting systems 

need a powerful heat rejection system to reduce the heat generated by the infrared radiation 

of the Sun. The environmental conditions of the nearest planetary bodies, Moon and the 

Mars, complicate the use of direct natural lighting systems. One day on Moon is usually 28 

Earth days long, hence there is 14 days sunlight followed by 14 days night. However, some 

locations at the poles of Moon with nearly continuous sunlight exist. The day length on Mars 

is similar to Earth, but the higher distance from the Sun lowers the average sunlight intensity 

to 43 % of the terrestrial and due to the higher excentricity of the Martian orbit, the variation 

of intensity is higher than on Earth. The inclination of Mars causes long seasonal periods, 

which leads to long winter periods without sunlight at the poles. Other problems for the usage 

of direct natural lighting on Mars are dust and dust storms. The wind on Mars is able to carry 

dust over long distances and periodical strong and long lasting dust storms appear. The dust 

covers the outside surfaces of windows and have to be removed to provide enough sunlight 

for the plants. However, during dust storms the amount of sunlight reaching the surface of 

Mars is too low for the demands of plants. Besides the problems with environmental condi-

tions at the location, the direct usage of sunlight can be more effective, and less mass and 

cost intensive than electrical lighting [39]. 

Indirect natural lighting systems also utilize the energy of solar radiation to provide energy for 

plant growth. They use reflectors, concentrators and plastic optic fibers to collect and distrib-

ute the sunlight over the whole growth area. Reflectors are polished surfaces or mirrors and 

can be up to 95 % effective as direct sunlight systems, but contrary to those systems reflec-

tors reduce the heat input into the growth area and the heat can be directly rejected to the 

environment without the need of additional radiators [39]. Concentrators usually consist of a 

parabolic mirror and a collector. The mirror concentrates the incoming sunlight at the collec-

tor and the collector feeds fiber optic cables. These cables deliver the sunlight to the internal 

lighting system inside the greenhouse and provide radiation for all plants. The power demand 

for tracking the Sun is relatively low. The disadvantage of fiber optic cables is their low effi-

ciency. The longer the cables are, the lower is the efficiency. However, currently new tech-

nologies for fiber optic cables are under development and new optic cables with higher effi-

ciencies are expected in the near future. Besides the low heat input and low power demand 

of indirect natural lighting systems are other advantages. Fiber optic cables can be easily re-

placed and therefore, it is possible to adjust the location of the light sources inside the 

greenhouse. Furthermore, the cables can be used for intracanopy lighting which has ad-

vantages over other lighting distribution systems, see Chapter 3.4.3.3 [31].  

 

 



Development of an Analysis and Evaluation Strategy 

Definition of Analysis and Evaluation Factors 

43 

Hybrid Lighting 

Hybrid lighting systems combine electrical and natural lighting. Both of these have their dis-

advantages, especially the high power demands of electrical lighting, which can be up to 45 

% of the total power demand of a greenhouse [35], and the dependency on the sun of natural 

lighting systems. Hybrid lighting systems can combine the benefits of both electrical and nat-

ural lighting to compensate their weaknesses. During sunshine the energy of the solar radia-

tion can be utilized for the plant growth, and to generate and store electrical energy. In night 

periods the stored electrical energy is converted back to radiation for the plants by using an 

electrical lighting system.  

3.4.3.3 Lighting Strategy 

The previous chapter described the different types of light sources and their advantages and 

disadvantages. However, not only the lighting type, but also the lighting strategy affects the 

plant growth and the efficiency of the lighting control subsystem. There are three options for 

lamp positioning inside greenhouses: 

- overhead lighting, 

- sidewise lighting or 

- intracanopy lighting. 

Overhead lighting is the common strategy of positioning lamps. Thereby, the light sources 

are attached to the ceiling of the greenhouse. The intensity of light decreases exponentially 

when increasing the distance to the source. Therefore, the radiation source has to be close 

to the leaves of plants to provide enough intensity while reducing the power demand. Due to 

the plant growing, the distance between lamps and plants has to be adjusted to different 

plant development stages to ensure a sufficient lighting and reducing the thermal loads to the 

leaves. A problem of overhead lighting is shading of lower leaves by those above them, 

which leads to net carbon loss via respiration and underdevelopment of plant parts. To re-

duce the effects of shading, the walls of greenhouse modules can be painted white or cov-

ered with polished surfaces to reflect the radiation and provide some light from the sides. 

When reflectors are used, it has to be assured, that no spectral shift of the reflected light oc-

curs, because this can cause several problems concerning thermal and plant issues. But 

even with reflective surfaces at the walls, shading cannot be totally avoided with overhead 

lighting [34]. 

Sidewise describes a lighting strategy, where lamps are attached to the walls of the green-

house module. This lighting strategy requires a larger amount of space compared to over-

head lighting, but the power demand can be reduced by this type of lighting strategy. How-

ever, sidewise lighting also creates shading of plants that are further away from the walls and 

therefore, the light distribution is suboptimal [37]. 

Intracanopy is the provision of lighting from the inside of the plant canopy. Thereby, the 

lamps are located close to the leaves or even touching them. Consequently, this lighting 

strategy is only applicable with low temperature light sources, which do not harm the plants.  

Promising systems for intracanopy lighting are plastic optic fiber cables, LEDs, or light tubes.  

Due to the close distance between leaves and lamps, the power demand of intracanopy is 

lower compared to overhead and sidewise lighting. However, a lighting system with intracan-

opy lighting as a sole source of radiation would be complex. A combination of overhead and 
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intracanopy lighting can increase the edible biomass, decrease the power demand and solve 

problems with shading of leaves [37]. 

3.4.3.4 Atmospheric Composition 

The atmospheric composition inside greenhouse modules affects the plant growth and the 

humans’ ability to work. For plants the percentage of carbon dioxide in the air is an essential 

factor for their welfare and growth. For humans a suitable amount of oxygen is required to 

survive, as described in Chapter 2.2. Furthermore, the amount of carbon dioxide in the air is 

also important for the health of the crew, who work in the greenhouse. There are three pos-

sible options of an atmospheric composition in greenhouses for space applications: 

- local planetary atmosphere, 

- an earth-like atmospheric composition or 

- an atmosphere enriched with carbon dioxide. 

The usage of a local planetary atmosphere in a greenhouse is a theoretical option. In our so-

lar system is no other known planetary body with an atmosphere suitable for plant growth. 

However, some atmospheres contain elements that can be used in greenhouses. Especially 

the carbon dioxide of the Martian atmosphere, see Chapter 2.1.2, could be extracted and in-

jected into the atmosphere of greenhouse modules to provide higher concentrations. 

An earth-like atmosphere is the simplest way of an atmospheric composition inside green-

houses and provides enough carbon dioxide to sustain plant growth and enough oxygen to 

allow humans to work without the need of respiratory protection devices. Every carbon diox-

ide concentration below the terrestrial concentration of 300 to 350 ppm decreases photosyn-

thesis and consequently, plant growth [40]. The advantage of an earth-like atmosphere is 

that the atmosphere control system of the habitat can be used to maintain the atmosphere 

inside the greenhouse. Furthermore, no airlocks are required to seal the atmosphere of the 

greenhouse from that of the habitat. 

Any atmospheric composition with a carbon dioxide level above the terrestrial is named an 

atmosphere enriched with CO2. The responses of plants to elevated concentrations of carbon 

dioxide depend on the plant species, developmental stage, irradiance, temperature, mineral 

nutrition, and the size of the root zone. Table 3-12 shows a summary of the influences of a 

CO2 enriched atmospheric composition on different processes of crop plants. The regulation 

of the CO2 is quite difficult, because both plants and humans affect the CO2 in different ways. 

The exhaled air of a working human contains 4 to 5 % carbon dioxide. Therefore, the amount 

of CO2 in a sealed environment rises within in a few minutes to more than the tenfold of the 

normal level. Plants consume CO2 to metabolize it in the photosynthetic process. Photosyn-

thesis requires energy in form of radiation. Consequently, the level of CO2 falls during lighting 

periods. Without the energy of light, photosynthesis stop and the CO2 rises again due to res-

piration of plants up to twice as normal [40].  
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Table 3-12: Responses of crop plants to an increase in CO2 concentration above earth-like atmosphere 

[40] 

Process Effects on Plants 

Leaf photosynthetic rates Increase in all plants on first exposure. Little response above 

1000 ppm and levels above 2000 ppm may be toxic. 

Inhibition of photosynthesis by 

source-sink imbalance 

Response occurs in many species. 

Leaf transpiration rate Decrease in all plants. 

Leaf anatomical and biochemical 

adaption 

Leaf area, weight per unit area, thickness and number of mes-

ophyll cell layers increase in many species. 

Canopy leaf area Usually increases. 

Carbon partitioning among organs Proportion of carbon going to roots and stems is increased in 

many, but not all, species. 

Branching, flowering and fruiting Initiation and/or retention of these organs are increased in 

many species. 

Fruit and seed Increases in number and/or size of fruits and seeds. 

Canopy water-use efficiency Increase in photosynthesis or yield contributes more than re-

duction in transpiration. 

Yield Increases 32 % on average between 300 and 660 ppm for 

plants in favorable conditions. 

3.4.3.5 Trace Gas Treatment 

Trace gases or air contaminants are an underestimated source of problems in closed envi-

ronment systems. Until today only little research is done in this field, because of the wide 

spectrum of potential sources. The usual small air volume of closed environments emphasiz-

es the effects of trace gases, which are generally never or rarely seen in the terrestrial eco-

system. Air contaminants are sporadically produced by painting, cleaning or remodeling 

structures and systems inside greenhouses. In addition to the sporadic production, the out-

gassing of some materials, mainly plastics, causes a constant source of toxic elements. Fur-

thermore, the ethylene exhaled by plants has to be treated. Table 3-13 shows a summary of 

sources and effects of some toxic compounds identified during studies. Most of the ad-

dressed problems can be solved by choosing different, non-toxic materials or changing the 

design of systems. There are three options of handling trace gases: 

- neither monitoring nor treatment, 

- monitoring of the amount of air contaminants or 

- the combination of monitoring and separation of trace gases. 

A greenhouse with neither monitoring nor separation of trace gases is no suitable option for a 

controlled environment. The damage and symptoms caused at plants would be not repaira-

ble and could lead to diseases of the humans who ate the plants. 

Monitoring of trace gases is the least option that has to be done in a closed environment. To 

monitor the contaminants several portable and stationary measurement systems exist. 
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A combination of Monitoring and Separation of traces gases is essential for every long term 

mission in closed environments. On Earth the exchange of the air of a greenhouse several 

times per day and the leakage of earthbound systems is sufficient to pretend the plants of 

harmful concentrations of contaminants. However, ventilation is no option in spacecraft and 

the leakage of a closed environment in space should be as low as possible. Consequently, 

mechanical and chemical filters are required to separate the trace gases out of the air. Acti-

vated charcoal filter systems are able to absorb most, but not all, of the contaminants. Some 

trace gases need more complex filter mechanism. The best way to deal with trace gases is 

the avoidance of materials that are potential sources [41].  

Table 3-13: List of sources and symptoms of some harmful compounds [41] 

Compound Source Caused Symptoms 

Cyclohexylamines Caulking compounds, steam Leaf bleaching, leaf chlorosis,    

stunting of plants, downward curling 

of leaves, abscission of leaves 

Diputyl phthalate Flexible polyvinyl chloride tubing,   

glazing strips, hoses, pots, latex paint, 

aluminized plastic sheeting 

Leaf bleaching, leaf chlorosis,    

stunting of plants, cotyledon necrosis 

Mercury Thermometers Stunting of plants 

Xylene Paint Stunting of plants 

Ethylene Ballasts, plants Abscission of leaves 

Ethylene glycol Liquid in cooling systems Leaf chlorosis, stunting of plants, 

downward curling of leaves 

3.4.3.6 Temperature Control 

The temperature of matter represents its thermal energy content. As in every metabolic or-

ganism the temperature influences the physiological and metabolic processes of plants. 

Consequently, the temperature inside a greenhouse has to be monitored and regulated to 

suitable conditions for plants. Plants are sensitive to temperature below and above their com-

fort zone. Lower temperature can suppress growth and fruit development, while high temper-

atures can cause damage to leaves, roots and other plant parts. Furthermore, high tempera-

tures benefit transpiration of plants, which can lead to an imbalance in their water status. 

Plants interact with the thermal environment through conduction, convection and radiation. 

The heat transfer by conduction is relatively small compared to the other two. Conduction 

only occurs, when the plant is in contact with solid or liquid media. The effect of forced con-

vection on plants in greenhouses is generally larger than that of natural convection, because 

of the air movement caused by ventilation system. The impact of radiation on the thermal en-

vironment inside greenhouse modules is significant. The surfaces of plants absorb a broad 

spectrum of radiation, but only a small amount is used for photosynthesis. The remaining ra-

diation is reflected and shifted to longer wavelengths in the infrared spectrum. Consequently, 

the reflected radiation heats the environment around the plants. 

Temperature control is necessary for greenhouse modules to provide a suitable environment 

for plant cultivation. The lighting system is the main source for thermal energy. Lamps heat 

the air by converting electrical energy to thermal energy and by emitting of infrared radiation. 

Furthermore, the re-radiated red shifted emissions of plants cause a rise in temperature. 
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Consequently, the primary task of the thermal control subsystem during lighting periods is 

cooling the inside of the greenhouse. Heat exchangers using chilled water or ethylene glycol 

are the commonly used cooling system. During dark periods, heating units could be required 

to maintain a warm enough air temperature. Therefore, electrical resistance heaters are 

used. The temperature control system can be designed in three different ways: 

- controlling the temperature of the whole greenhouse, 

- temperature control for each plant species or 

- temperature control per growth unit. 

Control limited to the whole greenhouse is the simplest way to maintain the temperature. All 

plants will be exposed to the same temperature. Therefore, the average temperature inside 

the greenhouse would be a compromise between the requirements of all cultivated plants. In 

this case the plants’ yield would be not the potential maximum. 

A temperature control adapted to each plant species can maximize the biomass production 

and yield. The complexity of such systems is higher than for control systems for the whole 

greenhouse. More sensors, larger ventilation and cooling systems are required. Furthermore, 

barriers between different plant species are necessary to maintain the temperature differ-

ence. Consequently, the masses of the thermal and air control subsystems are higher for the 

temperature control of each plant species. 

The monitoring and controlling of the temperature of each growth unit is challenging and re-

quires a complex system of sensors, pipes and fans. However, separate thermal controls for 

each growth units can increase the yield due to specific temperatures. The increase in food 

output has to be traded against the rise of complexity and mass of the system. 

3.4.3.7 Photosynthetic Period 

The photosynthetic period is another factor related to the lighting control subsystem. Besides 

the provision of radiation with suitable wavelengths, see Chapter 3.4.3.2, the quantity of radi-

ation and the duration of the exposure to light affect the plant health and growth. The quantity 

of radiation is named photosynthetic photon flux (PPF). The PPF is the amount of photons of 

a specific wavelength that flow through an area in a defined timespan. The unit of PPF is mi-

cro moles per square meter per second for a specific waveband, μmol/(m2*s). The analysis of 

the waveband is important to compare the PPF of different greenhouse concepts. Further-

more, it has to be investigated how long the PPF is applied to the plants. 

The product of PPF and time is the quantity of energy delivered to the plants. As long as the 

quantity of energy is constant, the growth rates of plants are similar. Consequently, continu-

ous exposure to light is possible to reduce the PPF and therefore, the energy required for 

electrical lighting. When a continuous photosynthetic period is applied it has to considered, 

that the temperature of the leaves can rise to a critical level. Usually, a day-night cycle of 16 

hours light exposure and 8 hours darkness with a PPF of 400 to 500 μmol/(m2*s) for the 

waveband of PAR leads to suitable growth rates. However, the PPF and duration of the pho-

tosynthetic period are plant specific and should be adjusted to every plant species to maxim-

ize the yield [34]. 
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3.4.3.8 Humidity 

Humidity, also known as atmospheric water vapor, has several effects on the behavior of 

plants. The energy balance of plants is indirectly affected by humidity. The direct effect of 

humidity is the influence on the gas exchange between plants and their environment. Here-

by, the most significant impact of atmospheric water vapor is on transpiration: when humidity 

decreases, transpiration increases. The plant water status is the balance of water gained by 

roots and water evaporated over the surface of leaves. Low transpiration, as well as high, 

can lead to an imbalance of the water status and therefore, can damage the plants or cause 

sicknesses. High humidity stimulates the stomata of plants, small openings on the leaf which 

can sense humidity and regulate the transpiration rate, to remain closed. Hence, the transpi-

ration and gas exchange is stopped, which leads to a reduced carbon dioxide intake reduced 

photosynthesis and therefore, lower yields. Plants use transpiration to cool their body in a 

same way humans do. Consequently, transpiration causes a heat transfer from plants to their 

environment. 

Humidity also affects the temperature control subsystem by increasing specific heat of the air 

and due to the heat energy transfer caused by evaporation and condensation. The effects of 

humidity on the chemical and biological environment of greenhouse modules are less signifi-

cant. A continuous measurement and control of humidity is challenging, but necessary. The 

humidity control mechanisms are usually a combined task of air, water and temperature con-

trol subsystems. The usually small volume of closed environments leads to more extreme 

levels of humidity, because the gas exchange with the outside is negligible. The control of 

humidity has high energy demands due to the nature of energy required for evaporating and 

condensation of water vapor. Condensation is used to reduce the humidity inside the green-

house. Therefore, surfaces with a temperature at or lower the dew point are required. The 

condensed water has to be collected and removed out of the greenhouse. To higher the hu-

midity, water vapor is injected to the air. 

Several definitions and units are known. For the analysis during this thesis the terms abso-

lute humidity and relative humidity are used. The absolute humidity is also known as water 

vapor density or water vapor concentration and is the total amount of water inside a specific 

volume of air. The unit is gram per cubic centimeter, g/cm3. The ratio of water vapor con-

tained in the air to that at saturation point at the same temperature is defined as relative hu-

midity and expressed as percentage. The usage of relative humidity for evaluation process is 

problematic due to the dependency on the air temperature. However, relative humidity is a 

commonly used value and as long as the temperature is also investigated, relative humidity 

can be established as factor [42].  

3.4.3.9 Air Temperature 

The air temperature influences plants as described in Chapter 3.4.3.6. Therefore, an analysis 

of the air temperature inside greenhouses of different concepts is essential. The temperature 

has to be reported as average and range in degree Celsius, °C. Furthermore, the location of 

the temperature is worth knowing, because temperature gradients between sections of the 

greenhouse may exist. 
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3.4.3.10 Atmospheric Pressure 

The atmospheric pressure inside greenhouse modules affects the structural design, the leak 

rate and the behavior of humans. According to references [43] and [44], the effects of the 

atmospheric pressure on plants are negligible. However, the transpiration rate is slightly in-

creased in environments with an atmospheric pressure lower than the terrestrial average.  

The design of pressurized modules for space applications is challenging, because the struc-

ture of spacecraft have to withstand the pressure difference between the inside of the mod-

ule and the ambient pressure at the location. Furthermore, the higher the pressure difference 

between the inner and the outer of the module is, the higher the leakage rate. Low pressure 

modules can be designed to reduce the structural loads and therefore, the mass of the mod-

ule [44]. In addition a reduced atmospheric pressure lowers the leakage rate. Consequently, 

a low pressure environment inside greenhouse modules is applicable, as long as the human 

requirements described in Chapter 2.2 and the demands of plants are met [45]. The atmos-

pheric pressure has to be reported in kilopascal, kPa. 

3.4.3.11 Carbon Dioxide and Oxygen Partial Pressure 

The CO2 partial pressure directly affects the yield and growth rates of plants, as described in 

Chapter 3.4.3.4. Therefore, it is important to analyze the carbon dioxide level of the atmos-

phere inside greenhouse modules. The photosynthetic periods of plants lead to an oscillation 

of the concentration. Consequently, the range and the average of the concentration have to 

be investigated. Several units for gas concentrations exist, the most commonly used units 

are the partial pressure and parts per million of volume. The proposed unit of this thesis is 

the partial pressure in kilopascal, kPa [45]. 

The O2 partial pressure mainly influences the work ability of humans inside greenhouse 

modules. The effects of different oxygen levels on humans are described in detail in Chapter 

2.2. While humans need a sufficient partial pressure of oxygen, plants are able to grow with-

out O2. Furthermore, the efficiency of photosynthesis increases under lower concentrations 

of oxygen [44]. Consequently, a compromise between the efficiency of plants and the work 

ability of humans inside the greenhouse has to be considered. Options for reduced oxygen 

levels are oxygen masks or hermetically closed suits for the crew working inside the green-

house, or fully automated greenhouses, which do not need human presence to growth and 

harvest plants. Oxygen partial pressure is commonly reported in kilopascal, kPa [45]. 

3.4.4 Agricultural Factors 

3.4.4.1 Definition 

Agricultural factors refer to the tasks and requirements of the agricultural subsystem defined 

in Chapter 2.5. Consequently, the established agricultural factors are used to analyze and 

evaluate the plant cultivation subsystem, the nutrient delivery subsystem and the harvest & 

cleaning subsystem. Nine agricultural factors are investigated, five qualitative and four quan-

titative factors. The Plant Cultivation Subsystem (PCS) is analyzed and evaluated on the 

used growth medium, the installed plant monitoring system, the plant mixture, the planting 

sequence, the cultivated plants, the biomass productivity, the specific growth area and the 

grow height. The investigation of the nutrient supply is used for the analysis and evaluation of 

the Nutrient Delivery Subsystem (NDS). For the Harvest & Cleaning Subsystem (HCS) no 
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factors are defined, because the provided tools and stuff of this subsystem are independent 

from the design of the greenhouse module. However, the size of the HCS is proportional to 

the size of the greenhouse module. Table 3-14 shows a list of all agricultural factors split into 

quantitative and qualitative factors. 

Table 3-14: List of Agricultural Factors 

Qualitative Factors Quantitative Agricultural Factors 

Growth Medium Cultivated Plants 

Plant Monitoring Biomass Productivity 

Nutrient Supply Specific Growth Area 

Plant Mixture Growth Height 

Planting Sequence  

3.4.4.2 Growth Medium 

The growth media of greenhouse modules are the substances in which the roots of the culti-

vated plants reach and absorb the nutrients. The selection of an appropriate growth media 

for greenhouse modules is challenging, because of several requirements an optimal growth 

medium has to fulfill. Basically, the available growth media can be divided into the three cat-

egories: 

- soil,  

- soil-like or 

- soilless.  

Soil as growth medium can be either terrestrial or extraterrestrial soil. Soil-like growth media 

are usually substrates, thereby, inert and organic substrates are considered. Soilless agricul-

ture methods are hydroponic and aeroponic. They do not use any kind of soil or substrates. 

Soil 

The growing of plants in terrestrial soil is the most commonly used cultivation method on 

Earth. Soil agriculture is utilized by humans since several thousand years. Consequently, the 

use of soil as grow medium in open fields and greenhouses is well understood. However, 

terrestrial soil as growth medium for environmentally closed greenhouse modules in space is 

not suitable. The launch and transportation costs for terrestrial soil are high compared to oth-

er growth media. According to reference [45], problems with microbiological contamination 

are unpredictable and can cause a complete failure of the greenhouse module. Furthermore, 

the handling of plants grown in soil during planting and harvesting under microgravity is diffi-

cult. Microgravity also inhibits drainage leading to water-logged soil, which can cause anaer-

obic reactions in the soil. Additionally, the absence of convection under microgravity prevents 

aeration of the roots. Another problem with soil as growth medium is the potential absorption 

of trace gases from the air, which could lead to problematic chemical reactions in the soil. 

Since plants do not need terrestrial soil to grow as long as all required nutrients are provided, 

terrestrial soil is not recommended for the use in space based greenhouse modules [45]. 

Extraterrestrial soil as growth medium shares the disadvantages of terrestrial soil, except the 

transportation costs for the soil are absent. However, for the conversion of extraterrestrial 

surface material to an appropriate growth medium requires special devise and systems. 
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NASA undertakes research in the usage of lunar surface material, also known as regolith. 

However, in its pure form, regolith is not suitable for growing plants, because it inhibits aera-

tion and water flow to the roots. Furthermore, regolith contains only small amounts of the re-

quired nutrients for plants and the potentially of toxicity of chromium and nickel in regolith is 

not identified [46]. According to the references [46] and [47], growth media derived from local 

planetary surface material look promising for the usage in greenhouse modules, but further 

research is required to precisely determine their properties and growth conditions. 

Soil-like 

For inert substrates as growth medium commonly perlite, rockwool, polystyrenes and zeolites 

are available. According to reference [46], zeolites are the most promising inert substrate for 

greenhouse modules. Zeolites are crystalline, hydrated aluminosilicates containing loosey-

bound ions of potassium, sodium, calcium and magnesium. In nature about 50 zeolites exist 

and several hundreds were developed by mankind in the last decades. The channels and 

pores zeolites generally have, allow the storage of nutrient cations without changing the zeo-

lites themselves. Consequently, an inert substrate can act as a nutrient reservoir for plants. 

Furthermore, zeolites are sterile to pathogenic microorganisms, which usually cause prob-

lems in soil based greenhouse modules [46]. Zeoponic agriculture is still under development 

and further research is required to determine the benefits and disadvantages of this cultiva-

tion method. First experiments show the potential of zeoponics to overcome soil as growth 

medium. However, zeolites share some disadvantages with soils [31]. The major disad-

vantage is the degradation of the zeolites over time, which results in a demand of new zeo-

lites after some growth periods. The new zeolites have to be delivered from Earth or pro-

duced in the habitat. Both options increase the resupply respectively launch mass of the 

greenhouse module. 

Organic substrates like straw or hay can be used as potential growth medium for extraterres-

trial greenhouses. However, organic substrates can react with the nutrient solution and will 

decay over time, which increases the growth of pathogenic microorganisms inside the sub-

strate. Furthermore, the rotting of organic substrates creates trace gases and substances 

which have to be treated and the decayed substrate has to be replaced with new one fre-

quently. Consequently, organic substrates are not recommended for the use in extraterrestri-

al greenhouse module, because of the unpredictable consequences of occurring bacteria, 

fungi and other microorganisms. 

Soilless 

Hydroponic agriculture is a soilless cultivation method, because the roots of plants are hang 

in an aerated, circulating liquid. The liquid mainly consists of water, enriched with nutrients 

and oxygen. Reference [45] states, that hydroponic systems provide a precise control of nu-

trient composition, concentration, availability and pH. Hydroponic systems assure an appro-

priate of root zone oxygen and allow precise control of the root zone environment. Further-

more, low watering of plants cannot occur in these systems and it is not necessary to clean 

the growth medium between crops, because there is no solid growth medium. The nutrient 

delivery to the plants can be precisely controlled and maintained due to the concentration of 

nutrients in the water flowing around the roots. Another advantage of hydroponic agriculture 

is the possibility to recycle the used liquid nutrient solution, because it consists mainly of wa-

ter. Plants grown in hydroponic cultivation systems have a higher harvest index compared to 

plants grown in soil. The harvest index is the ratio of edible biomass to inedible biomass of 
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harvested plants. The higher harvest index results from a lower root mass of hydroponically 

grown plants. Since nutrients and water are continually available in hydroponic systems, 

plants need only small roots, which have only 3 to 4 % of the total dry weight, while the roots 

of plants cultivated in soil generally have a dry weight of 30 to 40 %. However, the ad-

vantages of hydroponic agriculture bring significant disadvantages with them. Greenhouse 

modules with hydroponic systems have a high system mass compared to other solutions, 

even higher than soil based systems [45]. Furthermore, the large surfaces covered with wa-

ter can result in evaporation of water and consequently, increased humidity [42]. The transpi-

ration rate of plants grown in hydroponic systems is higher than in soil grown plants [48]. 

Nevertheless, hydroponic agriculture is a suitable cultivation method for greenhouse modules 

in planetary habitats. 

In aeroponic agriculture, the plants’ roots are not located in any form of substrate and are not 

flowed around by water. They are hanging loosely in the air. Due to the absence of growth 

medium, the system mass for an aeroponic greenhouse module is low compared to the other 

cultivation methods. The nutrient solution is applied to the roots in the form of a fog created 

by sprayers and injectors. Consequently, the required amount of nutrient solution is lower 

than for other cultivation methods, because the nutrients are directly supplied to the roots 

[45]. Aeroponic cultivation systems provide perfect aeration of the root zone which is im-

portant for an optimal root zone development and plant growth [31]. The nonexistence of a 

growth medium leads to a negligible nutrient buffer capacity. Therefore, the nutrient solution 

has to be applied on the roots in regular intervals to assure an optimal plant growth. Fur-

thermore, the nutrient composition and pH has to be controlled and adjusted frequently. The 

root zone of an aeroponic cultivation system has to be confined to avoid the contact of nutri-

ent solution with the normal atmosphere of the greenhouse module [45]. The confinement of 

the root zone is complicated, because the nutrient solution usually is moderately corrosive 

and will damage any unprotected electronic and structural components. Furthermore, the nu-

trient solution can contain pathogenic microorganisms and the contact between them and 

other plants and especially crew members have to be avoided at any cost. According to ref-

erence [45], aeroponic systems are not recommended for the use in extraterrestrial green-

house modules until the clogging of the sprayers and injectors can be eliminated, because 

the cleaning of sprayers and the replacement of broken injectors is complicated and requires 

too much crew time and spare parts. 

3.4.4.3 Plant Monitoring 

Plant monitoring is essential to maintain the optimum growth conditions of plants and to de-

tect diseases or abnormalities. Several plant monitoring systems and sensors exist to ob-

serve plants during their growth. Environmental sensor systems for temperature, humidity 

and atmosphere composition can be used for indirect measurements of the plants’ welfare. 

Fluorescent imaging systems can be used to observe the photosynthesis of plants. There-

fore, a single leaf of a plant is irradiated with a defined light spectrum. The spectrum of the 

reflected radiation is measured and interpreted to achieve information about the photosyn-

thetic efficiency. The nutrient uptake of plants can be investigated by determining the con-

centration of nutrients in the nutrient solution. The dimensions of plant parts like leaves, 

stems and blooms are measured manually or with the aid of laser imaging. Image sequences 

of plants over a defined timespan can be analyzed by special designed software tools to de-

termine the growth rate. Furthermore, destructive investigation methods are available. These 
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methods destroy a leaf or another plant part and analyze the residuals. However, destructive 

methods are only suitable for research greenhouse modules. For food production green-

houses edible biomass is valuable and should not be destroyed as long as other investiga-

tion methods are feasible. The plant monitoring established during this thesis does not eval-

uate the applied sensor system of the analyzed concepts, but rather evaluates the level of 

plant monitoring. The levels of plant monitoring:  

- no plant monitoring, 

- monitoring per plant species,  

- per growth unit or 

- per plant  

are described in the following paragraphs. 

No plant monitoring is only a theoretical option. Greenhouse modules without any plant moni-

toring are not suitable for space application, because the yield cannot be maximized. The 

welfare of plants inside such greenhouse modules cannot be observed appropriately and 

consequently, diseases and abnormalities can occur and lead to a complete failure. 

Plant monitoring per plant species is the least option which should be established in green-

house modules. Thereby, the development and health of one plant per species is observed. 

The analysis of this plant’s status then represents the average of all plants of this species. 

This monitoring concept is inaccurate compared to the following to monitoring concepts. 

However, plant monitoring per plant species is suitable for short duration missions and test 

greenhouses. 

Plant monitoring per growth unit is the optimal solution for extraterrestrial greenhouse mod-

ules which are usually subdivided into several growth units. A growth unit can contain only 

one plant species or mixtures of species which have the same lighting and nutrient require-

ments. Monitoring systems for growth units measure all conditions inside the unit and ob-

serve the development of a selected plant to estimate the health status of all plants inside 

this unit. Usually, each growth unit has its own sensor system for environmental parameter. 

Investigations of plants’ physiology and welfare are undertaken by a mobile or robotic system 

that is responsible for several growth units and examines each unit frequently. Plant monitor-

ing per growth unit is highly recommended for food production greenhouse modules, be-

cause this concept provides all required data for the maintenance of the module and maximi-

zation of the yield. 

Monitoring of every plant requires more equipment than the other options and therefore, the 

complexity of the monitoring system is high. Furthermore, the monitoring of every plant is not 

necessary for the maintenance of greenhouse modules. In large greenhouse modules the 

monitoring of every plant is impracticable due to the potentially high amount of plants. How-

ever, the monitoring of every plant can be valuable in test greenhouses, were the responses 

of plants to different conditions is investigated. 
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3.4.4.4 Nutrient Supply 

The nutrient supply is part of the Nutrient Delivery System (NDS) as described in Chapter 

2.5. This factor describes the way nutrients are provided to the NDS. In extraterrestrial 

greenhouses the essential minerals for the plant growth has to be offered to the plants via 

the NDS. The NDS itself is responsible for an adequate mixture of different nutrients. There-

fore, for each element of the mixture separate tanks exist. Usually, the nutrient mixture con-

sists of different nitrates and sulfates in combination with water. The nutrients themselves 

can be provided as  

- stored liquids and solids, 

- by partial recycling or  

- by full recycling of inedible biomass. 

In stored nutrient concepts, nutrients are filled in tanks and taken from Earth with the launch 

of the greenhouse module. The mission time of greenhouse modules is restricted to the 

amount of nutrients contained in the tanks. For the extension of growth period, nutrients have 

to be resupplied from Earth regularly. This type of nutrient supply is only suitable for small, 

research or prototype greenhouse modules, because of the higher demand in required re-

supply mass compared to the other types. 

Partial recycling concepts extract nutrients out of inedible biomass of harvested plants and 

therefore, are able to produce some of the required nutrients. Nevertheless, partial recycling 

systems cannot provide all required elements, because some of them are transferred to the 

metabolism of the crew while eating the edible biomass of plants. However, this type of nutri-

ent provision reduces the resupply mass of nutrients and can provide up to 60 % of total in-

organic nutrient weight and 20 % of total organic carbon required by plants [45]. Consequent-

ly, partial recycling concepts are suitable for mid-sized greenhouse modules. 

Full recycling nutrient supply systems gain the nutrients due to the recycling of all inedible 

biomass produced by plants and all feces produced by crewmembers. This type of nutrient 

supply is a nearly closed loop system, but leakages and imbalances in bio-chemical pro-

cesses prevent full closure. Nevertheless, a fully recycling concept requires only a very small 

amount of resupply mass for nutrients compared to the other two types. Two reduce the re-

supply mass to zero the extraction of nutrients out of extraterrestrial soil has to be investigat-

ed. Consequently, a full recycling concept is suitable for greenhouse modules in large and 

permanent extraterrestrial habitats and can reduce the dependency on resupply from Earth. 

3.4.4.5 Plant Mixture 

The plant mixture factor is established to analyze how plants of different species can be 

grown together in greenhouse modules. In greenhouses plants are grown as  

- monoculture or  

- polyculture.  

In greenhouse modules with monoculture, only one plant species is cultivated per growth 

unit. This concept is the commonly used option for extraterrestrial greenhouse module con-

cepts. Plant growth is predictable and every plant species receives their perfect nutrient solu-

tions and optimal environmental conditions, because no compromise with other species has 

to be made. However, monoculture can lead to inefficient growth area use, when the plant 
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allocation is not planned appropriately. The lower complexity compared to polyculture rec-

ommends monoculture for the use in greenhouse modules for space applications. 

Polycultural greenhouse modules cultivate different plant species together on the same 

growth area. When the grown plants are selected carefully they can benefit from the pres-

ence of other plant species. However, polyculture is not suitable for every plant species and 

is only recommended when the selected plant combinations are extensively tested over sev-

eral growth periods and generations and no incompatibilities are observed. Incompatibilities 

between plant species can induce underdevelopment or even the death of plants. Usually, 

most of the problems of polyculture occur in the root zone when the roots of one plant spe-

cies dispense substances which are toxic to the root system of the other plant species. Fur-

thermore, plants in a polyculture should have the same growth periods to assure seeding 

and harvesting at the same time, which is necessary to prevent damaging of plants during 

the processes. Consequently, polyculture can increase the biomass output per growth area, 

but should only be established when the welfare of all plants can be guaranteed. 

3.4.4.6 Planting Sequence 

The planting sequence describes the way plants are settled into greenhouse modules and 

directly affects the harvesting date of plants, assuming known growth durations. The se-

quence has to assure a continuous output of food and oxygen without or with only small fluc-

tuations. Two planting sequences are discussed for the implementation in greenhouse mod-

ules [49]: 

- staggered planting or 

- batch planting. 

Staggered planting sequences, also known as conveyor planting, provide a nearly continu-

ous food and oxygen output, and carbon dioxide intake. This planting sequence is similar to 

the just-in-time-production known from several industrial branches. A predefined amount of 

plants of one species is seeded at the same time and consequently, harvested at the same 

time. Thereby, the number of seeded plants depends on the amount of food needed at the 

harvest date. Usually, staggered planting sequences do not produce surplus in food.  Con-

sequently, the required storage capacity and therefore, the buffers of food for cases of emer-

gency are relatively small. Furthermore, the continuous production cycle causes a constant 

need in crewtime for maintenance [49]. 

In greenhouse modules with batch planting sequences plants are seeded in clusters at the 

same time. Hence, this type of planting sequence can neither provide a continuous food out-

put or gas exchange rate. However, for some plant species, especially all sorts of cereals, 

batch planting is advantageous over staggered planting, due to crewtime savings in the pro-

cessing of large quantities of grains compared to low quantities [49]. 
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3.4.4.7 Cultivated Plants 

In greenhouse modules cultivated plants are generally food plants. The botanic and biology 

have several classification for plants. However, for the analysis of greenhouse modules a 

classification system based on the major nutrient contained in plant species is established. 

According to the human requirements on different nutrients described in Chapter 2.2, this 

thesis proposes the division of food plants into: 

- carbohydrate-supplying,  

- protein-supplying, 

- fat- and oil-supplying, 

- vitamins- and minerals-supplying, 

- and miscellaneous plants.  

The classification system is based on reference [50]. Nevertheless, it has to be considered 

that plants naturally contain more than one nutrient. Consequently, some food plants can be 

classified in multiple categories. The following description of plant categories and plants is 

done very briefly. Due to the complexity of the crop selection for greenhouse modules, this 

topic has to be investigated in detail separately. For the analysis this thesis proposes the 

documentation of the cultivated plants and the allocated growth area per greenhouse module 

concept. 

Carbohydrate-supplying plants contain high amounts of starch, sugar and other carbohy-

drates. Carbohydrates are generated by the plants during the photosynthesis and afterwards 

delivered to the growing parts and to the storage organs. They provide a high amount of en-

ergy when consumed and therefore plants that produce them are essential to feed a crew. 

Especially the carbohydrate-supplying plants with a high content of starch are important for 

the provision of energy to the crew. Thereby, cereals and potatoes are the commonly pro-

posed plants [50]. Table 3-15 shows the amount of ingredients in different carbohydrate-

supplying plants. The NASA recommends the cultivation of rice, wheat, white potato and 

sweet potato (batate) for their greenhouse module concepts [23]. 

Table 3-15: Ingredients of some carbohydrate-supplying plants per 100 g edible biomass [50] 

 Wheat Rye Rice Corn 
White  

Potato 

Sweet 

Potato 

Water [g] 13.2 13.7 13.1 12.5 77.8 69.2 

Protein [g] 11.7 8.8 7.2 8.5 2.0 1.6 

Fat [g] 2.0 1.7 2.2 3.8 0.1 0.6 

Carbohydrate [g] 60.9 60.7 74.0 64.0 14.8 24.0 

    thereof Starch [g] 58.1 52.4 72.7 61.4 14.1 19.5 

Dietary Fiber [g] 10.3 13.1 2.2 9.2 2.0 3.1 

 

Proteins are composed of amino acids. Plants are able to synthesize all required amino ac-

ids, while humans are incapable. Consequently, humans have to gather amino acids through 

their food. Protein-supplying plants contain high amounts of proteins, which are broke down 

to amino acids during the digestion. Afterwards the human body utilizes the gained amino 

acids to create the proteins required for the metabolism. The seeds of legumes have the 
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highest content of proteins of all plants. Legumes are all sorts of beans, peas and lentils [50]. 

Table 3-16 shows the amount of water, protein, fat, carbohydrates and dietary fiber of some 

protein-supplying plants. Especially, soybeans are essential for the nourishment of humans 

with an extraterrestrial greenhouse module, because of their very high protein content com-

pared to other protein-supplying plants combined with a high content of fat [23]. 

Table 3-16: Ingredients of some protein-supplying plants per 100 g edible biomass [50] 

 
Chick Pea 

Garden 

Pea 
Lentil Soybean 

Green 

Bean 

Water [g] 11.0 11.0 11.8 8.5 11.6 

Protein [g] 19.8 22.9 23.5 33.7 21.3 

Fat [g] 3.4 1.4 1.4 18.1 1.6 

Carbohydrate [g] 41.2 41.2 52.0 6.3 40.1 

Dietary Fiber [g] 21.4 16.6 10.6 22.0 17.0 

 

Fats and oils are the ingredients of plants with the highest energy density. Hence, fat- and 

oil-supplying plants are indispensable for the nourishment of humans with a greenhouse 

module. The fat and oil content of plants is naturally low. However, some plants develop 

seeds with high contents of fats and oils. These include soybean, rape, sunflower, peanut, 

several sorts of palms and olive trees [50]. Palms and sunflowers are not recommended for 

the cultivation due to their high growth height. As described in the paragraph about the pro-

tein-supplying plants, soybeans are strongly recommended for the cultivation in a green-

house module. The cultivation of peanut and rape is also suitable [23]. 

Vitamins- and minerals supplying plants can be divided into vegetable- and salad-supplying, 

and fruit-supplying plants. Cooked plant parts served as side dish to energy providing food 

are commonly known as vegetables. While plant parts served uncooked are named salads. 

The relevance of vegetables and salads for the nutrition is their high content of vitamins, 

minerals and secondary ingredients which increase the taste of the food and benefits the 

health of the crew [50]. The vegetable- and salad-supplying plants shown in Table 3-17 are 

commonly recommended for the cultivation in greenhouse modules [23]. Fruit is commonly 

known as plant parts which have a sweet or sour taste and which are consumed uncooked. 

All fruit sorts are rich in vitamins and minerals. Consequently, they are of great importance 

for the daily nutrition [50]. Unfortunately, most fruits grow on trees or bushes, which make 

them less suitable for the cultivation in greenhouse modules. However, for some fruit, sorts 

with a low growth height and high food output exist, so called dwarf trees. These dwarf trees 

are a possibility to cultivate fruit in greenhouse modules. Strawberry plants are an exception. 

Their low growth height predestines them for the cultivation in greenhouse modules and can 

be served as incentive food to the crew [31]. 
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Table 3-17: Ingredients of some vitamins- and minerals-supplying plants per 100 g edible biomass [50] 

 Tomato 
Cucu-

mber 
Pepper 

Cab-

bage 
Lettuce 

Spin-

ach 
Carrot Radish 

Straw-

berry 

Water [g] 94.20 96.80 91.00 90.50 95.00 91.60 88.20 93.50 89.5 

Protein [g] 0.95 0.60 1.17 1.37 1.25 2.52 0.98 1.05 0.82 

Fat [g] 0.21 0.20 0.33 0.20 0.22 0.30 0.20 0.15 0.40 

Carbohydrate [g] 2.60 1.81 2.91 4.16 1.06 0.55 4.80 1.89 5.51 

Dietary Fiber [g] 0.95 0.54 3.59 2.96 1.44 2.58 3.63 2.50 1.63 

Minerals [g] 0.61 0.60 0.57 0.59 0.72 1.51 0.86 0.75 0.50 

β-Carotene [mg] 0.15 0.40 2.50 0.07 1.44 4.70 7.80 0.01 0.02 

Vitamin B1 [mg] 0.06 0.02 0.05 0.05 0.06 0.11 0.07 0.03 0.03 

Vitamin B2 [mg] 0.04 0.03 0.04 0.04 0.08 0.23 0.05 0.03 0.05 

Niacin [mg] 0.53 0.20 0.33 0.32 0.32 0.62 0.58 0.40 0.51 

Vitamin C [mg] 24.50 8.00 180.00 45.20 13.00 52.00 7.00 27.00 64.0 

 

Secondary food plants are plants which are not necessary for the nutrition of the crew, but 

can provide valuable substances or improve the psychological behavior. Herbs are an exam-

ple for this category. They contain valuable essential oils and improve the taste of the usually 

monotonously tasting space food. Medicine producing, coffee or tea plants can also be culti-

vated in greenhouse modules. However, the production of food is the primary purpose of a 

greenhouse module. Nevertheless, the crew of permanent planetary habitats will have to cul-

tivate secondary food plants as well. 

Technically used plants produce substances or materials for other purposes than nutrition. 

These plants can provide fibers, wood, tanning agent, balsam, resin, wax, dyes or other val-

uable substances. The cultivation of technically used plants is only suitable in greenhouses 

of permanent habitats with a large crew to make the planetary outpost independent from re-

supply from Earth. 

3.4.4.8 Biomass Productivity 

The biomass productivity of greenhouse modules is a valuable factor for the evaluation of the 

efficiency. Thereby, biomass is the sum of inedible and edible dry mass produced by plants. 

The productivity greatly depends on the environmental conditions and on the cultivated plant 

species. This factor represents the efficient use of growth area, growth volume and electrical 

energy for the production of biomass due to the growing of plants. Consequently, the pro-

posed units for these parameters are gram per square meter per day, g/(m2*d) [49], gram per 

cubic meter per day, g/(m3*d) [49], and gram per kilowatt hour per day, g/(kWh*d). 

3.4.4.9 Specific Growth Area 

The growth area is the area inside greenhouse modules used for plant cultivation. The size 

of the growth area directly affects the number of plants that can be grown and consequently, 

the food production. Furthermore, the growth area has to be large enough to provide enough 
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edible biomass for the crew, but as small as possible to reduce the mass and size of the 

greenhouse module [45]. The overall growth area of greenhouse modules is measured in 

square meters, m2. However, the ratio of area per crewmember is valuable to compare the 

efficiency of different concepts. The ratio is reported in square meters per crewmember, 

m2/CM. 

3.4.4.10 Growth Height 

The growth height restricts the plant species which can be grown on the related growth area. 

For overhead lighting with high lamp temperatures it has to be taken into account that no 

plant part should touch the lamps. Consequently, the maximum growth height usually is 

smaller than the available distance between growth area and lamps. For the analysis of 

greenhouse modules the growth height and the related growth area has to be investigated. 

The proposed units are meter, m, respectively square meters, m2. 

3.4.5 Interface Factors 

3.4.5.1 Definition 

Interface Factors are used to analyze and evaluate the interactions between the greenhouse 

module and the habitat, respectively the crew. The three qualitative interface factors describe 

the utilization of the greenhouse module for water purification, air revitalization and the re-

supply dependency of the habitat. The quantitative interface factors concern the food provi-

sion, the power and cooling demands of the greenhouse module, as well as the input and 

output of water, the required input of carbon dioxide and the oxygen output. Furthermore, the 

crew size the greenhouse can provide food for, the required work load to maintain the green-

house module functions and the benefits to the psychological health care of the crew are 

quantitative interface factors. Table 3-18 shows a list of all mentioned interface factors split 

into qualitative and quantitative factors. 

Table 3-18: List of Interface Factors 

Qualitative Factors Quantitative Factors 

Water Purification Food Provision 

Air Revitalization Power Demand 

Resupply Dependency Cooling Demand 

 Water In-/Output 

 Carbon Dioxide Input and Oxygen 

Output 

 Crew Size and Crew Work Load 

 Psychological Health Care 

3.4.5.2 Water Purification 

The main purpose of greenhouses in spacecraft or planetary bases is food production, but 

besides that, it can also be used for water purification. Plants absorb water through their 

roots and metabolize it during the photosynthesis. However, some of the water is evapo-

transpired from the leaves to the air. Consequently, the humidity inside the greenhouses in-
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creases during the plants photosynthesis periods. The water vapor condenses on cold plates 

into liquid water. According to reference [45], the collected water should be potable water in 

many cases, but further purification with physico-chemical or biological filtration systems 

should be applied to assure that the water is free of any contaminants. Furthermore, refer-

ence [45] estimates the required cultivation area per person for full water purification from 3 

to 5 m2. Therefore, three possible options for the usage of greenhouse modules for water pu-

rification exist: 

- none, 

- partial or 

- full 

water purification. 

The option none is used for greenhouses that are not used for water purification. 

Greenhouses can also be used for partial water purification. In this case there are other sys-

tems inside the habitat which purify the water with physico-chemical or biological processes 

in addition to the greenhouse. Furthermore, some of the water can be taken from resupply or 

storage, while the greenhouse filters the residual amount of water. 

The option full water purification means, that the whole potable and washing water for the 

crew is purified by plants grown inside the greenhouse and that there is no physico-chemical 

or other biological filtration systems for the water. 

3.4.5.3 Air Revitalization 

During the photosynthesis plants remove carbon dioxide from the air and exhale oxygen, 

while humans consume oxygen and exhale carbon dioxide. Consequently, a greenhouse can 

be used to revitalize the air for a crewed habitat. The metabolism of plants and therefore, the 

carbon dioxide intake and oxygen outtake depend on the plant species and several environ-

mental factors, as described in Chapter 3.4.3.4. However, reference [45] estimates the re-

quired cultivation area from 6 to 10 m2 per person for full oxygen recovery. There are three 

possible options for the usage of greenhouse modules for carbon dioxide removal and oxy-

gen recovery: 

- none, 

- partial or 

- full 

air revitalization. 

The option none is used for greenhouses that are not used for air revitalization. 

Greenhouse modules can also be used for partial air revitalization. In this case there are oth-

er systems inside the habitat which clean the air with physico-chemical or biological process-

es in addition to the greenhouse. Furthermore, some of the air can be taken from resupply or 

storage, while the greenhouse revitalizes the residual amount of air. 

The option full air revitalization means, that the greenhouse absorbs all of the carbon dioxide 

produced by the crew and provides enough oxygen to maintain the welfare of all humans in-

side the habitat. Furthermore, there are no physico-chemical systems for the air revitaliza-

tion. 
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3.4.5.4 Resupply Dependency 

The plant diversity of greenhouse modules describes the type of plants which are cultivated. 

The plant types are classified on their ingredients and are similar to the plant categorization 

in Chapter 3.4.4.7. Depending on the purpose of the greenhouse module the plant setting 

can be composed of plants: 

- for fresh food, 

- for energy food or 

- for a quasi-full nutrition of the crew. 

These three categories are the outcome of a trade study made for the Lunar FARM concept 

[31], further described in Chapter 4.1.3. 

Greenhouse modules with a fresh food plant setup cultivate primarily vegetables with a high 

content of water. These vegetables lose quality and palatability after dehydration, stabiliza-

tion and packaging. Consequently, the delivery of them to planetary outposts is not suitable. 

In a fresh food scenario crops like wheat or beans are not grown although they are very nu-

trient and efficient. They can easily supplied from Earth, because of their low lose in quality 

after dehydration and packaging. However, the high demand of resupply with energy food is 

the disadvantage of the fresh food scenario and is therefore, only suitable for short mission 

durations or small crews. The cultivation of fresh food is advantageous over nutrition solely 

from storage and can be used to cover 26 % of the daily energy intake of the crew. The ben-

efits to the health of the crew are not negligible. Furthermore, the required growth area for 

the provision of fresh food is assumed to be 23 m2 per crewmember and the required 

crewtime for the work inside the greenhouse module is relatively low compared to the other 

two scenarios. Consequently, this scenario should be the least option for a crewed mission to 

other planetary bodies [31].  

The energy food cultivation scenario can be used for greenhouse modules to produce up to 

67 % of the daily energy intake required by the crewmembers. To avoid an imbalance in the 

nutrition of the crew the other 33 % of the daily energy intake has to be provided by stored or 

supplied food from Earth. In an energy food greenhouse module only plant species with high 

energy density and small required growth area are selected for the cultivation. According to 

reference [31], eight crops which meet these requirements are beans, carrot, green onion, 

pepper, white potato, strawberry, tomato and wheat. The required growth area is estimated 

to be around 27 m2 per crewmember. The work load for an energy food greenhouse is higher 

than for a fresh food one, but significantly lower than for a quasi-full nutrition scenario. The 

energy food option is suitable for medium duration missions [31].  

Quasi-full nutrition greenhouses can provide up to 98 % of the daily required energy intake of 

the crew. However, some essential vitamins, minerals and proteins have to be provided due 

to resupply from Earth. The purpose of this scenario is the achievement of nearly independ-

ency from Earth’s resupply. The pure vegetarian diet and the limitation of some vitamins and 

minerals in plants make resupply from Earth indispensable. However, the resupply mass re-

quired is very low compared to the other two scenarios. The required growth area for a qua-

si-full nutrition is assumed to be around 77 m2 per crewmember. Furthermore, the number of 

different plant species has to be considered to assure a diversified food composition. Accord-

ing to reference [31], the required crewtime for a quasi-full nutrition greenhouse module is 
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high and can exceed the available work power of the crew. Therefore, a high level of auto-

mation is necessary for this scenario. 

3.4.5.5 Food Provision 

The food provision of greenhouse modules is the most important evaluation factors and rep-

resents the amount of edible biomass produced by the plants. The food output is affected by 

several environmental and agricultural parameters and additionally depends on the cultivated 

plant species. The proposed units for this factor are kilocalories per crewmember per day, 

kcal/(CM*d), and gram of dry mass per crewmember per day, g/(CM*d). 

3.4.5.6 Power Demand 

The intensive lighting required for growing plants causes high power demands for green-

house modules. The required power is primarily dependent on the duration of the lighting pe-

riods and on the chosen lamp types. Usually, the required electrical power is not generated 

by the greenhouse modules, but rather generated in special facilities which provide the pow-

er for the whole habitat. Power demands are shown as total power consumption of the mod-

ule in kilowatts, kW, and as power consumption per growth area in kilowatts per square me-

ters, kW/m2. The former value is required for the design of a suitable energy generation facili-

ty, while the latter value is beneficial for the evaluation of different greenhouse module con-

cepts. 

3.4.5.7 Cooling Demand 

Whether electrical or natural lighting is used as radiation source for plants, the cooling de-

mand is high during the lighting periods. When natural lighting is used, the cooling demand is 

affected by the incoming infrared radiation of the sun. In case of electrical lighting, the cool-

ing demand depends on the power demand of the lamps. Nearly all of the electrical energy 

required for the lamps is converted to heat. Therefore, it can be assumed, that the cooling 

demand is equal to the power demand of the lamps used as radiation source. The proposed 

units for the comparison of different greenhouse concepts with respect to the cooling de-

mand are kilowatts, kW, and kilowatts per square meters, kW/m2. 

3.4.5.8 Water In-/Output 

The water in- and output streams of greenhouses depend on the amount of plants, the plant 

species and several environmental conditions. When transpiration water from plants is re-

used as potable or wash water for the crew, or for the watering of the plants, the inwards and 

outwards water streams should be nearly equal to each other. The proposed unit for analysis 

and evaluation of water in- and output of different greenhouse concepts is kilograms per 

square meter per day, kg/(m2*d). The average water streams of greenhouses are estimated 

from 5 to 10 kg/(m2*d) in reference [45]. 

3.4.5.9 Carbon Dioxide Input and Oxygen Output 

The carbon dioxide input and the oxygen output of greenhouse modules depend on each 

other and on all parameters that influence the photosynthesis of plants. The unit for analyz-

ing and evaluating the streams of CO2 and O2 is kilograms per square meter per day, 

kg/(m2*d). The estimated values for the carbon dioxide and oxygen streams are wide spread, 

due to the variety of factors that affect the metabolism of plants. However, reference [45] 
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states the range of carbon dioxide input from 0.04 to 0.30 kg/(m2*d) and the range of oxygen 

output from 0.03 to 0.22 kg/(m2*d). 

3.4.5.10 Crew Size and Crew Work Load 

The factor crew size stands for the amount of humans that one greenhouse module can sup-

port with food, water and air. The supportable crew is directly proportional to the grow area 

and efficiency of the greenhouse. The crew size value is required for the normalization of 

other parameters and is reported as a number. 

The crew work load is the time that the crew needs to fulfill a desired task. Usually, work time 

is restricted during space missions. The required time per task is a fix value. Consequently, 

the work load can only be lowered by reducing the number of tasks or due to the automation 

of processes. Since the number of tasks in greenhouses cannot be lowered without a de-

crease in yield, the work load has to be lowered through automation. Potential options for the 

automation of greenhouse modules are discussed in Chapter 3.4.2.7. Table 3-19 shows crew 

time values for different greenhouse and domestic activities achieved during the BIOS-3 ex-

periments. Hence, the unit for the time requirement of greenhouse activities is man-hours per 

square meter per day, man-hours/(m2*d).   

Table 3-19: Crew time requirements for different activities (adapted from BIOS-3) [45] 

Activity Time Requirement 

Greenhouse Activities [man-hours/(m
2
*d)] 

Planting 0.0199 

Harvesting 0.0199 

Observation 0.0158 

Preventative Maintenance 0.0475 

Nutrient Solution Maintenance 0.0300 

Wheat Grinding 0.135 man-hours/(d*100 g) 

Domestic Activities [man-hours/(CM*d)] 

Food Preparation, Eating, Clean-up 1.70 

Water Preparation 0.14 

Personal Hygiene 0.39 

Living Compartment Hygiene 0.27 

3.4.5.11 Psychological Health Care 

The crew’s psychological health care is an important factor for the success of long-term 

space missions and permanent planetary outposts. The permanent isolation from Earth, the 

small volume, the potential of system and mission failures, and the risk to die are some of the 

broad spectrum of factors that influences the psychological health of the crew. The crew of 

spacecraft are tested and trained for the stresses of space missions, but nevertheless they 

are not immune to psychological sicknesses. Studies with small greenhouses onboard the 

MIR station and the ISS indicate that the crew’s sentiment benefits from handling, growing 

and taking care of plants [12]. Besides the crew, plants are the only living creatures onboard 
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a spacecraft. According to reference [51], Space Shuttle astronaut Mike Foale loved the ex-

periments with greenhouses, because they reduced his irritability. Furthermore, reference 

[12] cites Salyut cosmonaut Valentin Lebedev, that plants were like pets for him during his 

missions. 

Consequently, a greenhouse has to be designed to offer benefits for the psyche of the crew 

in addition to the provision of food, water and air. The interaction with the plants in a techni-

cally dominated environment passively offers benefits to the psyche of the crew [43]. Fur-

thermore, special plants can be grown. Spices have a strong effect on the well-being of the 

crew, because they can make the commonly monotone food tastier. In addition, the provision 

of incentive food that is not required for the nutrition of the crew can improve the psyche of 

the crew [51]. When investigated greenhouse module concepts consider the psyche of the 

crew. The implemented options have to be investigated. 

3.5 Summary 

Chapter 3 starts with the description of the analysis and evaluation strategy proposed in this 

thesis in the first subchapter. For the developed methodology an analysis and one or more 

evaluation methods are required. 

The second subchapter describes the selected analysis method, the Morphological Analysis 

(MA). The MA is suitable for the analysis of greenhouse modules, because it allows a sys-

tematic analysis of current and future options for the defined subsystems. Furthermore, the 

MA provides a multitude of combinations and permutations for the analysis goal and there-

fore, a framework for the following evaluation. The result of a MA is a Morphological Box 

which is hierarchically structured and provides an overview over all measurable factors relat-

ed to the goal of the analysis. 

The third subchapter introduces two suitable evaluation methods for greenhouse modules. 

The first one, the Equivalent System Mass (ESM), is developed for the evaluation of ECLSS 

and is advantageous for evaluation with respect to transportation costs. However, the ESM 

method cannot be used for the evaluation of qualitative and performance criteria. The second 

evaluation method, the Analytical Hierarchy Process (AHP), is a more general evaluation 

method. The AHP requires defined evaluation criteria, whereby qualitative and quantitative 

criteria can be established. The criteria are arranged in a hierarchy. For the reduction of bias, 

the weighting of the criteria can be executed with a group of experts. Consequently, the AHP 

is selected for the evaluation of greenhouse module concepts conducted in Chapter 4.  

The fourth subchapter establishes analysis and evaluation factors for greenhouse modules 

and a detailed description for each factor is given. The factors are grouped to four major cat-

egories: fundamental factors, environmental factors, agricultural factors and interface factors. 

The factors can be divided in qualitative and quantitative factors. In total 46 measurable fac-

tors are identified during this thesis, 13 fundamental, 11 environmental, 10 agricultural and 

12 interface factors. Table 3-20 shows a complete summary of all established factors and 

their possible options, respectively units. Thereby, the factors are arranged in a Morphologi-

cal Box.  



 

 

Table 3-20: Summary of all established factors, arranged to a Morphological Box 

 Fundamental Factors Environmental Factors Agricultural Factors Interface Factors 

 Name Options/Unit Name Options/Unit Name Options/Unit Name Options/Unit 

Q
u

a
li

ta
ti

v
e

 F
a

c
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Module Shape 

Prismatic,  
Spherical,  
Hemispherical,  
Irregular 

Lighting Type 
Electrical,  
Hybrid,  
Natural 

Growth Medium 
Soil, 
Soil-like, 
Soilless 

Water Purification No, Partial, Full 

Arrangement of 
Growth Area 

Shelves,  
Conveyor,  
Rotating Cylinder,  
Plain 

Lighting Strategy 
Overhead,  
Sidewise,  
Intracanopy 

Nutrient Supply 
Storage, 
Partial Recycling, 
Full Recycling 

Air Revitalization No, Partial, Full 

Distribution  
of Aisles 

Center Aisle Two Shelves, 
Two Aisles Center Shelf,  
Two Aisles Three Shelves, 
Moveable Shelves 

Atmospheric  
Composition 

Local Planetary, 
Earth-like,  
Enriched with CO2 

Plant Monitoring 

None,  
Per plant species, 
Per growth unit,  
Every plant 

Resupply  
Dependency 

Fresh Food,  
Energy Food,  
Quasi-Full Nutrition 

Module Structure 

Rigid,  
Semideployable,  
Deployable,  
In-Situ 

Trace Gas  
Treatment 

None,  
Monitoring,  
Monitoring and  
Separation 

Plant Mixture 
Monoculture, 
Polyculture 

  

Adaptability of  
Internal  
Configuration 

Inflexible,  
Semi-flexible,  
Flexible 

Temperature  
Control 

Whole greenhouse, 
Per plant  species, 
Per growth unit 

Planting  
Sequence 

Staggered,   
Combined, 
Batch 

  

Level of Automation None, Partial, Full       
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u
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n

ti
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a
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Specific Module 
Mass 

[kg/m
2
] 

Photosynthetic  
Period 

[μmol*h/(m
2
*s)] for 

waveband [nm] 
Biomass  
Productivity 

[g/(m
2
*d)],  

[g/(m
3
*d)], 

[g/(kWh*d)] 
Food Provision 

[kcal/(CM*d)], 
[g/(CM*d)] 

Total Module Mass [kg] Humidity [g/cm
3
], [%] Cultivated Plants Species: [m

2
] Power Demand [kW], [kW/m

2
] 

Dimensions [m] Air Temperature [°C] Total Growth Area [m
2
] Cooling Demand [kW], [kW/m

2
] 

Total Volume [m
3
] 

Atmospheric  
Pressure 

[kPa] 
Specific  
Growth Area 

[m
2
/CM] Water In-/Output [kg/(m

2
*d)] 

Pressurized  
Volume 

[m
3
] CO2 Partial Pressure [kPa] Growth Height [m], [m/m

2
] CO2 Intake [kg/(m

2
*d)] 

Specific Cultivation 
Volume 

[m
3
/m

3
] O2 Partial Pressure [kPa]   O2 Output [kg/(m

2
*d)] 

Complexity      Crew Size Number 

      Crew Work Load [h/(m
2
*d)] 

      
Psychological 
Health Care 

Procedure 
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4 Demonstration of the Developed Evaluation Strategy 

In this chapter a survey of existing greenhouse concepts is accomplished in the first sub-

chapter. Three of these concepts are selected for further investigation. The second subchap-

ter describes the goal of the demonstrated evaluation. The third subchapter establishes the 

evaluation criteria and the local and global weighting values for each criterion. In the fourth 

subchapter the weighted evaluation criteria are used in an AHP to evaluate the selected con-

cepts. 

4.1 Description and Analysis of Selected Concepts and Testbeds 

4.1.1 Survey on Existing Greenhouse Concepts 

One of the common definitions of a greenhouse can be found in reference [52]: “A green-

house has one purpose: to provide and maintain the environment that will result in optimum 

crop production or maximum profit. This includes an environment for work efficiency as well 

as for crop growth.” This statement defines the purpose of terrestrial and space greenhouses 

correctly. However, plant cultivation systems for space applications can differ from the above 

mentioned definition. Systems for plant cultivation in space are broadly divided into plant 

growth chambers (PGC) and greenhouse modules (GHM). 

Plant Growth Chambers are usually systems with a small cultivation area of less than one 

square meter. The main purpose of today’s PGCs is the research of plant development and 

growing in a controlled environment under micro gravity. Other purposes of these chambers 

is the testing and verification of subsystems in space, the interaction between crew members 

and plants, and the psychological effect of plants in a sterile, highly technical environment. 

The plants cultivated in PGCs can be edible and inedible, depending on the purpose. How-

ever, the amount of produced edible biomass is generally low and can only be used as an 

addition to the normal food. Table 4-1 shows a list of some plant growth chambers and their 

key parameters. 

Greenhouses are large systems or even independent modules of space stations or planetary 

habitats. The purpose of a GHM is the provision of edible biomass to the crew to reduce the 

required resupply mass of food. Depending on the mission requirements and the system de-

sign, GHMs can produce different sets of crops ranging from fresh vegetables for short dura-

tion missions over energy food for medium duration missions up to quasi-full nutrition for long 

duration missions or permanent planetary habitats. Furthermore, GHMs can be used as part 

of the ECLSS. The plants of a GHM can purify water, revitalize air and recycle some of the 

bio waste of the crew. As shown in Chapter 2.3 BLSS and therefore, GHMs are required for 

long duration and permanent extraterrestrial human settlements.  

The variety of GHM concepts and test facilities is high. They can to be divided depending on 

their purpose and location into the four groups: 

- Terrestrial plant cultivation test facilities, 

- Terrestrial human isolation test facilities, 

- Arctic and Antarctic plant cultivation test facilities, 

- Greenhouse module concepts for space application. 

Terrestrial plant cultivation test facilities are designed to research plant cultivation in a con-

trolled environment on Earth. Research in plant growing and subsystem development are the 
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major purposes of these facilities. Table 4-2 shows a selection of terrestrial plant cultivation 

test facilities and their properties. 

Terrestrial human isolation test facilities are built to test ECLSS, the influence of isolation on 

the human psyche, and the interaction between humans in a highly technical environment. 

Some of these facilities include greenhouses for the provision of food to the test subjects. 

Usually, the design of these greenhouses is similar to that of greenhouse modules concepts 

for space application. Table 4-3 provides information about four human isolation test facilities 

with an integrated greenhouse. 

Arctic and Antarctic plant cultivation test facilities are usually part of research outposts. They 

are used to provide fresh food during the winter periods, when resupply with aircraft is mostly 

impossible. For the maximization of yield some of these facilities are designed similar to 

space greenhouse modules. Another purpose of these facilities is the testing of remote con-

trolling systems. Table 4-4 shows two famous Arctic respectively Antarctic greenhouses and 

their properties. 

A large number of greenhouse module concepts for space application are published and 

nearly every concept of an extraterrestrial habitat includes a greenhouse module. However, 

most of these concepts are greenhouse designs without any scientific background and some 

of them are not even feasible due to structural or agricultural deficits. Only a small number of 

the published greenhouse module concepts are undergone a detailed scientific investigation 

with comprehensible assumptions and estimations. Table 4-5 shows two of these concepts 

including some of their properties. 

For the following demonstration of the developed analysis and evaluation methodology, only 

GHMs are taken into account. Out of the list of terrestrial testbeds and conceptual green-

house module designs, three concepts are selected for the demonstration. The Lunar 

Greenhouse (LGH), the Lunar Food and Revitalization Module (Lunar FARM) and the Bio-

mass Production Chamber (BPC) of the Bioregenerative Planetary Life Support Systems 

Test Complex (BIO-Plex) are the candidates for the demonstration of the proposed analysis 

and evaluation methodology. A detailed description and analysis of each selected concept is 

provided in the following three subchapters. The selected concepts respectively test facilities 

are part of different groups of GHMs. However, all of them share enough similarities for an 

evaluation using the proposed methodology. 



 

 

Table 4-1: List of flown plant growth chambers [53] 

 
Plant Growth 

Unit (PGU) 
Astroculture 

(ASC) 
Plant Growth 
Facility (PGF) 

MIR Plant 
Growth Facility 

(SVET) 

Plant Generic 
BioProcessing 

Apparatus 
(PGBA) 

Biomass    
Production 

System (BPS) 

Commercial 
Plant Biotech-
nology Facility 

(CPBF) 

Developer Lockheed WCSAR A.D. Little 
Bulgaria, Soviet 

Union 
BioServe Space 

Technologies 
Orbitec WCSAR 

First Flight 1982 1992 1997 1990 1996 > 1999 > 2000 

Chamber Dimensions [m] 
0.18 x 0.04 x 

0.23 
0.10 x 0.10 x 

0.18 
0.18 x 0.04 x 

0.23 
0.15 x 0.51 x 

0.31 
0.25 x 0.31 x 

0.31 
0.15 x 0.18 x 

0.15 
0.48 x 0.46 x 

0.46 

Total Growing Area [m
2
] 0.050 0.021 0.055 0.075 0.075 0.027 0.2 

Plant Chambers 6 1 – 2 6 1 1 1, 2 or 4 1 - 4 

Temperature Control None TEC TEC None TEC TEC TEC 

Humidity Control None (Sealed) TEC Passive None TEC / dew point TEC / dew point TEC / dew point 

Light Intensity (PPF) 
[μmol/(m

2
*s)] 

60 300 220 240 > 350 300 500 

Light Source Fluorescent LED 
(red + blue) 

Comp.          
Fluorescent 

Fluorescent 
Comp.          

Fluorescent 
Fluorescent LED 

Chamber Closure Closed Closed Open Open Closed Closed Closed 

Active CO2 Control Some Yes Some No Yes Yes Yes 

CO2 Range [ppm] ambient 300-2000 ambient 5000 ppm 250 – 3000 300 – 2000 300 - 2000 

Trace Gas Control None Yes None None Yes Yes Yes 

Root Matrix 
Saturated foam, 

or agar 
Porous rubes 

with matrix 
Saturated foam, 

or agar 
Zeolite /        
Balkanite 

Agar or soil   
aggregate with 
wicking matrix 

Porous tubes 
with matrix 

Porous tubes 
with matrix 

Nutrient Delivery System None 
Closed circula-

tion loop 
None 

MIR Space   
Station water 

supply 

Humidity      
condensate   

recycling 
Closed loop Closed loop 

6
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Table 4-2: List of terrestrial plant cultivation test facilities 

Terrestrial Test Facility Organization Research Focus Greenhouse Parameter References 

CLESS Experimental Facility 
(Since 2004) 

 

Department of ECLSS, 
China Astronaut       
Research & Training 
Center 
 
(Beijing, China) 

Plant cultivation in closed 
loop & plant-human integrat-
ed experiments. 

Total Cultivation Area 8.4 m² 

[54] 

Temperature 15 – 40 °C 

Relative Humidity 65 – 85 % 

CO2 Concentration 350 – 10000 ppm 

Total Pressure Earth-Like 

Lighting LED (95 % red, 5 % blue) 

PPF 0 – 500 µmol/(m
2
*s) 

Growth Medium Hydroponic 

Biomass Production Chamber 
(1988 – 1996)

 

NASA Kennedy    
Space Center 
 
(Florida, USA) 

Provides an unique oppor-
tunity to learn about the 
mass and energy flow 
though the CELSS along 
with the environmental needs 
for plant growth in a con-
cealed environment. 

Total Cultivation Area 20 m² 

[55], [56], 
[57] 

Temperature 23 °C 

Relative Humidity 70 – 80 % 

CO2 Concentration 1000 – 1200 ppm 

Total Pressure Earth-Like 

Lighting 96x 400 W HID Lamps 

PPF 200 – 700 µmol/(m
2
*s) 

Growth Medium Hydroponic 

Lunar Greenhouse                 
(Since 2005)

 

Controlled Environment 
Agriculture Center,  
University of Arizona & 
Sadler Machine    
Company 
 
(Tucson, Arizona, 
USA) 

Demonstration of maximum 
biomass generation and food 
production within a poly-
culture deployable cropping 
system. Furthermore, com-
plete water recycling and 
revitalization of interior at-
mosphere. 

Total Cultivation Area 8.8 m² 

[58], [59] 

Temperature 21.1 °C 

Relative Humidity 53.5 % 

CO2 Concentration 1000 ppm 

Total Pressure Earth-Like 

Lighting 6x 1000 W HPS 

PPF 300 – 400 µmol/(m
2
*s) 

Growth Medium Hydroponic 
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Table 4-3: List of terrestrial human isolation test facilities including a greenhouse 

Human Isolation Test Facility Organization Research Focus Greenhouse Parameter References 

Closed Ecology Experiment    
Facilities                                   

(Since 1994) 

 

Institute for               
Environmental         
Sciences 
 
(Rokkasho, Japan) 

Designed to study the effects 
of material circulation mech-
anisms on the environmental 
factors prevailing within a 
closed ecosystem whose 
results can be used critically 
in designing systems for Lu-
nar and Martian bases. 

Total Cultivation Area 150 m² 

[60], [61], 
[62], [63], 
[64], [65] 

Temperature 18 – 30 °C 

Relative Humidity 50 – 90 % 

CO2 Concentration 700 – 5000 ppm 

Total Pressure Earth-Like 

Lighting 108x 940 W HPS; Sun 

PPF up to 1900 µmol/(m
2
*s) 

Growth Medium Hydroponic 

BIOS-3                                     
(1972 – 1984)  

 

Russian Academy of 
Sciences 
 
(Kraznoyarsk, Russia) 

The purpose of Bios-3 was 
the development of life sup-
port systems capable of sup-
porting a crew of two to three 
persons with clean water, 
fresh air and a sufficient 
amount of food. 

Total Cultivation Area 63 m² 

[66], [67], 
[68], [69] 

Temperature 22 – 28 °C 

Relative Humidity 70 – 80 % 

CO2 Concentration 2000 ppm 

Total Pressure Earth-Like 

Lighting 20x 5 kW Xenon Lamps 

PPF 900 – 1000 µmol/(m
2
*s) 

Growth Medium Hydroponic, Inert Subs. 

Bioregenerative Planetary Life 
Support Systems Test Complex 

(1990s - 2001) 

 

NASA Johnson Space 
Center 
 
(Houston, Texas, 
USA) 

Designed as test facility for 
human isolation experiments 
and as a testbed for life sup-
port systems. Food produc-
tion, water purification and 
air revitalization and other 
key elements of an ECLSS 
can be evaluated during long 
duration experiments. 

Total Cultivation Area 82.4 m² 

[70], [32], [71] 

Temperature 15 – 35 °C 

Relative Humidity 65 – 85 % 

CO2 Concentration 300 – 10000 ppm 

Total Pressure Earth-Like 

Lighting 384 HPS Lamps 

PPF n/a 

Growth Medium Hydroponic 
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Biosphere 2                               
Intensive Agricultural Biome 

(Since 1986)

 

Biosphere Foundation, 
University of Arizona 
 
(Tuscon, Arizona, 
USA) 

The purpose of Biosphere 2 
was the construction of hu-
man controlled mesocosm. 
Therefore, seven biomes 
with different layouts and 
climates were established. 
Furthermore, a human habi-
tat was included in the facility 
to support a crew of ten. 

Total Cultivation Area 2200 m² 

[72], [73], 
[74], [75], [76] 

Temperature 13 – 30 °C 

Relative Humidity n/a 

CO2 Concentration 350 – 2000 ppm 

Total Pressure Earth-Like 

Lighting 196x 1000 W HPS, Sun 

PPF n/a 

Growth Medium Terrestrial Soil 

 

Table 4-4: List of Arctic and Antarctic plant cultivation test facilities 

Arctic & Antarctic Facilities Organization Research Focus Greenhouse Parameter References 

Arthur Clarke Mars Greenhouse                                   
(Since 2002) 

 

Canadian Space 
Agency, University of 
Guelph, University of 
Florida 
 
(Haughton Mars Pro-
ject Research Station 
on Devon Island,  
Canada) 

The purpose of the ACMG is 
the studying of greenhouse 
engineering, plant growth 
and autonomous functionality 
under extreme operational 
conditions. 

Total Cultivation Area ≈ 4 m² 

[77], [78], [79] 

Temperature 15 – 30 °C 

Relative Humidity 20 – 80 % 

CO2 Concentration n/a 

Total Pressure Earth-Like 

Lighting Direct Natural 

PPF 339 µmol/(m²*s) [in June] 

Growth Medium Hydroponic, Inert Subs. 

Amundsen-Scott - South Pole 
Food Growth Chamber         

(Since 2004) 

 

United States Antarctic 
Program 

Bio regenerative life support 
systems research along with 
food support from crew and 
other psychological benefits. 

Total Cultivation Area 21.9 m² 

[80] 

Temperature 19.3 – 23.6 °C 

Relative Humidity 59.6 ± 4 % 

CO2 Concentration 1334 ppm 

Total Pressure 68 kPa 

Lighting 12x 1000 W HPS 

PPF 425 µmol/(m²*s) 

Growth Medium Hydroponic 
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Table 4-5: List of greenhouse module concepts for space applications 

GHM for Space Application Organization Research Focus Greenhouse Parameter References 

Lunar Food and Air                  
Revitalization Module                                       

(2008)     

 

2nd International   
Master Course in 
Space Exploration and 
Development Systems 
(SEEDS) 
(Mt. Malapert, Lunar 
South Pole) 

Designed as a plant growth 
chamber module to be inte-
grated into the Bio regenera-
tive life support systems for a 
Lunar Mission. 

Total Cultivation Area 144 m² 

[31], [81], [82] 

Temperature 17 – 28 °C 

Relative Humidity 25 – 75 % 

CO2 Concentration 265 ppm 

Total Pressure 75.5 kPa 

Lighting Indirect Natural, HPS 

PPF n/a 

Growth Medium Hydroponic 

Autonomous Garden Pod    
(2002)       

 

NASA Mars Port  
Competition, University 
of Colorado 
(Colorado, USA) 

Designed as inflatable plant 
growth chamber module to 
be integrated into the Bio 
regenerative life support sys-
tems for a Martian Mission. 

Total Cultivation Area 9.9 m² 

[83] 

Temperature n/a 

Relative Humidity n/a 

CO2 Concentration CO2 rich atmosphere 

Total Pressure n/a 

Lighting Direct, Indirect Natural 

PPF n/a 

Growth Medium n/a 
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4.1.2 Lunar Greenhouse 

The Lunar Greenhouse (LGH) is a BLSS concept developed by an U.S.-Italian corporation 

under the leadership of the University of Arizona’s Controlled Environment Agriculture Center 

(UA-CEAC). Other partners are Sadler Machine Company, Thales Alenia Space-Italia, Aero-

Sekur, and the University of Naples Federico II. The project started in 2005 with a feasibility 

study and is still running. According to reference [58], the purpose of the Lunar Greenhouse 

project is the demonstration of biomass and food production, air and water revitalization, and 

waste recycling within a poly-culture deployable cropping system.  

The module is designed to meet the requirements for a lunar science outpost established by 

NASA’s Global Exploration Strategy. This scenario proposes a lunar outpost with four LGH 

modules at the Aitken Basin near the Lunar South Pole for a 4-person crew and mission du-

ration of 180 days. The aim of the greenhouse for this scenario is full water purification and 

air revitalization, and the provision of up to 50 % of the required daily energy intake of the 

crew. The greenhouse module concept discussed in this chapter is able to fulfill these re-

quirements for one human. Consequently, four modules are required to meet the require-

ments for the lunar outpost scenario [58]. 

The module consists of a deployable aluminum structure and has a cylindrical shape. Figure 

4-1 shows a prototype of the LGH in folded configuration, while Figure 4-2 illustrates the 

module fully deployed and operational during a test phase. For outer shell of the module a 

fluorocarbon based polymer membrane is used. Due to the absence of a rigid outer shell, the 

module has to be covered with one meter of lunar soil to prevent the plants against the cos-

mic radiation. While deployed, the LGH has a length of 5.5 meters and a diameter of 2.06 

meters. Consequently, the pressurized volume is around 21 cubic meters [58]. 

 

Figure 4-1: Folded Configuration of 

the LGH [59] 

 

 

 

Figure 4-2: Deployed Configuration of the LGH during a test 

period [59] 

The growth area is accommodated in two one-level shelves, one at each side of the centered 

aisle. The overall cultivation area of one module is around 8.8 square meters. When the aisle 

is also be used as growth area, 11.1 square meters growth area are available. The available 

growth height depends, due to the cylindrical shape, on the distance to the outer shell. The 
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plants are grown in a hydroponic cultivation system. Different plant species were grown dur-

ing several test phases, e.g. lettuce, strawberry and sweet potato. The developer of the LGH 

proposes a polycultural plant mixture to increase the variety of available food [59]. However, 

the plant selection for the lunar outpost scenario is based on reference [23]. 

The LGH is pressurized with 62 kilopascals. Thereby, the partial pressure of oxygen is main-

tained around 21 kilopascals and the atmosphere is enriched with carbon dioxide, leading to 

a CO2 partial pressure around 0.062 kilopascals. Average environmental conditions, 21.1 

degrees Celsius and 53.5 % relative humidity, are maintained inside the LGH. The lighting 

system solely consists of electrical lighting. Six high pressure sodium lamps with 1000 watts 

each are selected as light sources [58]. 

As described earlier, one LGH module is able to fully purify the used water and air of one 

human, while providing 1000 kilocalories per day. The waste generated by the harvested in-

edible biomass is treated in a separate composter module, which is currently under devel-

opment. No crew work load values required for the maintenance of a LGH are published until 

now [59]. 

Appendix 3-1 shows the Morphological Box of the LGH concept, in which all available data 

about options and values is highlighted in green and factors with insufficient data are high-

lighted in orange. 

4.1.3 Lunar Food and Revitalization Module 

The Lunar Food and Revitalization Module (Lunar FARM) is the result of a feasibility study 

accomplished during the 2nd International Master Course in Space Exploration and Develop-

ment Systems (SEEDS) in 2008. The aim of the study was to design a Permanent Human 

Moon Exploration Base (Phoebe). Phoebe should be located on top of Mount Malapert at the 

Moon’s South Pole. The advantage of this location is the nearly continuous coverage with 

sunlight: 89 % per year direct sunlight and 4 % of the year partial illumination due to the Sun 

[81]. 

During the feasibility study an inflatable, a hybrid and a rigid structural design were consid-

ered. Finally, the rigid design was proposed for the FARM, because of its advantages con-

cerning outfitting and system preparation. The final design is a cylindrical module with a di-

ameter of eight meters and a length of twelve meters. Figure 4-3 shows the outside view of 

one Lunar FARM. Inside the module are two floors for the cultivation of plants and the related 

subsystems, each floor has a height of 2.5 meters and is six meters wide, see Figure 4-4. 

The floors are connected with an elevator and emergency stairs. According to reference [31], 

the estimated mass of one module is around 8000 kg. 

The growth area is accommodated in shelves. The proposed internal configuration consists 

of three aisles and four rows of shelves, as shown in Figure 4-4. Each shelf has four levels, 

two with a height of 65 centimeters and two with a height of 45 centimeters. Thereby, the 

lowest level is used for holding subsystems or germination units, while the other three are 

used for the cultivation of plants. The lower 15 centimeters of each level are reserved for the 

growth medium and root zone. Consequently, there are two shelf levels for plants with a 

growth height up to 50 centimeters and one level for plants with a growth height up to 30 

centimeters. The overall growth area of one FARM is 144 square meters, 96 square meters 



Demonstration of the Developed Evaluation Strategy 

Description and Analysis of Selected Concepts and Testbeds 

75 

for plants up to 50 centimeters high and 48 square meters for plants up to 30 centimeters 

high. All plants are grown hydroponically [31]. 

 

Figure 4-3: Outside view on the Lunar FARM [31] 

 

Figure 4-4: Cross section view of the    

Lunar FARM [31] 

Different concepts of plant diversity were investigated during the study. Finally, an energy 

food plant composition was selected, which can provide 84 %, 1753 kcal per day per crew-

member, of the crew’s daily energy intake. Consequently, 16 % of the required food has to 

be supplied from Earth frequently. Beans, carrot, green onion, pepper, white potato, straw-

berry, tomato and wheat were selected for the cultivation inside the FARM. The selected 

food plants cause deficiencies in vitamin B12, vitamin E, calcium and sodium. Consequently, 

the food supplied from Earth has to compensate these deficiencies. The growth area per 

plant species is not published, but Table 4-6 shows the expected output of edible biomass of 

one module per plant species per day [82]. 

Table 4-6: Daily expected production of edible biomass per plant species per module, derived from [31] 

Plant Species Beans Carrot 
Green 

Onion 

Pep-

per 

White 

Potato 

Straw-

berry 

Toma-

to 
Wheat 

Food Output 

[kg/day] 
1.68 1.68 1.13 1.13 1.13 0.85 1.68 1.68 

 

The atmospheric pressure inside the greenhouse module is supposed to be 75.5 kilopascals, 

with an oxygen partial pressure of 21.1 kilopascals. The carbon dioxide partial pressure is 

maintained at 0.02 kilopascals. The temperature inside the FARM ranges from 17 to 28 de-

grees Celsius, while the relative humidity is hold between 25 and 75 %. The study team pro-

poses a hybrid lighting system consisting of an indirect natural system as the primary radia-

tion source and high pressure sodium lamps as secondary system. As discussed earlier, the 

location of Phoebe is under direct sunlight for the most time of the year. The natural lighting 

system consists of parabolic concentrators which feed an optic fiber distribution system. The 

concentrator is always pointed sunwards and focusses the incoming radiation to a collecting 

mirror. This mirror directs the light into the optic fiber network. The optic fibers deliver and 

distribute the light to all plants of the module. For dark periods high pressure sodium lamps 

are implemented to keep the plants alive. The overall power consumption of the lamps is re-

stricted to four kilowatts. The HPS lamps feed the optic fiber network. Consequently, an ap-

propriate light distribution can be maintained [81]. 
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The FARM was designed to grow food plants for the nourishment of Phoebe’s crew. The 

proposed crew composition is 50 % men and 50 % women and a permanent crew size of 18 

people. Furthermore, during crew exchange six additional humans will live in Phoebe for 14 

days. The crew exchange was supposed to be every eight weeks. In addition to the crew ex-

change, six visitors will stay at the base for seven days every eight weeks. However, crew 

exchange and visiting should never overlap, which leads to a maximum crew size of 24. For 

the provision of food to the desired crew size four FARMs are required. Besides the plant cul-

tivation the FARM is used to purify the water and revitalize the air of the whole habitat. The 

water output is estimated to be around 36 kilograms per day and the amount of generated 

oxygen is calculated to 1.0 kg per crewmember per day. To maintain all functions of one 

module and to grow and harvest the desired amount of food, reference [31] assumes a work-

load of ten man-hours per day for the whole module. Consequently, the crew work load is 

around 0.07 man hours per square meter per day. 

Appendix 3-2 shows the Morphological Box of the Lunar FARM concept, in which all availa-

ble data about options and values is highlighted in green and factors with insufficient data are 

highlighted in orange. 

4.1.4 Biomass Production Chamber of BIO-Plex 

The Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex) is one of 

NASA’s projects of the Advanced Life Support (ALS) program and is located at the Johnson 

Space Center (JSC) in Houston. BIO-Plex is designed as test facility for human isolation ex-

periments and as a testbed for life support systems. Systems regarding the food production, 

water purification and air revitalization and other key elements of an ECLSS can be integrat-

ed and evaluated during long duration experiments. The purpose of BIO-Plex is the provision 

of a closed environment including a small crew for the testing of current and future regenera-

ble systems technologies. The design of the facility began in the early 1990s, but the project 

was directed to suspend ongoing activities in 2001 due to the declining NASA budget. Since 

2001 the built parts of the facility are placed in a “stand-by” mode. [70]. 

BIO-Plex consists of six cylindrical chambers and an airlock connected to an interconnecting 

tunnel. Figure 4-5 shows an outside view on BIO-Plex during the integration. The transparent 

airlock is attached on the right side, while two modules on the left side are still missing. Each 

of the six chambers has a different purpose. The habitation chamber accommodates the 

crew quarters. The life support chamber contains all systems required to maintain the de-

sired environmental conditions, while the utilities distribution module serves as storage room 

for tools. A laboratory chamber is proposed for a later development stage of the complex. 

Furthermore, BIO-Plex has two Biomass Production Chambers (BPC). Hence, the BPC de-

sign is described in detail in the following [32]. 

The BPC has a rigid cylindrical structure as every chamber of BIO-Plex, is 11.3 meters long 

and has a diameter of 4.6 meters. Consequently, the BPC has a pressurized volume of 187.8 

cubic meters. Most of the crop processing systems are located inside the interconnecting 

tunnel. Consequently, a wider door, 168 centimeters, compared to the other chambers is in-

stalled between the BPC and the interconnecting tunnel, which facilitates an easier handling 

of seedlings, plants and harvested crops [32].  

The growth area is accommodated in shelves. Therefore, four shelf designs were considered 

during the design process. Finally, a two aisles three shelves configuration was selected as 
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shown in Figure 4-6, each shelf has a length of 9.1 meters. The two outer shelves have three 

levels each. The top level is 37.5 centimeters wide and provides a maximum growth height of 

44 centimeters. The middle level is 72 centimeters wide and the maximum growth height is 

70 centimeter. The bottom level provides a width of 37.5 centimeters and a maximum growth 

height of 40 centimeters. Consequently, one outer shelf contains an available growth area of 

3.3 square meters in the top and bottom level and 6.2 square meters in the middle level. The 

center shelf consists of four identically sized levels. Each is 150 centimeters wide and pro-

vides a growth height of up to 50 centimeters, which leads to a growth area of 14.2 square 

meters per level. Hence, the overall growth area of the BPC is 82.4 square meters large. A 

hydroponic cultivation system is established for the growing of plants. However, it is also fea-

sible to use soil-like substrates as growth medium when necessary [32].  

 

Figure 4-5: Outside view on Bio-Plex during integration 

[70] 

 

Figure 4-6: Cross section view of the BPC 

of Bio-Plex [32] 

The BPC is designed to serve as a quasi-full nutrition source for the crew. Consequently, 

fresh and energy food plants are grown. The allocated growth area per plant species is not 

published. Storable crops like wheat, rice, white potato, sweet potato, soybean, peanut and 

beans are batch planted, while fresh crops like lettuce, cabbage, spinach, chard, carrot, rad-

ish and onion are staggered planted [32]. 

The atmospheric pressure inside the BPC is maintained at the terrestrial ambient level out-

side of BIO-Plex. The oxygen partial pressure is sustained between 20 and 24 kilopascals, 

while the carbon dioxide partial pressure can be adjusted in the range from 0.03 to 1.0 

kilopascal. However, at carbon dioxide concentrations above 0.4 kilopascals human entry to 

the BPC will be prohibited. The temperature can be adjusted to every shelf level individually 

from 15 to 25 degrees Celsius during dark periods and from 16 to 35 degrees Celsius during 

light periods. Relative humidity can be solely controlled for every shelf level between 65 and 

85 %. The design of the BPC’s lighting system is flexibly adjustable. Each shelf level is split 

into three sections, which contain four light boxes. The proposed configuration consists of 

eight high pressure sodium lamps per light box. However, due to the flexible design the light 

boxes can also be outfitted with optic fiber cables to facilitate indirect natural lighting [32].  

BIO-Plex is designed to house four humans and therefore, the BPC can provide enough food 

for the crew. The plants cultivated in the BPC are used for water purification and air revitali-

zation. However, no values for the water in-/output, the carbon dioxide intake or the oxygen 

output are published until now. Furthermore, no data about the required crew work time is 
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available. Due to the high level of automation, it can be assumed that the work load is rela-

tively low [32]. 

Appendix 3-3 shows the Morphological Box of the BIO-Plex concept, in which all available 

data about options and values is highlighted in green and factors with insufficient data are 

highlighted in orange. 

4.2 Goal Definition for the Exemplary Evaluation 

The goal of the exemplary evaluation in the following subchapters is the comparison of the 

three previously selected concepts with a hypothetically optimal greenhouse module. The 

characteristics of this optimal greenhouse module are based on the definition of measurable 

factors presented in Chapter 3.4. Table 4-7 shows a list of all established factors with the re-

quirements an optimal greenhouse has to fulfill. 

The shape, the dimensions, the total mass and the total volume of an optimal greenhouse 

module are restricted by the available launch systems. Consequently, the specific cultivation 

volume must be as high as possible to reduce the specific module mass. A shelf configura-

tion similar to the presented two aisles three shelves arrangement, see Figure 3-9, can pro-

vide a high specific cultivation volume. The complexity of an optimal greenhouse module is 

as low as possible. For cost reduction reasons, the pressurized volume has to be as small as 

possible. The module structure should be made out of in-situ materials to reduce the total 

mass of the module. The internal configuration has to be flexibly adaptable to different plant 

setups. A high level of automation is necessary to reduce the required work load of the crew. 

The lighting is an essential part of greenhouse modules. An optimal greenhouse module 

would use indirect natural lighting. When natural lighting is not available, LEDs are the most 

promising electrical lighting devices. Intracanopy lighting is the most effective light distribu-

tion strategy. The atmosphere in the plant cultivation volume has to be enriched with CO2 to 

maximize the yield.  Another increase in yield can be achieved by controlling the temperature 

of each growth unit separately. Monitoring and separation of trace gases is indispensable. 

The photosynthetic period, humidity, temperature, CO2 and O2 concentration, and the atmos-

pheric pressure have to fit the optimal conditions of the cultivated plants. 

Hydroponic agriculture is the most promising cultivation method. In an optimal greenhouse 

module the plants are grown in monocultures and depending on the plant species they are 

planted staggered or as batches. Nutrients have to be recycled and produced out of inedible 

biomass and bio waste. Plant monitoring for every growth unit is necessary to control the de-

velopment of the plants. The selected plants have to meet the requirements of a quasi-full 

nutrition. The module has to provide the required growth height for every cultivated plant 

species. The total growth area and the biomass productivity have to be as high as possible. 

An optimal greenhouse module is a high efficient plant cultivation system, which provides a 

quasi-full nutrition to the desired amount of crew members. Furthermore, the greenhouse 

module should be able to fully revitalize the air and water consumed respectively processed 

by the crew. The power and consequently, the cooling demand of an optimal greenhouse 

module have to be as low as possible to reduce the required amount of electrical energy. 

The crew work load required for the cultivation of plants and the maintenance of all green-

house subsystems should be as low as possible. In addition an optimal greenhouse module 

would actively enhance the psychological health of the crew. 
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Table 4-7: Requirements for an optimal greenhouse regarding the established measurable factors 

Fundamental  

Factors 

Requirement Environmental 

Factors 

Requirement 

Module Shape Restricted to available 

launch systems 

Lighting Type Indirect natural lighting, 

respectively LED lighting 

Arrangement of 

Growth Area 

Shelves Lighting Strategy Intracanopy 

Distribution of 

Aisles 

Two aisle three 

shelves option 

Atmospheric 

Composition 

Enriched with CO2 

Module Structure In-Situ Trace Gas Treatment Monitoring and 

Separation 

Adaptability of      

internal Configuration 

Flexible Temperature 

Control 

Per Growth Unit 

Level of Automation Full Photosynthetic 

Period 

Optimal for the 

cultivated plants 

Specific Module 

Mass 

As low as possible Humidity Optimal for the 

cultivated plants 

Total Module Mass Restricted to available 

launch systems 

Air Temperature Optimal for the 

cultivated plants 

Dimensions Restricted to available 

launch systems 

Atmospheric 

Pressure 

As low as suitable for 

plant cultivation 

Total Volume Restricted to available 

launch systems 

CO2 Partial 

Pressure 

Optimal for the 

cultivated plants 

Pressurized Volume As small as possible O2 Partial 

Pressure 

As low as suitable for 

plant cultivation 

Specific Cultivation 

Volume 

As large as possible   

Complexity As low as possible   

Agricultural 

Factors 

Requirement Interface 

Factors 

Requirement 

Growth Medium Hydroponic Water Purification Full 

Nutrient Supply Full recycling Air Revitalization Full 

Plant Monitoring Per growth unit Resupply 

Dependency 

Quasi-full nutrition 

Plant Mixture Monoculture Food Provision 2200 kcal/(CM*d) 

Planting Sequence Combined Power Demand As low as possible 

Biomass Productivity As high as possible Cooling Demand As low as possible 

Cultivated Plants Plants for a 

quasi-full nutrition 

Water In-/Output As high as possible 

Total Growth Area As high as possible CO2 Intake Suitable for the 

desired crew size 

Specific Growth Area As low as possible for a 

quasi-full nutrition 

O2 Output Suitable for the 

desired crew size 

Growth Height Optimal for the 

cultivated plants 

Supported Crew Size As high as possible for a 

quasi-full nutrition 

  Crew Work Load As low as possible 

  Psychological Health 

Care 

As much as possible 
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4.3 Establishing and Weighting of Evaluation Criteria 

This subchapter describes the process of selecting evaluation criteria out of the list of analy-

sis and evaluation factors established in Chapter 3.4. Furthermore, the calculation of all local 

and global weighting values for an AHP evaluation is explained.  

4.3.1 Selection of Evaluation Criteria 

In Chapter 3.4 a comprehensive list of measurable factors is established, in total 46 factors 

were identified, as shown in Table 3-20. However, not all of these factors can be used as 

evaluation criteria for an AHP. Consequently, the factors can be divided into evaluation crite-

ria and analysis parameters. 

Analysis parameters are valuable for the analysis of concepts, but they cannot be used as 

evaluation criteria. Consequently, they are not established as criteria for the AHP. Nineteen 

factors can be defined as analysis parameters. They are highlighted in red in Appendix 4-1, 

which is a modified version of the previously introduced Morphological Box. 

The remaining 27 factors are suitable evaluation criteria. However, due to a lack of data of 

the investigated concepts, not all criteria are used in the following AHP. Eleven evaluation 

criteria have to be rejected, because one or more of the three investigated concepts do not 

provide enough data for an evaluation. Appendix 3-1, Appendix 3-2 and Appendix 3-3 show 

the Morphological Boxes of the three concepts. The criteria with insufficient data provision 

are highlighted in orange in Appendix 4-1. 

The selection process leads to sixteen suitable evaluation criteria with sufficient data provi-

sion by the three investigated concepts. These criteria are highlighted in green in Appendix 

4-1. Finally, a hierarchy for the following AHP is generated out of the selected evaluation cri-

teria. Figure 4-7 shows the established criteria hierarchy, which is based on the categoriza-

tion of the measurable factors described in Chapter 3.4.1. Consequently, the criteria are 

grouped to the four categories: fundamental criteria, environmental criteria, agricultural crite-

ria and interface criteria. These four categories form level 1 of the hierarchy, the inner ellipse 

of the Figure 4-7. Level 2 consists of the evaluation criteria themselves, whereby qualitative 

criteria are shown as ellipses and quantitative criteria are shown as rounded rectangles. 

Level 3, the large complete ellipse, consists of the possible options of the qualitative criteria 

and the concrete values of the investigated concepts for the quantitative criteria. For the Cri-

teria growth medium and lighting type, an additional level is required. Consequently, the op-

tions are on level 4 of the hierarchy. 

The established hierarchy is used as the framework for the calculation of local and global 

weightings of each criterion respectively option. The calculation is described in the following 

subchapter. 

 



 

 

 

Figure 4-7: Hierarchy of the selected evaluation criteria (level 1 to level 4, from the inside to the outside) 
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4.3.2 Calculation of Local and Global Weightings 

The calculation of local and global weightings for the selected evaluation criteria is based on 

the equations presented in Chapter 3.3.2. An Excel file is generated for the calculation which 

covers all pairwise comparisons, the calculation of weightings and the consistency check. 

Furthermore, the evaluation of the three selected greenhouse module concepts is also in-

cluded in the Excel file. This subchapter shows an exemplary calculation and presents all 

resulting values for the local and global weighting of the selected criteria. 

The weighting of the criteria is based on the goal of the demonstration of the developed 

analysis and evaluation methodology. The detailed goal definition is described in Chapter 

4.2. 

The pairwise comparisons are generally based on scientific background. However, the sub-

jective opinion of the analyst affects the rating of the comparisons. Consequently, a small 

group of greenhouse experts working on the greenhouse project of the Institute of Space 

Systems of the German Aerospace Center (DLR) in Bremen was formed for the rating of the 

pairwise comparisons. The use of a small group of experts during an AHP is a suitable 

method to reduce the bias during the establishing of the pairwise comparisons. The group of 

experts consisted of the author of this thesis (graduate student in aerospace engineering), 

the DLR greenhouse project leader, a graduate student of biology and two other aerospace 

engineering graduate students. The final values for the pairwise comparisons are the results 

of negotiations and discussions between the five group members. 

In the following the calculation of the local weightings of the four criteria categories on level 1 

of the hierarchy is shown. The calculation process is same for all local weightings. Conse-

quently, the shown calculation stands representatively for all local weighting calculations. 

Level 1 of the AHP hierarchy consists of the four elements: 

- Fundamental Criteria (FC), 

- Environmental Criteria (EC), 

- Agricultural Criteria (AC), 

- Interface Criteria (IC). 

The weighting calculation starts with the pairwise comparison of the four elements. There-

fore, each element is compared one by one to each of the other elements. For the compari-

son the rating system shown in Table 3-3 is used. The result of the pairwise comparison is 

the comparison matrix. Table 4-8 shows the comparison matrix for the calculation of local 

weightings for level 1 of the hierarchy. Thereby, the values of the pairwise comparisons are 

inserted in the lower left part of the matrix, while the upper right half is the reciprocal of the 

lower left half. Consequently, environmental criteria have a strong importance over funda-

mental criteria, or the importance of environmental criteria is four times higher compared to 

fundamental criteria. Agricultural criteria have a moderate importance over fundamental crite-

ria, but they are only half important as environmental criteria. The importance of interface cri-

teria compared to fundamental, environmental and agricultural criteria is one third, one ninth 

and one fifth. 
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Table 4-8: Comparison matrix for the calculation of local weightings of hierarchy level 1 

 

Comparison Matrix 

  FC EC AC IC 

FC 1 0.250 0.333 3.000 

EC 4.000 1 2.000 9.000 

AC 3.000 0.500 1 5.000 

IC 0.333 0.111 0.200 1 

Σ Column 8.333 1.861 3.533 18.000 

 

The values of the pairwise comparisons are then normalized by the sum of their related col-

umn. Afterwards, the normalized values are summed up row by row. The result is the normal-

ization matrix shown in Table 4-9. Finally, the local weighting is calculated by dividing the 

sum of each row by the size of the matrix. In the shown example the matrix has a size of 

four. 

Table 4-9: Normalization matrix and local weightings of hierarchy level 1 

 Normalization 
 

Weighting 

  FC EC AC IC Σ Row w 

FC 0.120 0.134 0.094 0.167 0.515 0.129 

EC 0.480 0.537 0.566 0.500 2.083 0.521 

AC 0.360 0.269 0.283 0.278 1.189 0.297 

IC 0.040 0.060 0.057 0.056 0.212 0.053 

Σ Column 1.000 1.000 1.000 1.000 4.000 1.000 

 

The exact local weightings for the four elements on level 1 of the hierarchy are: 

- Fundamental Criteria  = 0.12883, 

- Environmental Criteria  = 0.52084, 

- Agricultural Criteria = 0.29736, 

- Interface Criteria  = 0.05297. 

Consequently, the selected environmental criteria have the highest impact on the total 

weighting score of the investigated concepts, followed by the agricultural, the fundamental 

and the interface criteria. 

The calculation of the local weightings is followed by the consistency check, in which the 

consistency of the pairwise comparisons is investigated. Therefore, the mean matrix is gen-

erated to calculate the Eigenvalue of each element of the matrix. Table 4-10 shows the mean 

matrix and the related Eigenvalues for each element. 

The Eigenvalues are part of the calculation of the consistency relationship (CR), as de-

scribed in Chapter 3.2. The CR value for the local weighting calculations of hierarchy level 1 

is 0.014. The boundary value for consistency is 0.1, a CR smaller than the boundary value 

leads to a consistent pairwise comparison. Consequently, the pairwise comparisons of level 

1 are consistent and therefore, the local weightings are reliable. 
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Table 4-10: Mean matrix for consistency check of local weighting calculation of level 1 

 

Mean Matrix 

  FC EC AC IC Σ Row λ 

FC 0.129 0.130 0.099 0.159 0.517 4.013 

EC 0.515 0.521 0.595 0.477 2.108 4.047 

AC 0.387 0.260 0.297 0.265 1.209 4.066 

IC 0.043 0.058 0.059 0.053 0.213 4.026 

 

The complete calculations of all local weighting values including the consistency check are 

shown in Appendix 4-1 to Appendix 4-27. 

The local criteria weightings can be used to compare elements of the same hierarchy level 

and of the same parent category. To compare elements of the same hierarchy level, but of 

different parent categories, global weighting values are required. The global weighting of a 

certain criterion is calculated by multiplying the local weightings of the related parent catego-

ries. Table 4-11 shows the top 10 ranked options of hierarchy level 3 and 4. Therefore, an 

atmosphere enriched with CO2 has the highest impact, followed by hydroponic cultivation 

and indirect natural lighting. 

A summary of the local weightings of each hierarchy level and the global weightings of each 

possible option on level 3 and 4 are shown in Appendix 4-28. Consequently, the hypotheti-

cally optimal greenhouse module described in the goal definition for the demonstration of the 

methodology reaches the highest possible score by implementing the options with the high-

est global weightings compared to the other options of the same parent category. 

Table 4-11: Top 10 ranking of quantitative criteria of level 3 and 4 

Criterion Level 3/4 Global Weighting  

Atmosphere Enriched with CO2 0,11694 

Hydroponic Cultivation 0,10827 

Indirect Natural Lighting 0,09166 

LED Lighting 0,05963 

Monocultural Cultivation 0,05935 

Intracanopy Lighting Strategy 0,05748 

Inert Soil-Like Growth Medium 0,03652 

Hybrid Lighting 0,03492 

Temperature Control per Growth Unit 0,03241 

Combined Planting Sequence 0,02916 

 

 

 

 



Demonstration of the Developed Evaluation Strategy  

Evaluation of Selected Concepts and Testbeds 

85 

4.4 Evaluation of Selected Concepts and Testbeds 

In this subchapter the results of the evaluation of the three selected greenhouse concepts 

described in Chapter 4.1 are presented. For the evaluation process the goal defined in Chap-

ter 4.2 and the criteria selected and weighted in Chapter 4.3 are used in an AHP, as de-

scribed in Chapter 3.3.2. Furthermore, an optimal greenhouse module concept regarding the 

criteria weighting is established for comparative reasons. 

The Lunar Greenhouse (LGH) concept is described in detail in Chapter 4.1.2. Appendix 4-29 

provides the detailed score for the evaluation of this concept. The revolutionary deployable 

design of the LGH is an advantage over the over two concepts. In addition, this concept has 

the highest specific cultivation volume of all evaluated concepts. However, the overall score 

is the lowest of the three investigated concepts, as shown in Table 4-12, due to many defi-

cits. As a consequence of the proposed deploying mechanism, the internal configuration is 

inflexible and therefore, cannot be adapted for different purposes. The main reason for the 

low overall score are the deficits the environmental criteria category. Especially, the selected 

lighting type and lighting strategy, High Pressure Sodium Lamps respectively overhead light-

ing, are disadvantageous over other options. The control of the temperature is only possible 

for the whole greenhouse and not for separate sections. The maintained temperature is a 

compromise between the cultivated plant species. The proposed polycultural plant mixture is 

unfavorable compared to monocultural cultivation. The LGH is designed to grow fresh food. 

Consequently, the food provision is too low to provide a quasi-full nutrition for the crew. 

The Lunar Food and Revitalization Module (Lunar FARM) concept has the highest total score 

of all three evaluated concepts. The total score of all investigated concepts is shown in Table 

4-12. A detailed description of Lunar FARM is provided in Chapter 4.1.3 and the score of all 

criteria is listed in Appendix 4-30. The proposed internal configuration of the Lunar FARM is 

an arrangement of shelves, which are semi-flexible adaptable. However, the specific cultiva-

tion volume is low compared to the other concepts, because the space reserved for systems 

is relatively high. An optimization of the arrangement and system allocation can increase the 

specific cultivation volume. The major advantage of the Lunar FARM concept is the design of 

the environmental systems. Lunar FARM achieves the optimum in all four criteria of this crite-

ria category. The lighting type is proposed to be mainly an indirect natural lighting system, 

with LEDs as a backup system for the short dark periods. The lighting is distributed to the 

plants via an intracanopy system of fiber optic cables. The temperature can be controlled for 

each plant growth unit separately and the atmosphere inside the units is enriched with car-

bon dioxide. The Lunar FARM concept is designed to provide energy food to the crew. Con-

sequently, the food provision is lower than for a quasi-full nutrition. However, as described in 

Chapter 4.1.3, Lunar FARM can be used to grow plants for a quasi-full nutrition, when the 

work load can be reduced significantly. 

The Biomass Production Chamber (BPC) of the Bioregenerative Planetary Life Support Sys-

tems Test Complex (BIO-Plex) is introduced in Chapter 4.1.4. The score of this concept for 

each criterion is shown in Appendix 4-31. The BIO-Plex concept is similar to the Lunar FARM 

concept. However, the total score of BIO-Plex is lower than that of Lunar FARM, as shown in 

Table 4-12. The internal configuration of BIO-Plex consists of an arrangement of shelves and 

the shelf configuration is similar to that of Lunar FARM. Nevertheless, the BPC of BIO-Plex 

has a higher specific cultivation volume. The deficits of this concept are in the environmental 

criteria category, due to the high weighting of this category, the deficits have a high impact. 
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The lighting system of the BPC consists of overhead mounted High Pressure Sodium Lamps. 

Lighting type and lighting strategy are not ideal and consequently, have a relatively low 

weighting. The proposed combined planting sequence is advantageous. The BPC of BIO-

Plex is designed for quasi-full nutrition and therefore, the food provision per crew member 

nearly fits the human requirements. 

The proposed optimal design for greenhouse modules is based on the weighting of evalua-

tion criteria provided in Chapter 4.3. For this design only the options with the highest 

weighting score are selected. Consequently, the total score of the optimal design represents 

the highest possible score for this evaluation. 

Table 4-12: Total score of the selected greenhouse module concepts 

 LGH Lunar FARM BIO-Plex Optimal Design 

Total Score 0,31608 0,51336 0,45348 0,60430 

Detailed Score Appendix 4-29 Appendix 4-30 Appendix 4-31 Appendix 4-32 

 

Figure 4-8 shows the comparison of the three evaluated concepts with the optimal concept 

with respect to every criterion. The criteria are grouped to their categories. As described 

above the LGH concept has the lowest total score of all concepts, because it achieves the 

optimum in only five out of sixteen criteria. The Lunar FARM concept has a higher score than 

the BPC of the BIO-Plex project, because Lunar FARM achieves the optimum in all four crite-

ria of the environmental criteria category which has the highest local weighting factor of all 

four categories. Altogether, Lunar FARM reaches the optimum in nine criteria out of sixteen. 

However, the BPC of BIO-Plex achieves the optimum in ten criteria, but this concept has 

some deficits regarding the lighting system. Nevertheless, the BPC of BIO-Plex has the 

highest score in the agricultural criteria and interface criteria categories. 

 

Figure 4-8: Comparison of the evaluated concepts with an optimal greenhouse concept 

As described above, the concepts of the Lunar FARM and BPC are similar to each other in 

terms of structure and internal configuration. Consequently, a combination of the advantages 

of both concepts would lead to a nearly optimal greenhouse module concept. 
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4.5 Summary 

Chapter 4 demonstrates the previously developed analysis and evaluation methodology. 

Therefore, a survey on existing greenhouse module concepts and test facilities is executed in 

the first subchapter. Out of the provided list of greenhouse modules, three concepts were 

selected for further investigation. All three greenhouses are analyzed in detail in the first sub-

chapter. 

The second subchapter defines the goal of the exemplary evaluation. A hypothetically opti-

mal greenhouse module is established for the demonstration of the methodology. Therefore, 

the best options of the previously established evaluation factors are combined. The proper-

ties of the optimal greenhouse module are shown. 

The third subchapter describes the selection process of the evaluation criteria. Depending on 

the available data of the selected concepts and the characteristics of the established factors, 

the evaluation criteria are selected. A hierarchy based on the factor categorization is created 

for the AHP evaluation. Furthermore, the local and global weightings for all elements of the 

hierarchy are calculated and checked on consistency. The calculation of the weightings is 

based on the previously defined goal of the evaluation. The values are calculated by the 

equations of the AHP described in Chapter 3.3.2 and are the results of the pairwise compari-

sons of the elements of the hierarchy. 

The fourth subchapter utilizes the established criteria weighting for the evaluation of the three 

selected greenhouse module concepts. The Lunar Greenhouse (LGH) achieves the lowest 

score due to deficits regarding the environmental criteria. The Biomass Production Chamber 

(BPC) of the BIO-Plex facility has a high score in the agricultural criteria category. However, 

due to minor deficits in the environmental criteria category, especially the lighting system, the 

BPC of BIO-Plex achieves only the second highest score of all three concepts. The green-

house module concept with the highest total score is the Lunar Food and Revitalization Mod-

ule (Lunar FARM). Lunar FARM reaches the optimum in all subcriteria of the environmental 

criteria category, which has the highest influence. However, even the Lunar FARM concept 

has deficits compared to an optimal concept, especially, in the agricultural criteria category. 

Finally, a combination of the advantages of Lunar FARM and the BPC of BIO-Plex could 

achieve a score similar to the hypothetically optimal greenhouse module design. 
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5 Discussion 

Terrestrial human isolation test beds like the Japanese Closed Ecology Experiment Facilities 

and the Russian BIOS-3 demonstrated the possibility of providing food with greenhouse 

modules to humans in a closed environment. Furthermore, the air revitalization and water 

purification with the use of the plants inside the greenhouse module worked well. Green-

house modules as part of ECLSS of crewed spacecraft or habitats are necessary for future 

long term or even permanent missions to Moon and Mars. 

Unfortunately, the prospects for utilization of greenhouse modules in a planetary mission in 

the near future are, at this stage, minimal. Neither NASA nor ESA have concrete plans for 

crewed long duration missions to planetary bodies in the near future. However, the today’s 

research related to greenhouse modules is necessary, because of the not well understood 

relation between plants, humans and environmental conditions in closed ecosystems. This 

thesis lays a profound scientific background for the ongoing research activities at the DLR 

Bremen. 

This thesis provides a comprehensive list of measurable factors. However, future research-

ers might think about adding their own factors, which is feasible due to the general nature of 

the selected analysis and evaluation methods. Consequently, the proposed methodology can 

be adapted to future evaluations by the analysts. This makes the analysis and evaluation 

strategy to a favorable tool for the investigation of developed greenhouse modules designs. 

The selected evaluation criteria can be freely adapted to fit to the goals of future investiga-

tions of greenhouses. In addition the possibility of recalculating the criteria weighting exists 

and could be necessary for other evaluation goals. The generated Excel file can be used as 

tool for future calculations of criteria weightings. 

However, for the defined goal of the exemplary evaluation of the selected greenhouses, the 

criteria weighting is reliable. This reliability can be guaranteed, because of the negotiation of 

a group of greenhouse researchers. The weightings himself are checked on consistency and 

no inconsistent weighting could be identified. The greenhouse concept with the highest 

score, the Lunar FARM, has a sophisticated design and the simulations executed during the 

design of this concept provide a good data source. Nevertheless, the evaluation showed, that 

even the Lunar FARM concept cannot match with the established hypothetically greenhouse 

design. 

The relations between the measurable factors are not investigated during this thesis. Espe-

cially, the strong dependencies between the lighting, the air temperature, humidity, CO2 level 

and biomass production have to be investigated in future researches. The dependencies be-

tween different factors can affect the criteria weighting. The implementation of the results of a 

detailed analysis of the relations can improve the reliability of the proposed analysis and 

evaluation methodology. 

The adaptability and the generality of the developed strategy allow the use in future investi-

gation of the DLR research efforts in the niche field of greenhouse modules for space appli-

cations. The outcome can be used for future research activities in the system design of 

greenhouse modules, laboratories and test facilities. 
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6 Summary 

The topic of this thesis was the system analysis and evaluation of greenhouse modules for 

planetary habitats. A survey on existing plant growth chambers, greenhouse modules and 

terrestrial test facilities had been executed to accomplish a list of concepts. For the analysis 

and evaluation of greenhouse modules a methodology had been developed. Therefore, 

measurable factors concerning the performance, agricultural properties and in-/output of 

greenhouse modules had been defined. The developed strategy had been executed on se-

lected greenhouse module concepts to demonstrate the workability and reliability. 

Chapter 2 of present thesis provides a profound scientific background related to environmen-

tal conditions, human requirements, ECLSS, food provision in crewed spacecraft and green-

house module subsystems. 

The first subchapter of Chapter 3 explains the developed analysis and evaluation methodol-

ogy. The strategy consists of a four step approach, starting with the data acquisition, followed 

by the system analysis, the evaluation and the discussion. The second subchapter describes 

the proposed system analysis method, the Morphological Analysis, which is a suitable analy-

sis method to structure problems. The third subchapter explains the two proposed evaluation 

methods, the Equivalent System Mass (ESM) approach and the Analytical Hierarchy Process 

(AHP). Finally, the AHP was selected, due to the advantage of using qualitative criteria. The 

fourth subchapter defines the investigated measurable factors. A factor categorization had 

been established and detailed descriptions for every factor were provided. 

Chapter 4 shows an exemplary evaluation of preselected greenhouse modules. This chapter 

starts with a survey on existing plant growth chambers, greenhouse module concepts and 

terrestrial test facilities. The Lunar Greenhouse (LGH), the Lunar Food and Revitalization 

Module (Lunar FARM) and the Biomass Production Chamber (BPC) of the BIO-Plex facility 

were selected for further investigation and evaluation. The second subchapter defines the 

goal of the evaluation. In the third subchapter, evaluation criteria are shown and the 

weighting calculations of each criterion based on the AHP equations are depicted. The fourth 

subchapter described the results of the evaluation. 

Chapter 5 discusses the outcomes of this thesis. As demonstrated the proposed analysis 

and evaluation strategy is suitable and reliable method for the investigation and comparison 

of existing greenhouse module concepts. Furthermore, the established measurable factors 

and evaluation criteria hierarchies can be expanded if necessary for future evaluations. In 

addition to the analysis and evaluation the defined factors can be used in the design phase 

of future greenhouse modules and can assists the designing engineer during trade studies of 

different systems. 
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Appendix 2-1: Recommended Macronutrient Daily Dietary Intake 

The following table can be found in chapter 7 of reference [5]. 

Nutrients Daily Dietary Intake 

Protein 0.8 g/kg 

And ≤ 35 % of the total daily energy intake 

And 2/3 of the amount in the form of animal protein and 1/3 in the form of 

vegetable protein 

Carbohydrate 50 – 55 % of the total daily energy intake 

Fat 25 – 35 % of the total daily energy intake 

Ω-6 fatty acids 14 g 

Ω-3 fatty acids 1.1 – 1.6 g 

Saturated fat < 7 % of the total energy intake 

Trans fatty acids < 1 % of the total energy intake 

Cholesterol < 300 mg/d 

Fiber 10 – 14 g/4187 kJ 
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Appendix 2-2: Recommended Micronutrient Daily Dietary Intake 

The following table can be found in chapter 7 of reference [5]. 

Vitamin of Mineral Daily Dietary Intake 

Vitamin A 700 – 900 μg 

Vitamin D 25 μg 

Vitamin K Women: 90 μg; Men: 120 μg 

Vitamin E 15 mg 

Vitamin C 90 mg 

Vitamin B12 2.4 μg 

Vitamin B6 1.7 mg 

Thiamin Women: 1.1 μmol; Men: 1.2 μmol 

Riboflavin 1.3 mg 

Folate 400 μg 

Niacin 16 mg niacin equivalents 

Biotin 30 μg 

Pantothenic acid 30 mg 

Calcium 1200 – 2000 mg 

Phosphorus 700 mg; and ≤ 1.5*calcium intake 

Magnesium Women: 320 mg; Men: 420 mg 

Sodium 1500 – 2300 mg 

Potassium 4.7 g 

Iron 8 – 10 mg 

Copper 0.5 – 9 mg 

Manganese Women: 1.8 mg; Men: 2.3 mg 

Fluoride Women: 3 mg; Men: 4 mg 

Zinc 11 mg 

Selenium 55 – 400 μg 

Iodine 150 μg 

Chromium 35 μg 
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Appendix 2-3: P/C Technologies for the Water Management 

The original table can be found in reference [10]. 

Function Technology 

Distillation Vapor Compression Distillation (VCD) 

Thermoelectric Integrated Membrane Evaporation (TIMES) 

Vapor Phase Catalytic Ammonia Removal (VAPCAR) 

Air Evaporation (AE) 

Filtration Reverse Osmosis (RO) 

Multifiltration (MF) 

Electrodialysis 
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Appendix 2-4: P/C Technologies for Air Revitalization 

The original table can be found in reference [10]. 

Function Technology 

Carbon Dioxide Removal 2-bed Molecular Sieve (2BMS) 

4-bed Molecular Sieve (4BMS) 

Electrochemical Depolarization Concentrator (EDC) 

Solid Amine Water Desorption (SAWD) 

Air Polarized Concentrators (APC) 

Lithium Hydroxide (LiOH) 

Carbon Dioxide Reduction Bosch Process 

Sabatier Process 

Advanced Carbon-Formation Reactor System 

Carbon Dioxide Electrolysis 

Superoxides 

Artificial Gill 

Oxygen Generation Static Feed Water Electrolysis (SFWE) 

Solid Polymer Water Electrolysis (SPWE) 

Water Vapor Electrolysis (WVE) 

 



  

 

Appendix 3-1: Morphological Box of the LGH concept 

 Fundamental Factors Environmental Factors Agricultural Factors Interface Factors 

 Name Options/Unit Name Options/Unit Name Options/Unit Name Options/Unit 

Q
u

a
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ta
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 F
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Module Shape 

Prismatic,  
Spherical,  
Hemispherical,  
Irregular 

Lighting Type 
Electrical,  
Hybrid,  
Natural 

Growth Medium 
Soil, 
Soil-like, 
Soilless 

Water Purification No, Partial, Full 

Arrangement of 
Growth Area 

Shelves,  
Conveyor,  
Rotating Cylinder,  
Plain 

Lighting Strategy 
Overhead,  
Sidewise,  
Intracanopy 

Nutrient Supply 
Storage, 
Partial Recycling, 
Full Recycling 

Air Revitalization No, Partial, Full 

Distribution  
of Aisles 

Center Aisle Two Shelves, 
Two Aisles Center Shelf,  
Two Aisles Three Shelves, 
Moveable Shelves 

Atmospheric  
Composition 

Local Planetary, 
Earth-like,  
Enriched with CO2 

Plant Monitoring 

None,  
Per plant species, 
Per growth unit,  
Every plant 

Resupply  
Dependency 

Fresh Food,  
Energy Food,  
Quasi-Full Nutrition 

Module Structure 

Rigid,  
Semideployable,  
Deployable,  
In-Situ 

Trace Gas  
Treatment 

None,  
Monitoring,  
Monitoring and  
Separation 

Plant Mixture 
Monoculture, 
Polyculture 

  

Adaptability of  
Internal  
Configuration 

Inflexible,  
Semi-flexible,  
Flexible 

Temperature  
Control 

Whole greenhouse, 
Per plant  species, 
Per growth unit 

Planting  
Sequence 

Staggered,   
Combined, 
Batch 

  

Level of Automation None, Partial, Full       

Q
u
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ti
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Specific Module 
Mass 

[kg/m
2
] 

Photosynthetic  
Period 

[μmol*h/(m
2
*s)] for 

waveband [nm] 
Biomass  
Productivity 

[g/(m
2
*d)],  

[g/(m
3
*d)], 

[g/(kWh*d)] 
Food Provision ≈1000 kcal/(CM*d) 

Total Module Mass [kg] Humidity 53.5 % 
Cultivated Plants 

Lettuce, Strawber-
ry, Sweet Potato 

Power Demand [kW], [kW/m
2
] 

Dimensions L: 5.5 m; D: 2.06 m Air Temperature 21.1 °C Cooling Demand [kW], [kW/m
2
] 

Total Volume 21 m
3
 

Atmospheric  
Pressure 

62 kPa 
Specific  
Growth Area 

8.8 m
2
/CM Water In-/Output [kg/(m

2
*d)] 

Pressurized  
Volume 

21 m
3
 CO2 Partial Pressure 0.062 kPa Total Growth Area 8.8 m

2
 CO2 Intake [kg/(m

2
*d)] 

Specific Cultivation 
Volume 

0.251 m
3
/m

3
 O2 Partial Pressure 21 kPa Growth Height up to 1 m O2 Output [kg/(m

2
*d)] 

Complexity      Crew Size 1 

      Crew Work Load [h/(m
2
*d)] 

      
Psychological 
Health Care 

Procedure 

         

 Legend:  Factor with sufficient Data  Factor with insufficient Data         

X
X

 



  

 

Appendix 3-2: Morphological Box of the Lunar FARM concept 

 Fundamental Factors Environmental Factors Agricultural Factors Interface Factors 

 Name Options/Unit Name Options/Unit Name Options/Unit Name Options/Unit 

Q
u

a
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 F
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Module Shape 

Prismatic,  
Spherical,  
Hemispherical,  
Irregular 

Lighting Type 
Electrical,  
Hybrid,  
Natural 

Growth Medium 
Soil, 
Soil-like, 
Soilless 

Water Purification No, Partial, Full 

Arrangement of 
Growth Area 

Shelves,  
Conveyor,  
Rotating Cylinder,  
Plain 

Lighting Strategy 
Overhead,  
Sidewise,  
Intracanopy 

Nutrient Supply 
Storage, 
Partial Recycling, 
Full Recycling 

Air Revitalization No, Partial, Full 

Distribution  
of Aisles 

Center Aisle Two Shelves, 
Two Aisles Center Shelf,  
Two Aisles Three Shelves, 
Moveable Shelves 

Atmospheric  
Composition 

Local Planetary, 
Earth-like,  
Enriched with CO2 

Plant Monitoring 

None,  
Per plant species, 
Per growth unit,  
Every plant 

Resupply  
Dependency 

Fresh Food,  
Energy Food,  
Quasi-Full Nutrition 

Module Structure 

Rigid,  
Semideployable,  
Deployable,  
In-Situ 

Trace Gas  
Treatment 

None,  
Monitoring,  
Monitoring and  
Separation 

Plant Mixture 
Monoculture, 
Polyculture 

  

Adaptability of  
Internal  
Configuration 

Inflexible,  
Semi-flexible,  
Flexible 

Temperature  
Control 

Whole greenhouse, 
Per plant  species, 
Per growth unit 

Planting  
Sequence 

Staggered,   
Combined, 
Batch 

  

Level of Automation None, Partial, Full       

Q
u

a
n

ti
ta

ti
v
e

 F
a

c
to

rs
 

Specific Module 
Mass 

55.56 kg/m
2
 

Photosynthetic  
Period 

[μmol*h/(m
2
*s)] for 

waveband [nm] 
Biomass  
Productivity 

179.2 g/(m
2
*d) Food Provision 1753 kcal/(CM*d) 

Total Module Mass 8000 kg Humidity 25 – 75 % 

Cultivated Plants 

Beans, Carrot, 
Green Onion, 
Pepper, White 
Potato, Straw-
berry, Tomato, 
Wheat 

Power Demand [kW], [kW/m
2
] 

Dimensions L: 12.0 m; D: 8.0 m Air Temperature 17 – 28 °C Cooling Demand [kW], [kW/m
2
] 

Total Volume 603.2 m
3
 

Atmospheric  
Pressure 

75.5 kPa Water In-/Output 0.252 kg/(m
2
*d) 

Pressurized  
Volume 

432 m
3
 CO2 Partial Pressure 0.02 kPa CO2 Intake [kg/(m

2
*d)] 

Specific Cultivation 
Volume 

0.128 m
3
/m

3
 O2 Partial Pressure 21.1 kPa 

Specific  
Growth Area 

27 m
2
/CM O2 Output 1.0 kg/(m

2
*d) 

Complexity    Total Growth Area 144 m
2
 Crew Size 4.5 

    Growth Height 
0.5 m: 96 m² 
0.3 m: 48 m² 

Crew Work Load 0.069 h/(m
2
*d) 

      
Psychological 
Health Care 

Procedure 

         

 Legend:  Factor with sufficient Data  Factor with insufficient Data         

X
X

I 



  

 

Appendix 3-3: Morphological Box of the BIO-Plex concept 

 Fundamental Factors Environmental Factors Agricultural Factors Interface Factors 

 Name Options/Unit Name Options/Unit Name Options/Unit Name Options/Unit 

Q
u

a
li

ta
ti

v
e

 F
a

c
to

rs
 

Module Shape 

Prismatic,  
Spherical,  
Hemispherical,  
Irregular 

Lighting Type 
Electrical,  
Hybrid,  
Natural 

Growth Medium 
Soil, 
Soil-like, 
Soilless 

Water Purification No, Partial, Full 

Arrangement of 
Growth Area 

Shelves,  
Conveyor,  
Rotating Cylinder,  
Plain 

Lighting Strategy 
Overhead,  
Sidewise,  
Intracanopy 

Nutrient Supply 
Storage, 
Partial Recycling, 
Full Recycling 

Air Revitalization No, Partial, Full 

Distribution  
of Aisles 

Center Aisle Two Shelves, 
Two Aisles Center Shelf,  
Two Aisles Three Shelves, 
Moveable Shelves 

Atmospheric  
Composition 

Local Planetary, 
Earth-like,  
Enriched with CO2 

Plant Monitoring 

None,  
Per plant species, 
Per growth unit,  
Every plant 

Resupply  
Dependency 

Fresh Food,  
Energy Food,  
Quasi-Full Nutrition 

Module Structure 

Rigid,  
Semideployable,  
Deployable,  
In-Situ 

Trace Gas  
Treatment 

None,  
Monitoring,  
Monitoring and  
Separation 

Plant Mixture 
Monoculture, 
Polyculture 

  

Adaptability of  
Internal  
Configuration 

Inflexible,  
Semi-flexible,  
Flexible 

Temperature  
Control 

Whole greenhouse, 
Per plant  species, 
Per growth unit 

Planting  
Sequence 

Staggered,   
Combined, 
Batch 

  

Level of Automation None, Partial, Full       

Q
u

a
n

ti
ta

ti
v
e

 F
a

c
to

rs
 

Specific Module 
Mass 

[kg/m
2
] 

Photosynthetic  
Period 

[μmol*h/(m
2
*s)] for 

waveband [nm] 
Biomass  
Productivity 

[g/(m
2
*d)],  

[g/(m
3
*d)], 

[g/(kWh*d)] 
Food Provision 2200 kcal/(CM*d) 

Total Module Mass [kg] Humidity 65 – 85 % 

Cultivated Plants 

e.g.: Wheat, Rice, 
White Potato, 
Soybean, Peanut, 
Lettuce, Chard, … 

Power Demand [kW], [kW/m
2
] 

Dimensions L: 11.3 m; D: 4.6 m Air Temperature 16 – 35 °C Cooling Demand [kW], [kW/m
2
] 

Total Volume 187.8 m
3
 

Atmospheric  
Pressure 

101 kPa Water In-/Output [kg/(m
2
*d)] 

Pressurized  
Volume 

187.8 m
3
 CO2 Partial Pressure 0.03 – 1.0 kPa Total Growth Area 82.4 m

2
 CO2 Intake [kg/(m

2
*d)] 

Specific Cultivation 
Volume 

0.227 m
3
/m

3
 O2 Partial Pressure 20 – 24 kPa 

Specific  
Growth Area 

20.6 m
2
/CM O2 Output [kg/(m

2
*d)] 

Complexity    

Growth Height 

0.40 m: 6.6 m² 
0.44 m: 6.6 m² 
0.50 m: 56.8 m² 
0.70 m: 12.4 m² 

Crew Size 4 

    Crew Work Load [h/(m
2
*d)] 

    
Psychological 
Health Care 

Procedure 

         

 Legend:  Factor with sufficient Data  Factor with insufficient Data         

X
X

II 



  

 

Appendix 4-1: Selected Evaluation Criteria 

 Fundamental Factors Environmental Factors Agricultural Factors Interface Factors 

 Name Options/Unit Name Options/Unit Name Options/Unit Name Options/Unit 

Q
u

a
li

ta
ti

v
e

 F
a

c
to

rs
 

Module Shape 

Prismatic,  
Spherical,  
Hemispherical,  
Irregular 

Lighting Type 
Electrical,  
Hybrid,  
Natural 

Growth Medium 
Soil, 
Soil-like, 
Soilless 

Water Purification No, Partial, Full 

Arrangement of 
Growth Area 

Shelves,  
Conveyor,  
Rotating Cylinder,  
Plain 

Lighting Strategy 
Overhead,  
Sidewise,  
Intracanopy 

Nutrient Supply 
Storage, 
Partial Recycling, 
Full Recycling 

Air Revitalization No, Partial, Full 

Distribution  
of Aisles 

Center Aisle Two Shelves, 
Two Aisles Center Shelf,  
Two Aisles Three Shelves, 
Moveable Shelves 

Atmospheric  
Composition 

Local Planetary, 
Earth-like,  
Enriched with CO2 

Plant Monitoring 

None,  
Per plant species, 
Per growth unit,  
Every plant 

Resupply  
Dependency 

Fresh Food,  
Energy Food,  
Quasi-Full Nutrition 

Module Structure 

Rigid,  
Semideployable,  
Deployable,  
In-Situ 

Trace Gas  
Treatment 

None,  
Monitoring,  
Monitoring and  
Separation 

Plant Mixture 
Monoculture, 
Polyculture 

  

Adaptability of  
Internal  
Configuration 

Inflexible,  
Semi-flexible,  
Flexible 

Temperature  
Control 

Whole greenhouse, 
Per plant  species, 
Per growth unit 

Planting  
Sequence 

Staggered,    
Combined, 
Batch 

  

Level of Automation None, Partial, Full       

Q
u

a
n

ti
ta

ti
v
e

 F
a

c
to

rs
 

Specific Module 
Mass 

[kg/m
2
] 

Photosynthetic  
Period 

[μmol*h/(m
2
*s)] for 

waveband [nm] 
Biomass  
Productivity 

[g/(m
2
*d)],  

[g/(m
3
*d)], 

[g/(kWh*d)] 
Food Provision 

[kcal/(CM*d)], 
[g/(CM*d)] 

Total Module Mass [kg] Humidity [g/cm
3
], [%] Cultivated Plants Species: [m

2
] Power Demand [kW], [kW/m

2
] 

Dimensions [m] Air Temperature [°C] Total Growth Area [m
2
] Cooling Demand [kW], [kW/m

2
] 

Total Volume [m
3
] 

Atmospheric  
Pressure 

[kPa] 
Specific  
Growth Area 

[m
2
/CM] Water In-/Output [kg/(m

2
*d)] 

Pressurized  
Volume 

[m
3
] CO2 Partial Pressure [kPa] Growth Height [m], [m/m

2
] CO2 Intake [kg/(m

2
*d)] 

Specific Cultivation 
Volume 

[m
3
/m

3
] O2 Partial Pressure [kPa]   O2 Output [kg/(m

2
*d)] 

Complexity      Crew Size Number 

      Crew Work Load [h/(m
2
*d)] 

      
Psychological 
Health Care 

Procedure 

         

 Legend:  Selected Evaluation Criteria  Criteria with insufficient Data  Parameters       

X
X
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Appendix 4-2: Calculation of Hierarchy Level 1 

FC:  Fundamental Criteria 

 

EC: Environmental Criteria 

  

AC: Agricultural Criteria 

 

IC: Interface Criteria 

 
 

             

 

Comparison Matrix Normalization 
 

Weighting 
    FC EC AC IC FC EC AC IC Σ Row w 

  FC 1 0.250 0.333 3.000 0.120 0.134 0.094 0.167 0.515 0.129 

  EC 4.000 1 2.000 9.000 0.480 0.537 0.566 0.500 2.083 0.521 

  AC 3.000 0.500 1 5.000 0.360 0.269 0.283 0.278 1.189 0.297 

  IC 0.333 0.111 0.200 1 0.040 0.060 0.057 0.056 0.212 0.053 

  Σ Column 8.333 1.861 3.533 18.000 1.000 1.000 1.000 1.000 4.000 1.000 

  

             

 

Mean Matrix 
        

  FC EC AC IC Σ Row λ 

  

n = 4 

  FC 0.129 0.130 0.099 0.159 0.517 4.013 

      EC 0.515 0.521 0.595 0.477 2.108 4.047 

  

λ_max = 4.038 

  AC 0.387 0.260 0.297 0.265 1.209 4.066 

      IC 0.043 0.058 0.059 0.053 0.213 4.026 

  

CI = 1.27E-02 

  

             n 1 2 3 4 5 6 7 8 9 10 
  R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 
  

             CR = 0.014 
 

Boundary Value = 0.1  
 

       

             Evaluation consistent? Yes 
         

X
X

IV
 



  

 

Appendix 4-3: Calculation of Hierarchy Level 2-FC 

LA: Level of Automation AIC: Adaptability of Internal Configuration SCV: Specific Cultivation Volume 
 AGA: Arrangement of Growth Area MS: Module Structure 

       

             

 

Comparison Matrix Normalization 
 

Weighting 

  LA AIC SCV MS AGA LA AIC SCV MS AGA Σ Row w 

LA 1 3.000 0.200 0.333 0.500 0.088 0.214 0.088 0.085 0.057 0.532 0.106 

AIC 0.333 1 0.333 0.250 0.333 0.029 0.071 0.146 0.064 0.038 0.348 0.070 

SCV 5.000 3.000 1 2.000 4.000 0.441 0.214 0.438 0.511 0.453 2.057 0.411 

MS 3.000 4.000 0.500 1 3.000 0.265 0.286 0.219 0.255 0.340 1.364 0.273 

AGA 2.000 3.000 0.250 0.333 1 0.176 0.214 0.109 0.085 0.113 0.699 0.140 

Σ Column 11.333 14.000 2.283 3.917 8.833 1.000 1.000 1.000 1.000 1.000 5.000 1.000 

             

 

Mean Matrix 
       

  LA AIC SCV MS AGA Σ Row λ 

 

n = 5 

  LA 0.106 0.209 0.082 0.091 0.070 0.558 5.251 

     AIC 0.035 0.070 0.137 0.068 0.047 0.357 5.124 

 

λ_max = 5.350 

  SCV 0.532 0.209 0.411 0.546 0.559 2.257 5.486 

     MS 0.319 0.279 0.206 0.273 0.419 1.495 5.481 

 

CI = 8.74E-02 

  AGA 0.213 0.209 0.103 0.091 0.140 0.755 5.406 

     

             n 1 2 3 4 5 6 7 8 9 10 
  R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

  

             CR = 0.079 

 

Boundary Value = 0.1 

       

             Evaluation consistent? Yes 
         

X
X

V
 



  

 

Appendix 4-4: Calculation of Hierarchy Level 3-FC-LA 

Level of Automation 
          

             

 

Comparison Matrix Normalization 
 

Weighting 
    

  None Partial Full None Partial Full Σ Row w 

    None 1 0.333 0.111 0.077 0.045 0.087 0.209 0.070 

    Partial 3.000 1 0.167 0.231 0.136 0.130 0.498 0.166 

    Full 9.000 6.000 1 0.692 0.818 0.783 2.293 0.764 

    Σ Column 13.000 7.333 1.278 1.000 1.000 1.000 3.000 1.000 

    

             

 

Mean Matrix 
         

  None Partial Full Σ Row λ 

   

n = 3 

  None 0.070 0.055 0.085 0.210 3.009 

       Partial 0.209 0.166 0.127 0.503 3.030 

   

λ_max = 3.054 

  Full 0.628 0.995 0.764 2.388 3.124 

       

         

CI = 2.72E-02 

  

             n 1 2 3 4 5 6 7 8 9 10 
  R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 
  

             CR = 0.052 

 

Boundary Value = 0.1 

       

             Evaluation consistent? Yes 
          

X
X

V
I 



  

 

Appendix 4-5: Calculation of Hierarchy Level 3-FC-AIC 

Adaptability of Internal Configuration 
        

           

 

Comparison Matrix Normalization 
 

Weighting 
  

  Inflexible Semiflexible Flexible Inflexible Semiflexible Flexible Σ Row w 

  Inflexible 1 0.250 0.143 0.083 0.048 0.103 0.234 0.078 

  Semiflexible 4.000 1 0.250 0.333 0.190 0.179 0.703 0.234 

  Flexible 7.000 4.000 1 0.583 0.762 0.718 2.063 0.688 

  Σ Column 12.000 5.250 1.393 1.000 1.000 1.000 3.000 1.000 

  

           

           

 

Mean Matrix 
         Inflexible Semiflexible Flexible Σ Row λ 

   

n = 3 

Inflexible 0.078 0.059 0.098 0.235 3.015 

     Semiflexible 0.311 0.234 0.172 0.718 3.062 

   

λ_max = 3.077 

Flexible 0.545 0.938 0.688 2.170 3.156 

     

         

CI = 3.87E-02 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.075 
 

Boundary Value = 0.1 
     

           Evaluation consistent? Yes 
        

X
X

V
II 



  

 

Appendix 4-6: Calculation of Hierarchy Level 3-FC-SCV 

  LGH Lunar FARM BIO-Plex 

Specific Cultivation Volume 0.25121 0.12824 0.22696 

    Weighting 0.414 0.211 0.374 

 

X
X

V
III 



  

 

Appendix 4-7: Calculation of Hierarchy Level 3-FC-MS 

Module Structure 
          

           

 

Comparison Matrix Normalization 
 

Weighting 

  
Rigid 

Semi-
deployable 

Deployable In-Situ Rigid 
Semi-

deployable 
Deployable In-Situ Σ Row w 

Rigid 1 0.250 0.500 0.167 0.077 0.067 0.077 0.083 0.304 0.076 

Semideployable 4.000 1 2.000 0.500 0.308 0.267 0.308 0.250 1.132 0.283 

Deployable 2.000 0.500 1 0.333 0.154 0.133 0.154 0.167 0.608 0.152 

In-Situ 6.000 2.000 3.000 1 0.462 0.533 0.462 0.500 1.956 0.489 

Σ Column 13.000 3.750 6.500 2.000 1.000 1.000 1.000 1.000 4.000 1.000 

           

 

Mean Matrix 
      

  
Rigid 

Semi-
deployable 

Deployable In-Situ Σ Row λ 

  

n = 4 

Rigid 0.076 0.071 0.076 0.082 0.304 4.005 

    Semideployable 0.304 0.283 0.304 0.245 1.135 4.011 

  

λ_max = 4.010 

Deployable 0.152 0.142 0.152 0.163 0.608 4.005 

    In-Situ 0.456 0.566 0.456 0.489 1.967 4.021 

  

CI = 3.45E-03 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.004 

 

Boundary Value = 0.1 

     

           Evaluation consistent? Yes 
        

X
X

IX
 



  

 

Appendix 4-8: Calculation of Hierarchy Level 3-FC-AGA 

Arrangement of Growth Area 
        

           

 

Comparison Matrix Normalization 
 

Weighting 

  
Shelves Conveyor 

Rotating 
Cylinder 

Plain Shelves Conveyor 
Rotating 
Cylinder 

Plain Σ Row w 

Shelves 1 3.000 5.000 9.000 0.608 0.646 0.600 0.450 2.304 0.576 

Conveyor 0.333 1 2.000 7.000 0.203 0.215 0.240 0.350 1.008 0.252 

Rotating Cylinder 0.200 0.500 1 3.000 0.122 0.108 0.120 0.150 0.499 0.125 

Plain 0.111 0.143 0.333 1 0.068 0.031 0.040 0.050 0.188 0.047 

Σ Column 1.644 4.643 8.333 20.000 1.000 1.000 1.000 1.000 4.000 1.000 

           

 

Mean Matrix 
        Shelves Conveyor 

Rotating 
Cylinder 

Plain Σ Row λ 

  

n = 4 

Shelves 0.576 0.756 0.624 0.424 2.380 4.132 

    Conveyor 0.192 0.252 0.250 0.330 1.023 4.060 

  

λ_max = 4.066 

Rotating Cylinder 0.115 0.126 0.125 0.141 0.507 4.064 

    Plain 0.064 0.036 0.042 0.047 0.189 4.008 

  

CI = 2.20E-02 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.025 

 

Boundary Value = 0.1 

     

           Evaluation consistent? Yes 
        

X
X

X
 



  

 

Appendix 4-9: Calculation of Hierarchy Level 2-EC 

LT: Lighting Type LS: Lighting Strategy 
 

AtC: Atmospheric Composition 
 

TC: Temperature Control 

           

 

Comparison Matrix Normalization 
 

Weighting 

  LT LS AtC TC LT LS AtC TC Σ Row w 

LT 1 3.000 2.000 5.000 0.492 0.409 0.522 0.455 1.877 0.469 

LS 0.333 1 0.333 3.000 0.164 0.136 0.087 0.273 0.660 0.165 

AtC 0.500 3.000 1 2.000 0.246 0.409 0.261 0.182 1.098 0.274 

TC 0.200 0.333 0.500 1 0.098 0.045 0.130 0.091 0.365 0.091 

Σ Column 2.033 7.333 3.833 11.000 1.000 1.000 1.000 1.000 4.000 1.000 

           

 

Mean Matrix 
        LT LS AtC TC Σ Row λ 

  

n = 4 

LT 0.469 0.495 0.549 0.456 1.970 4.197 

    LS 0.156 0.165 0.091 0.274 0.687 4.162 

  

λ_max = 4.204 

AtC 0.235 0.495 0.274 0.183 1.187 4.324 

    TC 0.094 0.055 0.137 0.091 0.377 4.134 

  

CI = 6.81E-02 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.076 
 

Boundary Value = 0.1 
     

           Evaluation consistent? Yes 
        

X
X

X
I 



  

 

Appendix 4-10: Calculation of Hierarchy Level 3-EC-LT 

Lighting Type 
         

           

 

Comparison Matrix Normalization 
 

Weighting 
  

  Electrical Hybrid Natural Electrical Hybrid Natural Σ Row w 

  Electrical 1 3.000 1.000 0.429 0.429 0.429 1.286 0.429 

  Hybrid 0.333 1 0.333 0.143 0.143 0.143 0.429 0.143 

  Natural 1.000 3.000 1 0.429 0.429 0.429 1.286 0.429 

  Σ Column 2.333 7.000 2.333 1.000 1.000 1.000 3.000 1.000 

  

           

 

Mean Matrix 
       

  Electrical Hybrid Natural Σ Row λ 

   

n = 3 

Electrical 0.429 0.429 0.429 1.286 3.000 

     Hybrid 0.143 0.143 0.143 0.429 3.000 

   

λ_max = 3.000 

Natural 0.429 0.429 0.429 1.286 3.000 

     

         

CI = 0.00E+00 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.000 

 

Boundary Value = 0.1 

     

           Evaluation consistent? Yes 
        

X
X

X
II 



  

 

Appendix 4-11: Calculation of Hierarchy Level 4-EC-LT-EL 

HPS: High Pressure Sodium MH: Metal Halide LED: Light Emitting Diode 
     

             

 

Comparison Matrix Normalization 
 

Weighting 

  HPS MH Fluorescent Sulfur Lamps LED HPS MH Fluorescent Sulfur Lamps LED Σ Row w 

HPS 1 2.000 1.000 0.333 0.125 0.074 0.100 0.074 0.069 0.074 0.391 0.078 

MH 0.500 1 0.500 0.167 0.111 0.037 0.050 0.037 0.034 0.066 0.224 0.045 

Fluorescent 1.000 2.000 1 0.333 0.125 0.074 0.100 0.074 0.069 0.074 0.391 0.078 

Sulfur Lamps 3.000 6.000 3.000 1 0.333 0.222 0.300 0.222 0.207 0.197 1.148 0.230 

LED 8.000 9.000 8.000 3.000 1 0.593 0.450 0.593 0.621 0.590 2.846 0.569 

Σ Column 13.500 20.000 13.500 4.833 1.694 1.000 1.000 1.000 1.000 1.000 5.000 1.000 
 

            

 

Mean Matrix 
       

  HPS MH Fluorescent Sulfur Lamps LED Σ Row λ 

 

n = 5 

  HPS 0.078 0.090 0.078 0.077 0.071 0.394 5.036 

     MH 0.039 0.045 0.039 0.038 0.063 0.225 5.009 

 

λ_max = 5.047 

  Fluorescent 0.078 0.090 0.078 0.077 0.071 0.394 5.036 

     Sulfur Lamps 0.235 0.269 0.235 0.230 0.190 1.157 5.041 

 

CI = 1.19E-02 

  LED 0.625 0.403 0.625 0.689 0.569 2.912 5.116 

     

             n 1 2 3 4 5 6 7 8 9 10 

  R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

  

             CR = 0.011 
 

Boundary Value = 0.1 
       

             Evaluation consistent? Yes 
          

X
X

X
III 



  

 

Appendix 4-12: Calculation of Hierarchy Level 4-EC-LT-NL 

Natural Lighting 
         

           

 

Comparison Matrix Normalization 
 

Weighting 
    

  Direct Indirect Direct Indirect Σ Row w 

    Direct 1 0.143 0.125 0.125 0.250 0.125 

    Indirect 7.000 1 0.875 0.875 1.750 0.875 

    Σ Column 8.000 1.143 1.000 1.000 2.000 1.000 

    

           

 

Mean Matrix 
        

  Direct Indirect Σ Row λ 

    

n = 2 

Direct 0.125 0.125 0.250 2.000 

      Indirect 0.875 0.875 1.750 2.000 

    

λ_max = 2.000 

           

         

CI = 0.00E+00 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.000 
 

Boundary Value = 0.1 
     

           Evaluation consistent? Yes 
        

X
X

X
IV

 



  

 

Appendix 4-13: Calculation of Hierarchy Level 3-EC-LS 

Lighting Strategy 
         

           

 

Comparison Matrix Normalization 
 

Weighting 
  

  Overhead Sidewise Intracanopy Overhead Sidewise Intracanopy Σ Row w 

  Overhead 1 5.000 0.333 0.238 0.333 0.231 0.802 0.267 

  Sidewise 0.200 1 0.111 0.048 0.067 0.077 0.191 0.064 

  Intracanopy 3.000 9.000 1 0.714 0.600 0.692 2.007 0.669 

  Σ Column 4.200 15.000 1.444 1.000 1.000 1.000 3.000 1.000 

  

           

 

Mean Matrix 
       

  Overhead Sidewise Intracanopy Σ Row λ 

   

n = 3 

Overhead 0.267 0.319 0.223 0.809 3.026 

     Sidewise 0.053 0.064 0.074 0.192 3.005 

   

λ_max = 3.029 

Intracanopy 0.802 0.574 0.669 2.045 3.057 

     

         

CI = 1.46E-02 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.028 

 

Boundary Value = 0.1 

     

           Evaluation consistent? Yes 
        

X
X

X
V

 



  

 

Appendix 4-14: Calculation of Hierarchy Level 3-EC-AtC 

Atmopsheric Composition 
         

           

 

Comparison Matrix Normalization 
 

Weighting 
  

  
Local Plane-

tary 
Earth-Like 

Enriched with 
CO2 

Local Plane-
tary 

Earth-Like 
Enriched with 

CO2 
Σ Row w 

  Local Planetary 1 1.000 0.111 0.091 0.091 0.091 0.273 0.091 

  Earth-Like 1.000 1 0.111 0.091 0.091 0.091 0.273 0.091 

  Enriched with 
CO2 

9.000 9.000 1 0.818 0.818 0.818 2.455 0.818 

  Σ Column 11.000 11.000 1.222 1.000 1.000 1.000 3.000 1.000 

  

           

 

Mean Matrix 
         Local Plane-

tary 
Earth-Like 

Enriched with 
CO2 

Σ Row λ 

   

n = 3 

Local Planetary 0.091 0.091 0.091 0.273 3.000 

     Earth-Like 0.091 0.091 0.091 0.273 3.000 

   

λ_max = 3.000 

Enriched with 
CO2 

0.818 0.818 0.818 2.455 3.000 

     

         

CI = 0.00E+00 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.000 

 

Boundary Value = 0.1 

     

           Evaluation consistent? Yes 

        

X
X

X
V

I 



  

 

Appendix 4-15: Calculation of Hierarchy Level 3-EC-TC 

Temperature Control 
         

           

 

Comparison Matrix Normalization 
 

Weighting 
  

  

Whole 
Greenhouse 

Per Plant 
Species 

Per Growth 
Unit 

Whole 
Greenhouse 

Per Plant 
Species 

Per Growth 
Unit 

Σ Row w 

  Whole Greenhouse 1 0.333 0.125 0.083 0.077 0.086 0.246 0.082 

  Per Plant Species 3.000 1 0.333 0.250 0.231 0.229 0.709 0.236 

  Per Growth Unit 8.000 3.000 1 0.667 0.692 0.686 2.045 0.682 

  Σ Column 12.000 4.333 1.458 1.000 1.000 1.000 3.000 1.000 

  

           

 

Mean Matrix 
         Whole 

Greenhouse 
Per Plant 
Species 

Per Growth 
Unit 

Σ Row λ 

   

n = 3 

Whole Greenhouse 0.082 0.079 0.085 0.246 3.000 

     Per Plant Species 0.246 0.236 0.227 0.710 3.001 

   

λ_max = 3.002 

Per Growth Unit 0.656 0.709 0.682 2.047 3.003 

     

         

CI = 7.71E-04 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.001 

 

Boundary Value = 0.1 

     

           Evaluation consistent? Yes 
        

X
X

X
V

II 



  

 

Appendix 4-16: Calculation of Hierarchy Level 2-AC 

GM: Growth Medium PM: Plant Mixture PS: Planting Sequence SGA: Specific Growth Area 

           

 

Comparison Matrix Normalization 
 

Weighting 
    GM PM PS GM PM PS Σ Row w 

  GM 1 3.000 4.000 0.632 0.667 0.571 1.870 0.623 

  PM 0.333 1 2.000 0.211 0.222 0.286 0.718 0.239 

  PS 0.250 0.500 1 0.158 0.111 0.143 0.412 0.137 

  Σ Column 1.583 4.500 7.000 1.000 1.000 1.000 3.000 1.000 

  

           

 

Mean Matrix 
       

  GM PM PS Σ Row λ 

   

n = 3 

GM 0.623 0.718 0.549 1.891 3.034 

     PM 0.208 0.239 0.275 0.722 3.014 

   

λ_max = 3.018 

PS 0.156 0.120 0.137 0.413 3.007 

     

         

CI = 9.17E-03 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.018 
 

Boundary Value = 0.1 
     

           Evaluation consistent? Yes 
        

X
X

X
V

III 



  

 

Appendix 4-17: Calculation of Hierarchy Level 3-AC-GM 

Growth Medium 
         

           

 

Comparison Matrix Normalization 
 

Weighting 
  

  Soil Soil-Like Soilless Soil Soil-Like Soilless Σ Row w 

  Soil 1 0.333 0.125 0.083 0.077 0.086 0.246 0.082 

  Soil-Like 3.000 1 0.333 0.250 0.231 0.229 0.709 0.236 

  Soilless 8.000 3.000 1 0.667 0.692 0.686 2.045 0.682 

  Σ Column 12.000 4.333 1.458 1.000 1.000 1.000 3.000 1.000 

  

           

 

Mean Matrix 
       

  Soil Soil-Like Soilless Σ Row λ 

   

n = 3 

Soil 0.082 0.079 0.085 0.246 3.000 

     Soil-Like 0.246 0.236 0.227 0.710 3.001 

   

λ_max = 3.002 

Soilless 0.656 0.709 0.682 2.047 3.003 

     

         

CI = 7.71E-04 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.001 

 

Boundary Value = 0.1 

     

           Evaluation consistent? Yes 
        

X
X

X
IX

 



  

 

Appendix 4-18: Calculation of Hierarchy Level 4-AC-GM-S 

Soil 
          

           

 

Comparison Matrix Normalization 
 

Weighting 
    

  
Terrestrial 

Extraterres-
trial 

Terrestrial 
Extraterres-

trial 
Σ Row w 

    Terrestrial 1 0.250 0.200 0.200 0.400 0.200 

    Extraterrestrial 4.000 1 0.800 0.800 1.600 0.800 

    Σ Column 5.000 1.250 1.000 1.000 2.000 1.000 

    

           

 

Mean Matrix 
        

  
Terrestrial 

Extraterres-
trial 

Σ Row λ 

    

n = 2 

Terrestrial 0.200 0.200 0.400 2.000 

      Extraterrestrial 0.800 0.800 1.600 2.000 

    

λ_max = 2.000 

           

         

CI = 0.00E+00 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.000 

 

Boundary Value = 0.1 

     

           Evaluation consistent? Yes 
        

X
L
 



  

 

Appendix 4-19: Calculation of Hierarchy Level 4-AC-GM-SL 

Soil-Like 
          

           

 

Comparison Matrix Normalization 
 

Weighting 
    

  Organic Inert Organic Inert Σ Row w 

    Organic 1 0.200 0.167 0.167 0.333 0.167 

    Inert 5.000 1 0.833 0.833 1.667 0.833 

    Σ Column 6.000 1.200 1.000 1.000 2.000 1.000 

    

           

 

Mean Matrix 
        

  Organic Inert Σ Row λ 

    

n = 2 

Organic 0.167 0.167 0.333 2.000 

      Inert 0.833 0.833 1.667 2.000 

    

λ_max = 2.000 

           

         

CI = 0.00E+00 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.000 
 

Boundary Value = 0.1 
     

           Evaluation consistent? Yes 
        

X
L

I 



  

 

Appendix 4-20: Calculation of Hierarchy Level 4-AC-GM-SS 

Soilless 
          

           

 

Comparison Matrix Normalization 
 

Weighting 
    

  Hydroponic Aeroponic Hydroponic Aeroponic Σ Row w 

    Hydroponic 1 6.000 0.857 0.857 1.714 0.857 

    Aeroponic 0.167 1 0.143 0.143 0.286 0.143 

    Σ Column 1.167 7.000 1.000 1.000 2.000 1.000 

    

           

 

Mean Matrix 
        

  Hydroponic Aeroponic Σ Row λ 

    

n = 2 

Hydroponic 0.857 0.857 1.714 2.000 

      Aeroponic 0.143 0.143 0.286 2.000 

    

λ_max = 2.000 

           

         

CI = 0.00E+00 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.000 
 

Boundary Value = 0.1 
     

           Evaluation consistent? Yes 
       

X
L

II 



  

 

Appendix 4-21: Calculation of Hierarchy Level 3-AC-PM 

Plant Mixture 
          

           

 

Comparison Matrix Normalization 
 

Weighting 
    

  Monoculture Polyculture Monoculture Polyculture Σ Row w 

    Monoculture 1 5.000 0.833 0.833 1.667 0.833 

    Polyculture 0.200 1 0.167 0.167 0.333 0.167 

    Σ Column 1.200 6.000 1.000 1.000 2.000 1.000 

    

           

 

Mean Matrix 
        

  Monoculture Polyculture Σ Row λ 

    

n = 2 

Monoculture 0.833 0.833 1.667 2.000 

      Polyculture 0.167 0.167 0.333 2.000 

    

λ_max = 2.000 

           

         

CI = 0.00E+00 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.000 
 

Boundary Value = 0.1 
     

           Evaluation consistent? Yes 
        

X
L

III 



  

 

Appendix 4-22: Calculation of Hierarchy Level 3-AC-PS 

Planting Sequence 
         

           

 

Comparison Matrix Normalization 
 

Weighting 
  

  Staggered Combined Batch Staggered Combined Batch Σ Row w 

  Staggered 1 0.200 1.000 0.143 0.143 0.143 0.429 0.143 

  Combined 5.000 1 5.000 0.714 0.714 0.714 2.143 0.714 

  Batch 1.000 0.200 1 0.143 0.143 0.143 0.429 0.143 

  Σ Column 7.000 1.400 7.000 1.000 1.000 1.000 3.000 1.000 

  

           

 

Mean Matrix 
       

  Staggered Combined Batch Σ Row λ 

   

n = 3 

Staggered 0.143 0.143 0.143 0.429 3.000 

     Combined 0.714 0.714 0.714 2.143 3.000 

   

λ_max = 3.000 

Batch 0.143 0.143 0.143 0.429 3.000 

     

         

CI = 0.00E+00 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.000 

 

Boundary Value = 0.1 

     

           Evaluation consistent? Yes 
        

X
L

IV
 



  

 

Appendix 4-23: Calculation of Hierarchy Level 2-IC 

WP: Water Purification AR: Air Revitalization RD: Resupply Dependency FP: Food Provision 

           

 

Comparison Matrix Normalization 
 

Weighting 

  WP AR RD FP WP AR RD FP Σ Row w 

WP 1 1.000 0.200 0.111 0.063 0.063 0.059 0.065 0.248 0.062 

AR 1.000 1 0.200 0.111 0.063 0.063 0.059 0.065 0.248 0.062 

RD 5.000 5.000 1 0.500 0.313 0.313 0.294 0.290 1.209 0.302 

FP 9.000 9.000 2.000 1 0.563 0.563 0.588 0.581 2.294 0.573 

Σ Column 16.000 16.000 3.400 1.722 1.000 1.000 1.000 1.000 4.000 1.000 

           

 

Mean Matrix 
      

  WP AR RD FP Σ Row λ 

  

n = 4 

WP 0.062 0.062 0.060 0.064 0.248 4.000 

    AR 0.062 0.062 0.060 0.064 0.248 4.000 

  

λ_max = 4.001 

RD 0.310 0.310 0.302 0.287 1.210 4.002 

    FP 0.559 0.559 0.605 0.573 2.296 4.003 

  

CI = 4.63E-04 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.001 
 

Boundary Value = 0.1 
     

           Evaluation consistent? Yes 
        

X
L

V
 



  

 

Appendix 4-24: Calculation of Hierarchy Level 3-IC-WP  

Water Purification 
         

           

 

Comparison Matrix Normalization 
 

Weighting 
  

  No Partial Full No Partial Full Σ Row w 

  No 1 0.250 0.111 0.071 0.077 0.069 0.217 0.072 

  Partial 4.000 1 0.500 0.286 0.308 0.310 0.904 0.301 

  Full 9.000 2.000 1 0.643 0.615 0.621 1.879 0.626 

  Σ Column 14.000 3.250 1.611 1.000 1.000 1.000 3.000 1.000 

  

           

 

Mean Matrix 
       

  No Partial Full Σ Row λ 

   

n = 3 

No 0.072 0.075 0.070 0.217 3.000 

     Partial 0.290 0.301 0.313 0.904 3.001 

   

λ_max = 3.002 

Full 0.652 0.603 0.626 1.881 3.003 

     

         

CI = 7.71E-04 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.001 

 

Boundary Value = 0.1 

     

           Evaluation consistent? Yes 
        

X
L

V
I 



  

 

Appendix 4-25: Calculation of Hierarchy Level 3-IC-AR 

Air Revitalization 
         

           

 

Comparison Matrix Normalization 
 

Weighting 
  

  No Partial Full No Partial Full Σ Row w 

  No 1 0.250 0.111 0.071 0.077 0.069 0.217 0.072 

  Partial 4.000 1 0.500 0.286 0.308 0.310 0.904 0.301 

  Full 9.000 2.000 1 0.643 0.615 0.621 1.879 0.626 

  Σ Column 14.000 3.250 1.611 1.000 1.000 1.000 3.000 1.000 

  

           

 

Mean Matrix 
       

  No Partial Full Σ Row λ 

   

n = 3 

No 0.072 0.075 0.070 0.217 3.000 

     Partial 0.290 0.301 0.313 0.904 3.001 

   

λ_max = 3.002 

Full 0.652 0.603 0.626 1.881 3.003 

     

         

CI = 7.71E-04 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.001 

 

Boundary Value = 0.1 

     

           Evaluation consistent? Yes 
        

X
L

V
II 



  

 

Appendix 4-26: Calculation of Hierarchy Level 3-IC-RD 

Resupply Dependency 
         

           

 

Comparison Matrix Normalization 
 

Weighting 
  

  
Fresh Food Energy Food 

Quasi-Full 
Nutrition 

Fresh Food Energy Food 
Quasi-Full 
Nutrition 

Σ Row w 

  Fresh Food 1 0.200 0.111 0.067 0.048 0.077 0.191 0.064 

  Energy Food 5.000 1 0.333 0.333 0.238 0.231 0.802 0.267 

  Quasi-Full Nutri-
tion 

9.000 3.000 1 0.600 0.714 0.692 2.007 0.669 

  Σ Column 15.000 4.200 1.444 1.000 1.000 1.000 3.000 1.000 

  

   
  

       

 

Mean Matrix 
       

  
Fresh Food Energy Food 

Quasi-Full 
Nutrition 

Σ Row λ 

   

n = 3 

Fresh Food 0.064 0.053 0.074 0.192 3.005 

     Energy Food 0.319 0.267 0.223 0.809 3.026 

   

λ_max = 3.029 

Quasi-Full Nutri-
tion 

0.574 0.802 0.669 2.045 3.057 

     

         

CI = 1.46E-02 

           n 1 2 3 4 5 6 7 8 9 10 

R 0.00 0.00 0.52 0.89 1.11 1.23 1.35 1.40 1.45 1.49 

           CR = 0.028 
 

Boundary Value = 0.1 
     

           Evaluation consistent? Yes 
        

X
L

V
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Appendix 4-27: Calculation of Hierarchy Level 3-IC-FP 

Food Provision 

  LGH Lunar FARM BIO-Plex 

Food Provision [kcal/(CM*d)] 1000 1753 2200 

  
  

  

Optimum = 2300 kcal/(CM*d) 
  

  

Difference to Optimum 1300 547 100 

Weighting 0.061062737 0.145121679 0.793815584 
 

X
L

IX
 



  

 

Appendix 4-28: Local and Global Weighting Factors for each Level of the Hierarchy 

Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 Level 3 Level 4

FC 0,12883 LA 0,10636 None 0,06978 0,00096 EC 0,52084 LT 0,46929 Electrical 0,42857 HPS 0,07818 0,00819

Partial 0,16586 0,00227 MH 0,04483 0,00470

Full 0,76437 0,01047 Fluorescent 0,07818 0,00819

Sulfur Lamp 0,22961 0,02405

AIC 0,06968 Inflexible 0,07784 0,00070 LED 0,56921 0,05963

Semi-flexible 0,23443 0,00210 Hybrid 0,14286 0,03492

Flexible 0,68773 0,00617 Natural 0,42857 Direct 0,12500 0,01309

Indirect 0,87500 0,09166

SCV 0,41138 LGH 0,41426 0,02196

Lunar FARM 0,21148 0,01121 LS 0,16500 Overhead 0,26740 0,02298

BIO-Plex 0,37427 0,01984 Sidewise 0,06374 0,00548

Intracanopy 0,66886 0,05748

MS 0,27287 Rigid 0,07596 0,00267

Semi-deployable 0,28301 0,00995 AtC 0,27442 Local Planetary 0,09091 0,01299

Deployable 0,15192 0,00534 Earth-Like 0,09091 0,01299

In-Situ 0,48910 0,01719 Enriched with CO2 0,81818 0,11694

AGA 0,13971 Shelves 0,57607 0,01037 TC 0,09129 Whole Greenhouse 0,08199 0,00390

Conveyor 0,25202 0,00454 Per Plant Species 0,23645 0,01124

Rotating Cylinder 0,12483 0,00225 Per Growth Unit 0,68156 0,03241

Plain 0,04708 0,00085

Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 Level 3 Level 4

AC 0,29736 GM 0,62322 Soil 0,08199 Terrestrial 0,20000 0,00304 IC 0,05297 WP 0,06208 No 0,07244 0,00024

Extraterrestrial 0,80000 0,01216 Partial 0,30125 0,00099

Soil-Like 0,23645 Organic 0,16667 0,00730 Full 0,62631 0,00206

Inert 0,83333 0,03652

Soilless 0,68156 Hydroponic 0,85714 0,10827 AR 0,06208 No 0,07244 0,00024

Aeroponic 0,14286 0,01804 Partial 0,30125 0,00099

Full 0,62631 0,00206

PM 0,23949 Monoculture 0,83333 0,05935

Polyculture 0,16667 0,01187 RD 0,30236 Fresh Food 0,06374 0,00102

Energy Food 0,26740 0,00428

PS 0,13729 Staggered 0,14286 0,00583 Quasi-Full Nutrition 0,66886 0,01071

Combined 0,71429 0,02916

Batch 0,14286 0,00583 FP 0,57347 LGH 0,06106 0,00185

Lunar FARM 0,14512 0,00441

BIO-Plex 0,79382 0,02411
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Appendix 4-29: Global Weighting Scores for the LGH Concept 

LGH           Total Score   0.31608 

  
       

  

Level 1   Level 2   Level 3   Level 4   Global Weighting 

  
       

  

FC 
 

LA 
 

Partial 
   

0.00227 

  
       

  

  
 

AIC 
 

Inflexible 
   

0.00070 

  
       

  

  
 

SCV 
     

0.02196 

  
       

  

  
 

MS 
 

Deployable 
   

0.00534 

  
       

  

    AGA   Plain       0.00085 

  
       

  

Level 1   Level 2   Level 3   Level 4   Global Weighting 

  
       

  

EC 
 

LT 
 

Electrical 
 

HPS 
 

0.00819 

  
       

  

  
 

LS 
 

Overhead 
   

0.02298 

  
       

  

  
 

AtC 
 

Enriched with CO2 
   

0.11694 

  
       

  

    TC   Whole Greenhouse       0.00390 

  
       

  

Level 1   Level 2   Level 3   Level 4   Global Weighting 

  
       

  

AC 
 

GM 
 

Soilless 
 

Hydroponic 
 

0.10827 

  
       

  

  
 

PM 
 

Polyculture 
   

0.01187 

  
       

  

  
 

PS 
 

Staggered 
   

0.00583 

  
       

  

Level 1   Level 2   Level 3   Level 4   Global Weighting 

  
       

  

IC 
 

WP 
 

Full 
   

0.00206 

  
       

  

  
 

AR 
 

Full 
   

0.00206 

  
       

  

  
 

RD 
 

Fresh Food 
   

0.00102 

  
       

  

    FP           0.00185 



  

LII 

Appendix 4-30: Global Weighting Scores for the Lunar FARM Concept 

Lunar FARM       Total Score   0.51336 

  
       

  

Level 1   Level 2   Level 3   Level 4   Global Weighting 

  
       

  

FC 
 

LA 
 

Partial 
   

0.00227 

  
       

  

  
 

AIC 
 

Semi-flexible 
   

0.00210 

  
       

  

  
 

SCV 
     

0.01121 

  
       

  

  
 

MS 
 

Rigid 
   

0.00267 

  
       

  

    AGA   Shelves       0.01037 

  
       

  

Level 1   Level 2   Level 3   Level 4   Global Weighting 

  
       

  

EC 
 

LT 
 

Natural 
 

Indirect 
 

0.09166 

  
       

  

  
 

LS 
 

Intracanopy 
   

0.05748 

  
       

  

  
 

AtC 
 

Enriched with CO2 
   

0.11694 

  
       

  

    TC   Per Growth Unit       0.03241 

  
       

  

Level 1   Level 2   Level 3   Level 4   Global Weighting 

  
       

  

AC 
 

GM 
 

Soilless 
 

Hydroponic 
 

0.10827 

  
       

  

  
 

PM 
 

Monoculture 
   

0.05935 

  
       

  

    PS   Batch       0.00583 

  
       

  

Level 1   Level 2   Level 3   Level 4   Global Weighting 

  
       

  

IC 
 

WP 
 

Full 
   

0.00206 

  
       

  

  
 

AR 
 

Full 
   

0.00206 

  
       

  

  
 

RD 
 

Energy Food 
   

0.00428 

  
       

  

    FP           0.00441 



  

LIII 

Appendix 4-31: Global Weighting Scores for the BIO-Plex Concept 

BIO-Plex       Total Score   0.45348 

  
       

  

Level 1   Level 2   Level 3   Level 4   Global Weighting 

  
       

  

FC 
 

LA 
 

Partial 
   

0.00227 

  
       

  

  
 

AIC 
 

Semi-flexible 
   

0.00210 

  
       

  

  
 

SCV 
     

0.01984 

  
       

  

  
 

MS 
 

Rigid 
   

0.00267 

  
       

  

    AGA   Shelves       0.01037 

  
       

  

Level 1   Level 2   Level 3   Level 4   Global Weighting 

  
       

  

EC 
 

LT 
 

Electrical 
 

HPS 
 

0.00819 

  
       

  

  
 

LS 
 

Overhead 
   

0.02298 

  
       

  

  
 

AtC 
 

Enriched with CO2 
   

0.11694 

  
       

  

    TC   Per Growth Unit       0.03241 

  
       

  

Level 1   Level 2   Level 3   Level 4   Global Weighting 

  
       

  

AC 
 

GM 
 

Soilless 
 

Hydroponic 
 

0.10827 

  
       

  

  
 

PM 
 

Monoculture 
   

0.05935 

  
       

  

    PS   Combined       0.02916 

  
       

  

Level 1   Level 2   Level 3   Level 4   Global Weighting 

  
       

  

IC 
 

WP 
 

Full 
   

0.00206 

  
       

  

  
 

AR 
 

Full 
   

0.00206 

  
       

  

  
 

RD 
 

Quasi-Full Nutrition 
   

0.01071 

  
       

  

    FP           0.02411 
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Appendix 4-32: Global Weighting Scores for an Optimal Concept 

Optimum         Total Score   0.60430 

  
       

  

Level 1   Level 2   Level 3   Level 4   Global Weighting 

  
       

  

FC 
 

LA 
 

Full 
   

0.01047 

  
       

  

  
 

AIC 
 

Flexible 
   

0.00617 

  
       

  

  
 

SCV 
     

0.02500 

  
       

  

  
 

MS 
 

In-Situ 
   

0.01719 

  
       

  

    AGA   Shelves       0.01037 

  
       

  

Level 1   Level 2   Level 3   Level 4   Global Weighting 

  
       

  

EC 
 

LT 
 

Natural 
 

Indirect 
 

0.09166 

  
       

  

  
 

LS 
 

Intracanopy 
   

0.05748 

  
       

  

  
 

AtC 
 

Enriched with CO2 
   

0.11694 

  
       

  

    TC   Per Growth Unit       0.03241 

  
       

  

Level 1   Level 2   Level 3   Level 4   Global Weighting 

  
       

  

AC 
 

GM 
 

Soilless 
 

Hydroponic 
 

0.10827 

  
       

  

  
 

PM 
 

Monoculture 
   

0.05935 

  
       

  

    PS   Combined       0.02916 

  
       

  

Level 1   Level 2   Level 3   Level 4   Global Weighting 

  
       

  

IC 
 

WP 
 

Full 
   

0.00206 

  
       

  

  
 

AR 
 

Full 
   

0.00206 

  
       

  

  
 

RD 
 

Quasi-Full Nutrition 
   

0.01071 

  
       

  

    FP           0.02500 

 


