
Technical University Munich
Faculty for civil engineering and land surveying
Remote Sensing Technology
Prof. Dr.-Ing. Richard Bamler

Solving Optimization and Inverse Problems in Re-
mote Sensing by using Evolutionary Algorithms

Dipl.Ing. (FH) Peter Fischer

Master Thesis

Editing: 5.11.2012 – 3.05.2013

Study Course: Geodesy and Geoinformation (Master)

Advisor: Diego Loyola, Dr.-Ing. Stefan Auer

2013

Contents I

Contents

1 Introduction 1

2 Optimization methods 3

2.1 Deterministic Local Optimization . 5

2.1.1 Gradient Descent Method . 8

2.1.2 Conjugate Gradient Method . 9

2.1.3 BFGS . 13

2.1.4 Newton Method . 15

2.2 Heuristic Global Optimization . 19

2.2.1 Population, Chromosomes, Genes . 19

2.2.2 Operators . 24

2.2.3 Parallelization . 29

2.2.4 Applications for evolutionary algorithms 30

2.3 Hybrid Methods . 53

2.4 Conclusions concerning the methodology . 63

3 Optimization of an ozone retrieval algorithm 64

3.1 Algorithm design . 65

3.2 Optimization Results . 67

4 Inversion of a cloud retrieval algorithm 70

4.1 Algorithm design . 70

4.2 Optimization results . 72

5 Conclusion 75

Bibliography 76

List of Figures II

List of Figures

2.1 Contour plot of function 2.1 with constraints 2.2 4

2.2 Test function 2.8 for line search algorithms . 7

2.3 GDM applied to function 2.8 . 8

2.4 Fletcher Reeves Method . 11

2.5 PR Method . 12

2.6 BFGS Method for minimizing f(x) 2.8 . 14

2.7 NR for root finding in f(x) 2.31 . 15

2.8 NM for finding local maximum (green) and minimum (red) in f(x) 2.31 17

2.9 quadratic function 2.36 . 18

2.10 NM for finding minimum in f(x) 2.36 . 18

2.11 The general EA framework . 20

2.12 Class diagram . 21

2.13 chromosome with genetic string, stored in a vector 23

2.14 roulette wheel selection . 26

2.15 recombination of two chromosomes . 26

2.16 mutation of a chromosome . 27

2.17 Reinsertion process using elitist strategy . 28

2.18 Plot of function 2.49 in 3D - Space . 32

2.19 Development of Dependent Variable Value function 2.49 32

2.20 Development of Dependent Variable Value function 2.49 33

2.21 Development of Independent Variable Values function 2.49 33

2.22 Rosenbrock function 2.50 . 34

2.23 Influence of Recombination and Mutation Rate on Estimation for f(x) 2.50 35

2.24 Development of Dependent Variable Value in function 2.50 35

2.25 Fittest Population Member Independent Variable Value function 2.50 36

2.26 Independent Variable Mean Value of Population function 2.50 36

2.27 Plot of function 2.51 in 3D - Space . 37

2.28 Influence of Recombination and Mutation Rate on Estimation for function 2.51 . . 38

2.29 Development of Dependent Variable Value in function 2.51 38

2.30 Fittest Population Member Independent Variable Value function 2.51 39

2.31 Independent Variable Mean Value of Population function 2.51 39

2.32 Plot of function 2.52 in 3D - Space without Gaussion noise 40

List of Figures III

2.33 Influence of Recombination and Mutation Rate on Estimation for function 2.52 . . 41

2.34 Development of Dependent Variable Value in function 2.52 41

2.35 Plot of function 2.53 in 3D - Space . 42

2.36 Influence of Recombination and Mutation Rate on Estimation for function 2.53 . . 43

2.37 Development of Population in search space of function 2.53 44

2.38 Development of Dependent Variable Value in function 2.53 44

2.39 Fittest Population Member Independent Variable Value function 2.53 45

2.40 Independent Variable Mean Value of Population function 2.53 45

2.41 Goldstein & Price function 2.54 . 46

2.42 Influence of Recombination and Mutation Rate on Estimation for function 2.54 . . 47

2.43 Development of Dependent Variable Value in function 2.54 47

2.44 Development of Independent Variable Value in function 2.54 47

2.45 Development of Population in search space of function 2.55 48

2.46 Development of Dependent Variable Value in function 2.55 49

2.47 Mean Difference CTH . 50

2.48 Mean Difference COT . 51

2.49 Standard Deviation CTH f(x) . 51

2.50 Standard Deviation COT . 52

2.51 Hybrid Algorithm - local seach comparison . 54

2.52 Histogram: Real minimum - Estimated minimum 55

2.53 Hybrid Algorithm - local seach comparison . 56

2.54 Histogram: Real minimum - Estimated minimum 56

2.55 Hybrid Algorithm - local seach comparison . 57

2.56 Histogram: Real minimum - Estimated minimum 58

2.57 Hybrid Algorithm - local seach comparison . 59

2.58 Histogram: Real minimum - Estimated minimum 60

2.59 Hybrid Algorithm - local seach comparison . 61

2.60 Histogram: Real minimum - Estimated minimum 62

3.1 Class diagram O3 . 65

3.2 Input Vectors . 66

3.3 Total Ozone Column . 66

3.4 Comparison of different Recombination and Mutation Rate combinations 67

3.5 Estimated Optimum . 67

3.6 Range of Residuals for different number of Measurements 68

3.7 Probability Analysis . 69

4.1 Comparison between computed Spectra using estimated cloud parameters and mea-

sured spectra . 71

4.2 Class diagram Clouds . 72

4.3 Residuals for CTH and COT retrieved with multi-threaded genetic algorithm . . . 73

List of Figures IV

4.4 Residuals for CTH and COT retrieved with multi-threaded hybrid genetic algorithm 73

List of Tables V

List of Tables

2.1 Iteration process for minimizing function 2.8 with GDM 8

2.2 Iteration process for minimizing f(x) 2.8 with FR algorithm 11

2.3 Iteration process for minimizing f(x) 2.8 with PR Method 12

2.4 Iteration process for minimizing f(x) 2.8 with BFGS Method 14

2.5 finding root of f(x) 2.31 . 15

2.6 finding local maximum of f(x) 2.31 . 16

2.7 finding local minimum of f(x) 2.31 . 16

2.8 object properties of population . 21

2.9 object properties of chromosome . 22

2.10 object properties of gene . 22

2.11 parameters space function 2.49 . 33

2.12 parameters for testing with function 2.50 . 35

2.13 parameters for testing with function 2.51 . 38

2.14 parameters for testing with function 2.52 . 41

2.15 parameters for testing with function 2.53 . 43

2.16 parameters for function 2.54 . 46

2.17 parameters for testing with function inversion example 48

2.18 cloud parameters and interval boundaries . 50

2.19 Analysis - Hybrid Algorithm on first DeJong function 54

2.20 Analysis - Hybrid Algorithm on Rastrigin function 55

2.21 Analysis - Hybrid Algorithm on fourth De Jong function 57

2.22 Analysis - Hybrid Algorithm on Rosenbrock function 59

2.23 Analysis - Hybrid Algorithm on Goldstein & Price function 61

4.1 parameters for testing with function inversion example 72

Abstract

This thesis objective is the solving of combinatorical and inverse problems in Remote Sensing by

using genetic algorithms. The first part introduces optimization theory. Four different determinis-

tic local search algorithms are reviewed. Differences and similarities between these algorithms are

examined, also their behavior in a representative test domain. Then the theory of evolutionary

computing is explained. It is shown, that evolutionary algorithms are in contrast to the previous

discussed search algorithms not deterministic, but heuristic. Furthermore the difference between

local and global search is pointed out. An genetic algorithm, which is inspired by evolutionary

algorithms, is developed. The program is written in an object oriented style using C++. This

program is tested with several test functions which are common in global optimization literature.

But besides of forward problems, also an inverse problem is solved in this methodology part. It is

shown that the algorithm delivers reasonable results. The algorithm is enhanced with local search

and parallel computation. The proof is made that by merging local and global search, a significant

reduction in the number of function calls can be reached. Moreover by doing hybridization more

robust results are gained. At the end of the methodology part the reader has an overview about

the developed genetic algorithm and the different search strategies.

In the second part two problems in the field of Remote Sensing are solved using genetic algorithms.

The first one is a combinatorical task, which arises in the field of an ozone retrieval algorithm. The

parallelized genetic algorithm is adapted to the specific problem domain. The fitness function is

formulated according to the combinatorical problem, methods are written for the specific tasks like

reading HDF files and starting external processes. Then under different conditions the program

is applied and the results are discussed.

A second problem deals with the retrieval of cloud parameters. This task is an inverse problem

and the genetic algorithm is enhanced with an local search operator. The task is about finding

input parameters that correspond to given measurements. Because of this, a total least squares

approach is selected for the local search. As a result we see that the hybrid approach provides

more accurate results then the pure genetic algorithm.

CHAPTER 1. INTRODUCTION 1

1 Introduction

Optimization is one of the very first topics pupils get in touch with in their high school math

lessons. Even if the term optimization is not used, the driving idea for solving a mathematical

problem is an optimization problem. The first problems are about finding the zero point in curve

discussions, or answering questions like

A baker has x gram meal and y gram barm available. How much buns and prezels

can he produce maximal, if a bun needs xx gram meal and yy gram barm and a pretzel

needs xx gram meal and yy gram barm?

Later in university engineering courses the gained knowledge is applied to various specific problems,

for example fitting of data to a model by minimizing the residuals between the data and the model.

But in contrast to the simple school problems, the real world models which engineers solve are now

more complicated. Terms like linear and non-linear problems, constraints, multi-dimensionality

and much more arise. To succeed in these problem domains students have to know a bigger set of

optimization algorithms, which are often quite different in their behaviors. The clue is to realize

that there’s no ”One fit’s all” solution in optimization theory. It’s up to the engineer to find the

right algorithm for the actual problem. A deeper understanding in optimization theory and the

problem domain is mandatory.

This thesis focuses on the analysis of optimization algorithms - deterministic, heuristic and the

combination of both, hybrid algorithms. The field of application is Remote Sensing. Prior to

real-world application each of the algorithms is applied to test functions.

The idea of combining deterministic and heuristic algorithms is simply explained by the results

they produce. The classical deterministic algorithms produce local solutions, mostly with fast

convergence. The heuristic approach, in this thesis a genetic algorithm with evolution strategy,

tends to find the global solution with slower convergence. By combining both, we want to guarante

that our results always represent the global minimum, furthermore the used computational effort

in terms of function calls should be minimal.

In the first part of this thesis the deterministic algorithms are introduced and their behavior

is explained by applying them to low-dimensional problems. Tables show how these algorithms

converge to their results numerically, figures visualize the iterative process.

The second part introduces the genetic algorithm. Besides of the evolution theory which is the

driving power of this algorithms, the application of this algorithm to an broad range of problems

CHAPTER 1. INTRODUCTION 2

is shown.

The third part gives an idea of how both algorithm families, deterministic and heuristic, can take

profit from each other. This is done by fusing the previous algorithms by means of programming.

The new hybrid algorithm is then applied to the problems of the section before, to show whether

this approach is really beneficial.

At the end of the introduction the programming aspect is briefly discussed. The genetic algorithm

is an own development in C++. For the deterministic algorithms, and also for random numbers,

sorting and other functions, the GNU Scientific Library is used. Furthermore the Boost Library is

included for solving system functions like multi threading and the execution of external processes.

For non programming tasks like analyzing log files and plotting the GNU Octave software is used.

The last part is about application. Here we show a combinatorial and an inversion problem,

which are both related to atmospheric remote sensing. The combinatorical task is in theory quite

different to the problems solved in the test environments, here the strength of genetic algorithms

can be fully used. The inversion problem uses a radiative transfer model, which also includes the

computation of the partial derivatives for the unknown. We apply here an hybrid approach.

CHAPTER 2. OPTIMIZATION METHODS 3

2 Optimization methods

At the beginning some basic naming conventions and definitions have to be introduced. Especially

the understanding of the term ”Optimization” has to be clarified. Nocedal and Wright gave an

intuitive explanation by using the following terms [3]:

• objective - the objective could be the needed time to do a movement, the price of a product

or any combination of quantities that can be represented by a single number.

• variables/unknowns - the objective depends on the variables/unknowns, the goal is to find

the variables/unknowns that optimize the objective.

• constrains - often the variables are restricted, or constrained, in some way. For example, the

time needed for producing a product can’t be negative.

• modeling - the process of identifying the objective, the variables and the constrains is called

modeling. It’s the first and most important step in the optimization process, because the

solution of a problem can only as good as the describing model.

• optimality condition - when the model is set, an algorithm solves the optimization task. After

the application of the algorithm to the model, we need to identify whether the algorithm has

succeeded in finding a solution. Often there are mathematical expressions called optimality

conditions for checking whether the current set of variables is the solution of the problem.

Besides of this general definition a more strict, mathematical formulation can be done.

Optimization is the minimization or maximization of a function subject to con-

straints on its variables.

The following example, adapted from Nocedal [3], fits well for the purpose of illustrating an

optimization task. The following notation is used:

• x is the vector of variables, also called unknowns or parameters

• f is the objective function, a (scalar) function of x that we want to maximize or minimize

• ci are constraint functions, which are scalar functions of x that define certain equations and

inequalities that the unknown vector x must satisfy

CHAPTER 2. OPTIMIZATION METHODS 4

Using this notation, the optimization problem can be written as follows:

min
x∈Rn

f(x) subject to

{
ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

(2.1)

E and I are sets of indices for equality and inequality constraints. A simple example follows,

also adopted from Nocedal and Wright, which helps to visualize these terms. Let’s consider the

problem1

min(x1 − 2)2 + (x2 − 1)2 subject to

{
x21 − x2 ≤ 0

x1 + x2 ≤ 2
(2.2)

We can write this problem in the form

f(x) = (x1 − 2)2 + (x2 − 1)2, x =

[
x1
x2

]
, c(x) =

[
c1(x)

c2(x)

]
=

[
−x21 + x2
−x1 − x2 + 2

]
, I = {1, 2}, E = ∅

(2.3)

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

X
2

X1

Figure 2.1 – Contour plot of function 2.1 with constraints 2.2

1example function 2.1 taken from Nocedal and Wright, page 2

CHAPTER 2. OPTIMIZATION METHODS 5

Figure 2.1 gives an overview of the problem domain. The black lines represent the contours of

f(x), where the function has constant values. The green line represents the border contour of c1
where the inner part fulfills the constraint. The red line represents the border contour of c2 where

the left side fulfills the constraint.

The following problems are all unconstrained. The important thing which should be clear now are

the namings and their related meanings. Later on the variables are also called the independent

and the objectives are also called the dependent of a function.

2.1 Deterministic Local Optimization

By finding the optimum in our case we want to minimize a function. Mathematically the goal is

to min
x
f(x), so we search for the value of x for which f(x) can be minimized. Nocedal and Wright

define this as

”A point x∗ is a local minimizer if there is a neighborhood N of x∗ such that

f(x∗) ≤ f(x) for all x ∈ N [3]”.

There is a broad set of deterministic local optimization algorithms. The methods shown here

follow the form

xk+1 = xk + αkpk (2.4)

and are so called line search algorithms. As the name already suggests, the idea is to move from

an initial starting point x0 to the minimum of the function x∗. If the problem is linear, this can

be solved by just one step. Unfortunately most problems are nonlinear, because of this we need

iterative methods, therefor the indices. αk is a positive skalar called step length and pk is the

search direction. The way these values are computed differ from algorithm to algorithm and are

at least loosly explained in the following.

Search direction

In most cases the search direction should be a descending direction, which can be guaranted by

using pTk∇fk < 0. In our cases the search direction has mostly the form

pk = −B−1k ∇fk (2.5)

If we want to make it simple, Bk is just an identity matrix. Therefor only gradient information is

used. More sophisticated strategies use conjugate gradients, second derivatives or approximations

of the second derivatives.

CHAPTER 2. OPTIMIZATION METHODS 6

Step length

For the step length αk there exist two equations called the Wolfe conditions which are given

without proof by

f(xk + αpk) ≤ f(xk) + c1α∇T
k pk with c1 ∈ (0, 1) (2.6)

∇f(xk + αkpk)
Tpk ≥ c2∇fTk pk with c2 ∈ (c1, 1) (2.7)

Equation 2.6 is also known as Armijo condition whereas equation 2.7 is called curvature condition.

Initially for Newton and quasi Newton algorithms steep length is usually one. For gradient descent

algorithms step length can differ. The constant c1 is often taken as 10−4. In the following examples

we use the implemented multidimensional optimization algorithms of GSL, where step length

computation is included.

The methods to derive the step length and the search direction vary in the different algorithms,

which are introduced in the following subsection. We just focus on the most common algorithms.

Most of them exist in many slightly different styles, so a general view on the algorithms behavior

is chosen. Four algorithms which are available in the GNU Scientific Library are used for testing

and comparison, these are

• Steepest Descent Method, also known as Gradient Descent Method

• Conjugate Gradient Method, Fletcher-Reeves

• Conjugate Gradient Method, Polak-Ribiere

• Quasi Newton Method, BFGS

To ensure completeness, in this introductory section also Newton Method is presented. Later on

it will be neglected, mainly because of the easy access of the GSL algorithms. The algorithms are

now applied to a two-dimensional problem, to compare their performance and get a better feeling

of their behaviour. The two dimensional function 2.8 2 is given by

f(x1, x2) = 2x41 + x42 − 2x21 − 2x22 + 4 sin(x1x2) + 5 (2.8)

with its partial derivatives
df

dx1
= 4x2 cos(x1x2) + 8x31 − 4x1 (2.9)

df

dx2
= 4x1 cos(x1x2) + 4x32 − 4x2 (2.10)

Figure 2.2 shows the behaviour of this function in space.

2example function taken from Schröder, page 347-349

CHAPTER 2. OPTIMIZATION METHODS 7

-1.5
-1

-0.5
0

0.5
1

1.5

X1
-1.5

-1
-0.5

0
0.5

1
1.5

X2

0

5

10

15

20

f(
x
)

Figure 2.2 – Test function 2.8 for line search algorithms

CHAPTER 2. OPTIMIZATION METHODS 8

2.1.1 Gradient Descent Method

The Gradient Descent Method (GDM) is probably one of the most basic line search methods for

optimization. Bkis chosen as an identity matrix, so the basic formula can be simplified as

xn+1 = xn − αn∇f(x) (2.11)

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

← 0← 1
← 2

← 3

← 4

← 5← 6← 7← 8← 9← 10← 11← 12← 13← 14← 15← 16← 17← 18← 19← 20← 21← 22← 23← 24← 25← 26← 27← 28← 29← 30← 31← 32← 33← 34← 35← 36← 37← 38← 39← 40← 41← 42← 43← 44← 45← 46← 47← 48← 49← 50← 51← 52← 53← 54← 55← 56← 57← 58← 59← 60← 61← 62← 63← 64← 65← 66← 67← 68← 69← 70← 71← 72← 73← 74← 75← 76← 77← 78

Figure 2.3 – GDM applied to function 2.8

The idea behind this is quite

simple. If the multivariate

function f(xn) is defined and

differentiable in a neighbor-

hood of a point a, then f(xn)

decreases fastest if one goes

from a in the direction of the

negative gradient of f at a.

Figure 2.3 gives a detailed

overview of the iterative op-

timization process, starting

at x1 = −1.25, x2 = −1.

After 78 iterations with an

initial step length of α =

0.1 the algorithm stops be-

cause no more progress can

be reached. The iteration

process is given in table 2.1.

iteration x1 x2 f(x1, x2)

0 -1.25 -1

1 -1.15947 -0.95753 8.51601

2 -0.98431 -0.86099 7.00505

3 -0.65888 -0.62840 5.48410

4 -0.08304 -0.07306 4.99992
...

...
...

...

75 -1.01211 1.04535 0.57300

76 -1.01183 1.04497 0.57300

77 -1.01127 1.04421 0.57300

78 -1.01127 1.04421 0.57300

Table 2.1 – Iteration process for minimizing function 2.8 with GDM

CHAPTER 2. OPTIMIZATION METHODS 9

2.1.2 Conjugate Gradient Method

Conjugate Gradient Methods (CGM) can be used for solving iterativly large linear systems of

equations but also for solving nonlinear optimization problems [3]. In the first part of this subsec-

tion we derive the method initially suggested by Hestenes and Stiefel [1] for solving linear systems

with positive definite coefficient matrices. In the second subsection, we focus on two optimization

algorithms for nonlinear problems which were introduced by Fletcher and Reeves [2] and by Polak

and Ribiere. Both algorithms perform almost similarly.

Linear Conjugate Gradient Method

CGM can be used for solving linear systems of equations and for optimization. This means we

can solve a system like equation 2.12

Ax = b (2.12)

with A as an n × n matrix. This can be easily reformulated as an optimization problem like

equation 2.13 does.

minφ(x)
def
=

1

2
xTAx− bTx (2.13)

According to Nocedal the gradient of φ equals the residual of the linear system [3], that is

∇φ(x) = Ax− b def= r(x) (2.14)

which leads to

rk = Axk − b (2.15)

The basic CG algorithm can be abstracted like the following3:

Algorithm CG

Given x0;

Set r0 = Ax0 − b, p0 = −r0, k = 0

while rk 6= 0

p0 = −r0, k0 = 0.

αk =
rTk rk
pTkApk

(2.16)

xk+1 = xk + αkpk (2.17)

rk+1 = rk + αkApk (2.18)

βk+1 =
rTk+1rk+1

rTk rk
(2.19)

pk+1 = −rk+1 + βk+1pk (2.20)

3like Nocedal and Wright, p. 112

CHAPTER 2. OPTIMIZATION METHODS 10

k = k + 1 (2.21)

endwhile

Non-Linear Conjugate Gradient Method - Fletcher-Reeves

As shown in equation 2.13 CGM can be used for solving optimization problems. Fletcher and

Reeves (FR) were the first who showed how to solve the nonlinear problem by applying the fol-

lowing algorithm4.

Algorithm FR

Given x0;

Evaluate f0 = f(x0),∇f0 = ∇f(x0);

Set p0 = −∇f0, k = 0;

while ∇fk 6= 0

Compute αk. and set xk+1 = xk + αkpk;

Evaluate ∇fk+1;

βFRk+1 =
∇fTk+1∇fk+1

∇fTk ∇fk
(2.22)

pk+1 = −∇fk+1 + βFRk+1pk (2.23)

k = k + 1 (2.24)

endwhile

Applying the FR algorithm to our previously stated problem leads to the results shown in table

2.2. In figure 2.4 we see that the number of iterations has decreased to 10 in comparison with

GDM with 78 iterations. This is also shown by table 2.2. The more interesting aspect is that the

FR algorithm converges to a different local minimum from that by the GDM, where the dependent

function value is bigger then the previous one.

4like Nocedal and Wright, p. 121

CHAPTER 2. OPTIMIZATION METHODS 11

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

← 0← 1
← 2

← 3

← 4

← 5

← 6

← 7
← 8← 9← 10

Figure 2.4 – Fletcher Reeves Method

iteration x1 x2 f(x1, x2)
0 -1.25 -1
1 -1.15947 -0.95753 8.51601
2 -0.97841 -0.87258 6.99010
3 -0.61628 -0.70268 5.46373
4 0.10797 -0.36289 4.57423
5 0.57684 -0.14292 4.18614
6 0.90067 -0.54709 2.29249
7 1.11902 -0.81960 1.56387
8 0.78807 -0.93101 0.86857
9 0.85365 -0.90894 0.83338
10 0.92196 -0.91996 0.76836

Table 2.2 – Iteration process for minimizing f(x) 2.8 with FR algorithm

CHAPTER 2. OPTIMIZATION METHODS 12

Non-Linear Conjugate Gradient Method - Polak-Ribiere

The algorithm suggested by Polak-Ribiere (PR) is almost equal to the one of FR, at least both

belong to the family of CGM. The main difference is how the parameter βk is computed. In

contrast to equation 2.22 the formula is

βPRk+1 =
∇fTk+1(∇fk+1 −∇fk)

||∇fk||2
(2.25)

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

← 0← 1
← 2

← 3

← 4

← 5

← 6

← 7
← 8← 9

Figure 2.5 – PR Method

iteration x1 x2 f(x1, x2)
0 -1.25 -1
1 -1.15947 -0.95753 8.51601
2 -0.97841 -0.87258 6.99010
3 -0.61628 -0.70268 5.46373
4 0.10797 -0.36289 4.57423
5 0.57684 -0.14292 4.18614
6 0.90007 -0.54757 2.29004
7 1.11884 -0.82145 1.55603
8 0.78603 -0.93149 0.87131
9 0.85476 -0.90877 0.83275

Table 2.3 – Iteration process for minimizing f(x) 2.8 with PR Method

CHAPTER 2. OPTIMIZATION METHODS 13

2.1.3 BFGS

In quasi-Newton methods, Bkis an approximation to the Hessian that is updated at every iteration

by means of a low rank formula. The most popular in this family is the BFGS method, named for

its discoverers Broyden, Fletcher, Goldfarb, and Shanno [3]. Without going into detail the basic

algorithm is given with5

Algorithm BFGS

Given starting point x0, convergence tolerance ε > 0, inverse Hessian approximation H0;

k = 0;

while ||∇fk|| > ε

Compute search direction

pk = −Hk∇fk;
Set xk+1 = xk + αkpk where αk is computed from a line search procedure to satisfy the Wolfe

conditions;

Define sk = xk+1 − xk and yk = ∇fk+1 −∇fk;
Compute Hk+1 by means of;

k = k + 1;

endwhile

The formula for the approximation of the Hessian is

Hk+1 = (I − ρkskyTk)Hk(I − ρkyksTk) + ρksks
T
k (2.26)

with

ρk =
1

yTk sk
(2.27)

and

sk = xk+1 − xk (2.28)

yk = ∇fk+1 −∇fk (2.29)

Applying this algorithm to our problem gives fast convergence, but of course it can’t tell that in

general this approach is superior to the previous mentioned algorithms.

5like Nocedal and Wright, p.140

CHAPTER 2. OPTIMIZATION METHODS 14

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

← 0

← 1

← 2

← 3

← 4← 5← 6

← 7

Figure 2.6 – BFGS Method for minimizing f(x) 2.8

iteration x1 x2 f(x1, x2)
0 -1.25 -1
1 -0.34468 -0.57526 5.02622
2 0.57684 -0.14291 4.18614
3 1.21238 -0.93804 1.76576
4 1.11888 -0.82106 1.55770
5 0.97675 -0.86823 0.97295
6 0.85452 -0.90880 0.83289
7 0.90372 -1.02782 0.50004

Table 2.4 – Iteration process for minimizing f(x) 2.8 with BFGS Method

CHAPTER 2. OPTIMIZATION METHODS 15

2.1.4 Newton Method

Probably the most widely known method for optimization is the Newton method. The matrix Bk

is constructed by taking the exact Hessian ∇2f(xk). Without going to much into detail two quite

similar applications of Newton method are presented here.

Newton-Raphson Method

The Newton-Rhapson (NR) method is well known for finding the root of a function by an iterative

process, formulated as

xn+1 = xn − αn
f(x)

f ′(x)
(2.30)

Let’s assume a simple problem, like Papula suggested [5], with it’s given derivatives6

f(x) = 2.2x3 − 7.854x2 + 6.23x− 22.2411 (2.31)

f ′(x) = 6.6x2 − 15.708x+ 6.23 (2.32)

-100

-50

0

50

100

150

200

250

-2 -1 0 1 2 3 4 5 6

f(
x
)

x

Figure 2.7 – NR for root finding in f(x) 2.31

In our example we use the starting value x0 = 5,

then x1 is the cutting point of the tangent to the

point P (x0, f(x0)) with the x-axes. Under certain

conditions xn+1 lies closer to the root of f . The

process can then be iterated until the change in x

is lower than a given value or equal to zero. Fig-

ure 2.7 gives a geometrical interpretation of the

described method. The blue curve is the graph

of the function f . The red points are located at

the coordinates (xn|f(xn)). The red lines are the

tangents of f at the points (xn|f(xn)). The step

length in this example is constant so that α = 1.

xn value

x0 5

x1 4.0554

x2 3.6523

x3 3.5730

x4 3.5700

x5 3.5700

Table 2.5 – finding root of f(x) 2.31

6example function taken from Papula, page 388

CHAPTER 2. OPTIMIZATION METHODS 16

Newton Method for Optimization

Newton Method (NM) shouldn’t be mixed up with the previous introduced NR Method. The

formula is just slightly different from NR Method. But instead of finding the root of a function,

NM converges to the place where f ′(x) = 0, a so called saddle point of f(x). A saddle point

can represent a minimum or maximum of a function. This means that NM fits well for local

optimization tasks. The formula is

xn+1 = xn − αn
f ′(x)

f ′′(x)
(2.33)

Now we have to enhance the previous example with the second derivative given by

f ′′(x) = 13.2x− 15.708 (2.34)

xn value

x0 -1

x1 -0.012799

x2 0.392325

x3 0.495202

x4 0.502818

x5 0.502861

x6 0.502861

Table 2.6 – finding local maximum of f(x) 2.31

The step length αn is simply taken as 1. The

behavior of this method gets clearer by fig-

ure 2.8. We use the same problem like in the

previous section. Depending on the starting

point a local minimum or a local maximum of

f is found. With the starting point x0 = −1

the method converges to a local maximum

(green points, green tangents), with the start-

ing point x0 = 4 the same method converges

to a local minimum (red points, red tangents).

xn value

x0 4

x1 2.6790

x2 2.0931

x3 1.9030

x4 1.8776

x5 1.8771

x6 1.8771

Table 2.7 – finding local minimum of f(x) 2.31

This example shows the strong impact of the

initialization value x0 for the result of the al-

gorithm. The example is one dimensional.

Later on multidimensional problems are used,

therefor we generalize Newton method. In-

stead of the derivative f ′(x) we use the gra-

dient, ∇f(x). The reciprocal of the second

derivative f ′′(x) is replaced with the inverse

of the Hessian ∇2f(x). So the formula is

xn+1 = xn − αn[∇2f(x)]−1∇f(x) (2.35)

CHAPTER 2. OPTIMIZATION METHODS 17

-100

-50

0

50

100

-2 -1 0 1 2 3 4 5

f(
x
)

x

Newton Method

Figure 2.8 – NM for finding local maximum (green) and minimum (red) in f(x) 2.31

CHAPTER 2. OPTIMIZATION METHODS 18

The calculation is shown by a simple example. Let’s consider a multidimensional problem like

f(x) =
3∑
i=1

ix2i (2.36)

Figure 2.9 gives a two dimensional overview of the function behavior which has it’s minimum at

x1 = x2 = x3 = 0. The correct formulation is

x1,n+1

x2,n+1

x3,n+1

 =

x1,nx2,n
x3,n

− αn


δ2f
δx1δx1

δ2f
δx1δx2

δ2f
δx1δx3

δ2f
δx2δx1

δ2f
δx2δx2

δ2f
δx2δx3

δ2f
δx3δx1

δ2f
δx3δx2

δ2f
δx3δx3


−1 

δf
δx1
δf
δx2
δf
δx3

 (2.37)

-6
-4

-2
0

2
4

6

-6
-4

-2
0

2
4

60

20

40

60

80

100

120

f(
x
)

X1

X2

f(
x
)

Figure 2.9 – quadratic function 2.36

I For the step length αn we take the value 0.5,

the algorithm starts with x1 = x2 = 5. If

we would have taken a step length of one, then

the algorithm would have found the minimum

in one iteration. This is true for all quadratic

problems. The step length of 0.5 is just taken

for illustration purposes, as we see in figure

2.10.

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

x
2

x1

Figure 2.10 – NM for finding minimum in f(x) 2.36

CHAPTER 2. OPTIMIZATION METHODS 19

2.2 Heuristic Global Optimization

Evolutionary Algorithms (EA) are very powerful search and optimization methods in the family of

heuristic optimization methods. The optimal solution is found by searching through a population

of different feasible solutions. After the population is studied in each iteration, the elicits are

selected and are moved to the next generation applying genetic operators. After a sufficient number

of generations, better solutions dominate the search space therefore the population converges

towards the optimal solution [14]. This statement of Bagheri and Deldari describes the idea of

evolutionary algorithms quite well.

But in contrast to the deterministic algorithms introduced in the last section, which often get

trapped in local minimas due to the initial value of the independents, these algorithms converge

mostly to the global minimum. Another difference between deterministic and evolutionary algo-

rithms is that evolutionary algorithms in general don’t require derivatives. Of course there are also

deterministic algorithms which don’t need derivatives, nevertheless this is something worthwhile

to mention.

There are plenty of questions which have to be cleared before a reasonable algorithm setup is

developed. First of all the optimization problem has to be stated in a way that it satisfies the

following definition:

The optimization problem has to be defined by

• a search space Ω,

• an objective function f : Ω→ R which relates every possible solution a function value

• and a comparison relation �∈ {<,>}.

Then the global optima X ⊆ Ω is defined as [6]:

X = {x ∈ Ω| ∨ x′ ∈ Ω : f(x) � f(x′)} (2.38)

The next step is about defining the evolution process. In the most general terms, evolution can be

described as a two-step iterative process, consisting of random variation followed by selection [7].

These two main building blocks variation and selection can be implemented in various ways.

Furthermore the detail operators can be implemented in different ways. A detailed description on

the single classes and methods of the core program is given in the following sections. Figure 2.11

gives a general overview of the evolutionary algorithm framework [24].

2.2.1 Population, Chromosomes, Genes

The starting point of every EA is the initial population. A population consists of members, which

are often called chromosomes. Furthermore the chromosomes consist of a number of gene strings.

CHAPTER 2. OPTIMIZATION METHODS 20

Figure 2.11 – The general EA framework

CHAPTER 2. OPTIMIZATION METHODS 21

Each chromosome with its genes represents a possible solution to the optimization problem. The

program implemented in this work follows the object oriented programming style, this means that

the population, each chromosome and also each gene is an object. The link between the different

classes is shown by the class diagram in figure 2.12.

Figure 2.12 – Class diagram

The variables of the three classes are described more precisely in the following tables.

Parameter Abbreviation data type Meaning
crossover rate XOV static float parameter for the recombination

method
mutation rate MTR static float parameter for the mutation rate
generation gap GAP static float parameter defines number of off-

spring relative to main population
nbr. of individuals NRI static int number of chromosomes in the

population
Chromosomes vChromosome vector vector including the population

<Chromosome> members
selected indexes vSEL vector <int> vector used for the selection process
ranking vRANK vector <int> vector used for fitness assignment

Table 2.8 – object properties of population

CHAPTER 2. OPTIMIZATION METHODS 22

Parameter Abbreviation data type Meaning
real value RVA vector <float> the variables value as float
length LEN static int length describes the number

of used zeros and ones
lower boundary LOB static float lower boundary of variable interval
upper boundary UPB static float upper boundary of variable interval
fitness value FVA float parameter descibing objects fitness

in problem domain
genes vGEN vector <GENES> vector containing the genes
nbr parameters nbr parameters static int number of parameters one

chromosome consists of
f(x) function Value float value of chromosome in

problem domain
genes vGEN vector <GENES> vector containing the genes

Table 2.9 – object properties of chromosome

Parameter Abbreviation data type Meaning
gen alleles genetic string vector <int> vector which contains the single values

values of a gene

Table 2.10 – object properties of gene

CHAPTER 2. OPTIMIZATION METHODS 23

EAs are stochastic processes. The probability values for recombination and mutation influence

the population as a whole, so they are defined as static parameters of the population class. This

is also true for the generation gap, which determines the size of the created sub population with

offspring in each generation. Other parameters are mainly container elements.

The parameters addressing the problem domain like the boundaries and dimension of the search

room are defined on the chromosome level. For the construction of a chromosome, the values

LOB, UPB, nbr parameters and LEN have to be known.

For each dimension of the search room a gene object is constructed by a random process. The

single alleles of the genetic string , the zeros and ones, are stored in the genetic string vector.

To make the linking between the classes clearer, let’s assume a one dimensional problem with a

search space in the interval [0, 15]. Then the user has to state furthermore the length of the genes,

for example 8. Now a new chromosome with one gene can be constructed. The gene will look

somehow like [11010000]. In combination with the chromosome parameters

• c.LEN = 8

• c.LOB = 0

• c.UPB = 15

the real value RVA of x can be computed. This is done by using the formula:

RV A = LOB +
UPB − LOB

2LEN − 1
∗
LEN−1∑
i=0

(GEN [i] ∗ 2i) (2.39)

If we substitute the values of the example, then the real value c.RV A = 0.647 is computed with

RV A = 0 +
15− 0

28 − 1
∗ (1 ∗ 20 + 1 ∗ 21 + 1 ∗ 23) (2.40)

Figure 2.13 shows the chromosome with the genetic string used in the example. By changing

the interval boundaries c.LOB and c.UPB also c.RV A would change, even if the genetic string

doesn‘t change.

Figure 2.13 – chromosome with genetic string, stored in a vector

CHAPTER 2. OPTIMIZATION METHODS 24

The resolution in the interval [LOB;UPB] can be computed with

UPB − LOB
2LEN−1

(2.41)

This means that the resolution behaves reciprocal to the length of the genetic string.

By using this three-level-architecture (population consisting of chromosomes consisting of genes)

scalability of the program is ensured. There are no limitations on the dimensionality of the

objective function. Furthermore a stated problem can be solved several times with different

probability settings and population sizes. The results then can be compared with each other in

order to find the best setup for a given problem.

2.2.2 Operators

The single operators are implemented as methods of the class they affect. For example the

mutation operator works on the single gene, so it’s implemented as a method of the gene class. In

contrast the selection operator works on the whole population, so it’s implemented as a method

of the population class.

Fitness assignment

To assign a fitness value to a population member, two functions are of interest:

• the objective function f(x), it gives a measure of how the chromosome has performed in the

problem domain

• the fitness function g(x), it transforms the value of the objective function into a relative

value of fitness [9], thus:

F (x) = g(f(x)) (2.42)

F (x) must be non-negative. The fitness value of an individual has a great influence on the number

of offspring it will probably produce. Whilst this fitness assignment ensures that each individual

has a probability of reproducing according to its relative fitness, it fails to account for negative

objective function values. A linear transformation which offsets the objective function [11] is often

used prior to fitness assignment, such that

F (x) = a ∗ f(x) + b (2.43)

where a is a positive scaling factor if the optimization is maximizing and negative if we are

minimizing. The offset b is used to ensure that the resulting fitness values are non-negative.

CHAPTER 2. OPTIMIZATION METHODS 25

In addition to this deterministic approach fitness values also can be assigned by statistical rank-

ing [10]. This is especially useful to limit the reproductive range, so that no individual can generate

an excessive number of offspring, which would lead to an premature convergence [8]. Here, in-

dividuals are assigned a fitness value according to their rank in the population rather than their

raw performance. The variable MAX is used to determine the bias, or selective pressure, towards

the most fit individuals. The fitness of individuals in the population is then calculated as

F (xi) = 2−MAX + 2 ∗ (MAX − 1)
xi − 1

Nind − 1
(2.44)

Selection

The selection process is a stochastic process based on the fitness values of the chromosomes. The

selection of individuals can be viewed as two separate processes [8]:

• determination of the number of trials an individual can expect to receive, and

• conversion of the expected number of trials into a discrete number of offspring

The first part is concerned with the transformation of raw fitness values into a real-valued expec-

tation of an individual’s probability to reproduce and is dealt with in the previous subsection as

fitness assignment. The second part is the probabilistic selection of individuals for reproduction

based on the fitness of individuals relative to one another and is sometimes known as sampling.

The basic concept used here is the so called ”Roulette Wheel Selection”. Each individual is

assigned a proportion of a roulette wheel. The size of the proportion is determined by the size of

the fitness value of the individual, thus individuals with high fitness values get a bigger proportion

on the roulette wheel. The range of the roulette wheel is from zero to the sum of all fitness values.

The selection itself is done by ”turning the wheel”. First a random number in the range of the

roulette wheel is generated, then the corresponding individual is selected. The number of selection

processes is determined by the generation gap GAP. For example, if a population consists of 100

individuals and GAP equals 0.7, then 70 selection processes are done. In each single process each

individual can be selected. This also means that an individual can be selected more than once.

The probability P that an individual c of an population p with x individuals is selected is

P =
c.FV A∑x
i=1 ci.FV A

(2.45)

Figure 2.14 shows on the left side a population consisting of 10 chromosomes, and on the right side

the roulette wheel. Each chromosome has its area on the wheel, the size of the area is determined

by the chromosomes fitness value. For a GAP of 0.4, 4 chromosomes are selected.

CHAPTER 2. OPTIMIZATION METHODS 26

Figure 2.14 – roulette wheel selection

Recombination

Recombination is the basic operator to ”produce” new chromosomes. The connection to biology

is quite strong. The genetic material of two existing chromosomes is recombined, like in nature

where two individuals offspring carries the genetic material of both parents. The operator itself

is designed quite simple. Single-point crossover is used, this means that the genetic strings are

cut in two parts at one point and then are recombined with each other. As crossing point the

mid-position of the gene string is used. The figure 2.15 illustrates the recombination operator.

The chromosomes ci and cj are recombined with each other.

Figure 2.15 – recombination of two chromosomes

Mutation

Mutation is the second operator besides of recombination which helps to explore search space. In

natural evolution, mutation is a random process where one allele of a gene is replaced by another

to produce a new genetic structure [8]. In Genetic Algorithms, mutation is randomly applied with

low probability, typically in the range 0.001 and 0.01, and modifies single elements in the genetic

CHAPTER 2. OPTIMIZATION METHODS 27

string. Another more general way to compute mutation probability P is

P =
0.7

vGen.length()
(2.46)

vGen.length() is the length of the gen string. This value is selected as it implies that the probability

of any one element of a chromosome being mutated is approximately 0.5 [11]. Usually considered

as a background operator, the role of mutation is often seen as providing a guarantee that the

probability of searching any given string will never be zero and acting as a safety net to recover

good genetic material that may be lost through the action of selection and crossover [11]. Figure

2.16 illustrates the mutation process. The genes of the chromosome ci mutate at three positions.

The genes are binary encoded, so mutation means change from zero to one respectively one to

zero.

Figure 2.16 – mutation of a chromosome

Reinsertion

Once a new population has been produced by selection, recombination and mutation of individuals

from the old population, the fitness of the individuals in the new population may be determined [8].

In the case where the number of new individuals produced at each generation is one or two, the

GA is said to be steady-state [12] or incremental [13]. If one or more of the most fit individuals is

deterministically allowed to propagate through successive generations then the GA is said to use

an elitist strategy [8].

In figure 2.17 such a reinsertion process is shown. In the upper left panel the population is shown,

in the upper right panel the created offspring off this population. In the middle the fitness values

for each chromosome of the population and the offspring are illustrated with columns. Now for

each offspring chromosome it is controlled whether an less fit chromosome exists in the population.

If yes, then the offspring is reinserted and the replaced chromosome is deleted. The lower part

of the figure shows on the left the new population, on the right the chromosomes which were

replaced.

CHAPTER 2. OPTIMIZATION METHODS 28

Figure 2.17 – Reinsertion process using elitist strategy

CHAPTER 2. OPTIMIZATION METHODS 29

2.2.3 Parallelization

Until recent years, sequential GAs have received the greatest attention from the research commu-

nity. However, parallel GAs have many interesting unique features that deserve in-depth analy-

sis [18] [19]. These characteristics include [20]

• the reduction of the time to locate a solution (faster algorithms),

• the reduction of the number of function evaluations (cost of the search)

• the possibility of having larger populations thanks to the parallel platforms used for running

the algorithms, and

• the improved quality of the solutions worked out.

For the algorithm developed in this work thread-level parallelism is included with an steering

mechanism to avoid a thread overhead on the physical available cores. The focus lies on run time

reduction of the algorithm. For the implementation the freely available C++ library Boost version

1.51.0 is used 7.

The algorithm calls the objective function for each chromosome in parallel. This means that when

for the population members the objective function is called, depending on the number of available

cores of the CPU multiple threads are added to a thread group. Each thread calculates for one

chromosome the objective function. By doing so it is ensured that always 100 % of the available

CPU power is used. The reduction of runtime is almost direct proportional to the number of

cores.

1 int x = Boost : : Thread : : g e t n b r o f C o r e s () ;

2 Boost : : thread group threadGroup ;

3

4 do {
5 for (int j = 0 ; j < x ; j ++) {
6

7 i f (int i < vChromosome . l ength ()) {
8

9 createThread (ob j e c t i veFunct i on (parameters)) ;

10

11 }
12

13 i ++;

14

15 }
16 threadGroup . j o i n () ;

17 }while (i < vChromosome . l ength ()) ;

Listing 2.1 – Parallelization of objective function call using Boost

7available from: www.Boost.org

CHAPTER 2. OPTIMIZATION METHODS 30

2.2.4 Applications for evolutionary algorithms

In order to evaluate the developed genetic algorithms and the influence of different parameters

for mutation rate, population size and population gap, the settings are tested on a set of func-

tions. These test functions can be described by different mathematical properties such as (for

completeness the definitions are stated):

• continuous / non-continuous

According to [16] by using the Epsilon-Delta-criterion it can be said that the

function f : D → R is steady in ξ ∈ D if in each ε > 0 a δ > 0 exists so that for

all x ∈ D with |x− ξ| < delta it is true:

|f(x)− f(ξ)| < ε (2.47)

• convex / non-convex

a function f : D → R defined on an interval x1 ≤ x ≤ x2 is called convex if the

graph of the function lies below the line segment joining any two points of the

graph [25].

• unimodal / multimodal

a function f : D → R is a unimodal function if for some value m, it is monotoni-

cally increasing for x ≤ m and monotonically decreasing for x ≥ m. In that case,

the maximum value of f(x) is f(m) and there are no other local maxima [26].

• quadratic / non-quadratic

According to [27] a quadratic function is a polynomial function of the form

f(x) = ax2 + bx+ c (2.48)

• low dimensional / high dimensional

• with or without Gaussian noise

The idea of this different test functions was originally stated by De Jong [9]. But instead of

copying the five functions introduced by De Jong, an extended set of test functions is used. De

Jong introduced five function, from which the function one to four is used. Then as enhancement

Rastrigin function and Goldstein & Price function are added. For finalizing the task the last two

problems are

• a function inversion problem, which is described by Reed and Marks [15]

• a function inversion problem targeting the retrieval of cloud parameters

CHAPTER 2. OPTIMIZATION METHODS 31

The last task is done with one, two, and three unknown. This example is especially interesting

because in contrast to the previous examples it solves a real world problem instead of a theoretical

one.

The testing of the Evolutionary Algorithm on each of the functions is done by two steps. At first

the influence of the recombination and mutation rate on the quality of the minimum estimation

has to be quantified. Because we know the global minimum we can quantify the quality by means

of

• mean difference between real minimum and simulated minimum

• standard deviation of the difference between real minimum simulated minimum

As mutation rate values in the range from 0.01 to 0.09 with an step length of 0.01 are used. For

recombination rate the values 0.6, 0.7, 0.8 and 0.9 are used. Each possible solution of both factors

is computed 1000 times. The results of this runs are stored in logfiles and visualized on graph

plots. As a result of this test series the best fitting recombination and mutation rate for the given

problem can be found.

Then a detailed look is taken on the behavior of the algorithm for the optimal setup which was

obtained before. A table shows the chosen rates and other characteristics like population size,

number of generations until convergence is assured and so on. Four more figures are included here

for visualization purposes.

• one figure showing how the value of the dependent variable of the fittest population member

changes over each generation - by interpreting this figure we can make a statement how fast

the optimum was found

• one figure showing how the mean value of the dependent variable of the whole population

member changes over each generation - this depicts how the whole simulation converges to

the probable minimum

• one figure visualizing the independent values of the fittest population member over the

evolution process

• one figure for the mean value of the independent variable of the whole population during

the evolution process

By interpreting these four figures a deeper understanding of the algorithm behavior and the

evolution process is possible. Weaknesses and uncertainties can also be determined. At least it

is possible to make a statement whether the algorithm fits for the problem and how reliable the

results are.

CHAPTER 2. OPTIMIZATION METHODS 32

Test function one

The first test function is given by

f(x) =
3∑
i=1

x2i (2.49)

-4
-2

0
2

4

-4

-2

0

2

4
0

10

20

30

40

50

Figure 2.18 – Plot of function 2.49 in 3D - Space

It is a simple sphere which is con-

tinuous, convex, unimodal, qua-

dratic and low dimensional. No

noise is added. As seen from fig-

ure 2.18, the function fits quite

well for deterministic methods like

Newton. The analysis of the differ-

ent combinations of recombination

and mutation rates shows clearly,

that for minimizing the difference

between real minimum and simu-

lated minimum a mutation rate of

0.04 has to be chosen. The influ-

ence of the recombination rate can

be neglected, for the in depth anal-

ysis a value of 0.7 was chosen. As proof figure 2.19(a) and figure 2.19(b) are added. Another finding

here is that a raising mutation rate also means a raising standard deviation in the estimates, what

at least is plausible by the nature of the mutation operator.

-20

-15

-10

-5

0

5

0 0.02 0.04 0.06 0.08 0.1

M
ea

n
D

iff
er

en
ce

R
ea

l
M

in
im

u
m

m
in

u
s

si
m

u
la

te
d

M
in

im
u

m

Mutation Rate

Influence of Recombination Rate and Mutation Rate on DeJong01 simulation

Recombination Rate 0.6
Recombination Rate 0.7
Recombination Rate 0.8
Recombination Rate 0.9

(a) Mean Difference f(x∗)− f(x̂)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.02 0.04 0.06 0.08 0.1

S
ta

n
d

ar
d

D
ev

ia
ti

on
R

ea
l

M
in

im
u

m
m

in
u
s

si
m

u
la

te
d

M
in

im
u

m

Mutation Rate

Influence of Recombination Rate and Mutation Rate on accuracy of DeJong01 simulation

Recombination Rate 0.6
Recombination Rate 0.7
Recombination Rate 0.8
Recombination Rate 0.9

(b) Standard Deviation f(x∗)− f(x̂)

Figure 2.19 – Development of Dependent Variable Value function 2.49

CHAPTER 2. OPTIMIZATION METHODS 33

Parameter value

Population size 50 chromosomes

Nbr. of generations 78

Generation gap 0.85

Mutation rate 0.04

Crossover rate 0.7

gene length 11

search space [−5.12 : 0.01 : 5.12]

possible solutions (512)3

MAX f(±5.12, ...,±5.12) = 78.6

MIN f(0, 0, 0) = 0

Table 2.11 – parameters space function 2.49

Table 2.11 lists the parameters which were

used for the detailed view on an opti-

mization process. The dependent variables

value converges fast to the global minimum

(figure 2.20(a) and figure 2.20(b)), while a

nearly optimal solution is also found quite

fast and not changing then any more (fig-

ure 2.21(a) and figure 2.21(b)). As stop-

ping criterion the independent variables

values were chosen. If they don’t change

for a period of 20 generations, the algo-

rithm terminates. The calculated values

after 78 generations of the fittest chromo-

some were x1 = −0.0025, x2 = 0.0025, x3 = −0.0025, f(x) = 0.00001877.

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70 80

d
ep

en
d

en
t

va
ri

ab
le

va
lu

e
of

fi
tt

es
t

p
op

u
la

ti
on

m
em

b
er

generation

Optimization process

dependent Variable 1

(a) Fittest Population Member

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80

d
ep

en
d

en
t

va
ri

ab
le

m
ea

n
va

lu
e

of
p

op
u

la
ti

on

generation

Optimization process

dependent Variable 1

(b) Mean Value of Population

Figure 2.20 – Development of Dependent Variable Value function 2.49

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

in
d

ep
en

d
en

t
va

ri
ab

le
va

lu
e

of
fi

tt
es

t
p

op
u

la
ti

on
m

em
b

er

generation

Optimization process

independent Variable 1
independent Variable 2
independent Variable 3

(a) Fittest Population Member

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

in
d

ep
en

d
en

t
va

ri
ab

le
m

ea
n

va
lu

e
of

p
op

u
la

ti
on

generation

Optimization process

independent Variable 1
independent Variable 2
independent Variable 3

(b) Mean Value of Population

Figure 2.21 – Development of Independent Variable Values function 2.49

CHAPTER 2. OPTIMIZATION METHODS 34

Rosenbrock Function

Rosenbrock function is given by

f(x1, x2) = (1− x1)2 + 100(x2 − x21)2 (2.50)

It is also called Banana function, because of the long valley which lookes like a banana, if we watch

the plot 2.22 from above. The function is continuous, convex, unimodal, quadratic and low dimen-

sional. No noise is added. This function is also solvable for deterministic methods, but it’s much

harder than that in the previous example. The main issue is that in the valley there are a lot of ter-

race points at which algorithms can get stuck.

5
10

15
20

25
30

35
40

5
10

15
20

25
30

35
400

500

1000

1500

2000

2500

f(
x
)

Rosenbrock function

X1

X2

f(
x
)

Figure 2.22 – Rosenbrock function 2.50

Figure 2.23(a) and figure 2.23(b)

give an quite interesting view on

the influence of different recombi-

nation and mutation rate combi-

nations on the quality of the esti-

mation. For finding a compromise

a mutation rate of 0.02 and a re-

combination rate of 0.6 were cho-

sen as the best setup for further

analysis. The plots don’t make it

that easy than in the first De Jong

function, but by taking the num-

ber of 1000 simulations for each

combination into account it can

be said that these results are re-

liable, even though we cannot ex-

plain them.

In contrast to the first test function we took here stability of 7 loops for the stopping criterion.

Figure 2.24(a) and figure 2.24(b) give a quite clear picture of what happens. In figure 2.24(a) we

see that a quite optimal solution is rapidly chosen to be the fittest population member and not

changing any more. Figure 2.24(b) supports this . Here we see moreover, that the whole population

rapidly converged down into the banana valley. But if we take also figure 2.25 and figure 2.26

into account,it can be realized that the convergence process for the whole population has not been

finished yet. Allowing a stricter stopping criterion, like 20 loops for ensuring convergence, would

probably lead to better results.

CHAPTER 2. OPTIMIZATION METHODS 35

Parameter value
Population size 50 chromosomes
Nbr. of generations 9
Generation gap 0.85
Mutation rate 0.02
Crossover rate 0.6
gene length 10
search space xi = [−5.12 : 0.02 : 5.12]
possible solutions (512)2

MAX f(−5.12, 5.12) = 44534
MIN f(1, 1) = 0

Table 2.12 – parameters for testing with function 2.50

-70

-68

-66

-64

-62

-60

-58

0 0.02 0.04 0.06 0.08 0.1

M
ea

n
D

iff
er

en
ce

R
ea

l
M

in
im

u
m

m
in

u
s

si
m

u
la

te
d

M
in

im
u

m

Mutation Rate

Influence of Recombination Rate and Mutation Rate on Rosenbrock simulation

Recombination Rate 0.6
Recombination Rate 0.7
Recombination Rate 0.8
Recombination Rate 0.9

(a) Mean Difference f(x∗)− f(x̂)

160

165

170

175

180

185

190

195

200

0 0.02 0.04 0.06 0.08 0.1

S
ta

n
d

ar
d

D
ev

ia
ti

on
R

ea
l

M
in

im
u

m
m

in
u
s

si
m

u
la

te
d

M
in

im
u

m

Mutation Rate

Influence of Recombination Rate and Mutation Rate on accuracy of Rosenbrock simulation

Recombination Rate 0.6
Recombination Rate 0.7
Recombination Rate 0.8
Recombination Rate 0.9

(b) Standard Deviation f(x∗)− f(x̂)

Figure 2.23 – Influence of Recombination and Mutation Rate on Estimation for f(x) 2.50

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10

d
ep

en
d

en
t

va
ri

ab
le

va
lu

e
of

fi
tt

es
t

p
op

u
la

ti
on

m
em

b
er

generation

Optimization process

dependent Variable 1

(a) Fittest Population Member

0

2000

4000

6000

8000

10000

12000

14000

0 2 4 6 8 10

d
ep

en
d

en
t

va
ri

ab
le

m
ea

n
va

lu
e

of
p

op
u

la
ti

on

generation

Optimization process

dependent Variable 1

(b) Mean Value of Population

Figure 2.24 – Development of Dependent Variable Value in function 2.50

CHAPTER 2. OPTIMIZATION METHODS 36

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10

in
d

ep
en

d
en

t
va

ri
ab

le
va

lu
e

of
fi

tt
es

t
p

op
u

la
ti

on
m

em
b

er

generation

Optimization process

independent Variable 1
independent Variable 2

Figure 2.25 – Fittest Population Member Independent Variable Value function 2.50

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

in
d

ep
en

d
en

t
va

ri
ab

le
m

ea
n

va
lu

e
of

p
op

u
la

ti
on

generation

Optimization process

independent Variable 1
independent Variable 2

Figure 2.26 – Independent Variable Mean Value of Population function 2.50

CHAPTER 2. OPTIMIZATION METHODS 37

Test function three

f(x) =
5∑
i=1

[xi] (2.51)

where [xi] represents the greatest integer less than or equal to xi. Hence, test function three is

a 5-dimensional step function. Figure 2.27 gives us an idea of how this function behaves in the

problem domain.

-4
-2

0
2

4

-4

-2

0

2

4
-15

-10

-5

0

5

10

Figure 2.27 – Plot of function 2.51 in 3D - Space

Figure 2.29(a) and 2.29(b) demon-

strate that a high mutation rate

supports reliable results. The

main issue in this problem is to

prevent the algorithm to get stuck

on a given level, the terraces. Be-

cause of this a high mutation rate

of 0.06 is taken. The influence of

the recombination rate is not that

strong, to find a compromise a re-

combination rate of 0.7 is taken.

Table 2.14 describes the setup for

a single run, as stopping criterion

stability over 20 loops was taken.

In figures 2.29(a) we see that the

fittest population member jumps

down the stairs until he’s on the

lowest level, figure 2.29(b) shows

that this is true for the whole pop-

ulation. Figure 2.30 and 2.31 visu-

alize the change in the independent variables, which at least corresponds to the dependent variable.

The calculated values of the fittest chromosome were x1 = −5.12, x2 = −5.08999, x3 = −5.01495,

x4 = −5.07498, x5 = −5.02996, f(x) = −30.

CHAPTER 2. OPTIMIZATION METHODS 38

Parameter value
Population size 50 chromosomes
Nbr. of generations 94
Generation gap 0.85
Mutation rate 0.06
Crossover rate 0.7
gene length 11
search space xi = [−5.12 : 0.01 : 5.12]
possible solutions (1024)5

MAX f(5.12, 5.12, 5.12, 5.12, 5.12) = 25
MIN f(−5.12,−5.12,−5.12,−5.12,−5.12) = −30

Table 2.13 – parameters for testing with function 2.51

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 0.02 0.04 0.06 0.08 0.1

M
ea

n
D

iff
er

en
ce

R
ea

l
M

in
im

u
m

m
in

u
s

si
m

u
la

te
d

M
in

im
u

m

Mutation Rate

Influence of Recombination Rate and Mutation Rate on DeJong03 simulation

Recombination Rate 0.6
Recombination Rate 0.7
Recombination Rate 0.8
Recombination Rate 0.9

(a) Mean Difference f(x∗)− f(x̂)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.02 0.04 0.06 0.08 0.1

S
ta

n
d

ar
d

D
ev

ia
ti

on
R

ea
l

M
in

im
u

m
m

in
u
s

si
m

u
la

te
d

M
in

im
u

m

Mutation Rate

Influence of Recombination Rate and Mutation Rate on accuracy of DeJong03 simulation

Recombination Rate 0.6
Recombination Rate 0.7
Recombination Rate 0.8
Recombination Rate 0.9

(b) Standard Deviation f(x∗)− f(x̂)

Figure 2.28 – Influence of Recombination and Mutation Rate on Estimation for function 2.51

-30

-28

-26

-24

-22

-20

-18

-16

0 20 40 60 80 100

d
ep

en
d

en
t

va
ri

ab
le

va
lu

e
of

fi
tt

es
t

p
op

u
la

ti
on

m
em

b
er

generation

Optimization process

dependent Variable 1

(a) Fittest Population Member

-30

-25

-20

-15

-10

-5

0

0 20 40 60 80 100

d
ep

en
d

en
t

va
ri

ab
le

m
ea

n
va

lu
e

of
p

op
u

la
ti

on

generation

Optimization process

dependent Variable 1

(b) Mean Value of Population

Figure 2.29 – Development of Dependent Variable Value in function 2.51

CHAPTER 2. OPTIMIZATION METHODS 39

-6

-4

-2

0

2

4

0 20 40 60 80 100

in
d

ep
en

d
en

t
va

ri
ab

le
va

lu
e

of
fi

tt
es

t
p

op
u

la
ti

on
m

em
b

er

generation

Optimization process

independent Variable 1
independent Variable 2
independent Variable 3
independent Variable 4
independent Variable 5

Figure 2.30 – Fittest Population Member Independent Variable Value function 2.51

-6

-5

-4

-3

-2

-1

0

1

0 20 40 60 80 100

in
d

ep
en

d
en

t
va

ri
ab

le
m

ea
n

va
lu

e
of

p
op

u
la

ti
on

generation

Optimization process

independent Variable 1
independent Variable 2
independent Variable 3
independent Variable 4
independent Variable 5

Figure 2.31 – Independent Variable Mean Value of Population function 2.51

CHAPTER 2. OPTIMIZATION METHODS 40

Test function four

Test function four is given by

f(x) =
30∑
i=1

i ∗ x4i +GAUSS() (2.52)

Test function four is a continuous, convex, uni modal, high-dimensional quadratic function. White

Gaussian noise is added. The function as is would be a trivial task, here the noise is the main

hurdle. For every generation a new set of noise was generated and added to the function values.

Nevertheless the algorithm had no big problems with this task. The influence of the driving

probabilities is quite strong again in this example, what can be seen from figure 2.33(a) and figure

2.33(b). The best possible combination for this problem seems to be a mutation rate of 0.04

and a crossover rate of 0.7. As in the first De Jong function, the influence of the recombination

rate seems to be quite negligible. The whole population converges to the optimal solution. In

-4
-2

0
2

4

-4

-2

0

2

4
0

500

1000

1500

2000

Figure 2.32 – Plot of function 2.52 in 3D - Space without Gaussion noise

contrast to the previous examples the fittest chromosome seems to be unsteady, this behavior can

be explained by the noise. And still, the solution seems quite optimal. The computed value for x

CHAPTER 2. OPTIMIZATION METHODS 41

was in mean -0.037, f(x) therefore was -2.781.

Parameter value
Population size 50 chromosomes
Nbr. of generations 160
Generation gap 0.85
Mutation rate 0.04
Crossover rate 0.7
gene length 9
search space xi = [−1.28 : 0.01 : 1.28]
possible solutions (256)30

MAX f(±1.28,±1.28, ...,±1.28) = 1248.2
MIN f(0, 0, ..., 0) = 0

Table 2.14 – parameters for testing with function 2.52

-20

-15

-10

-5

0

5

0 0.02 0.04 0.06 0.08 0.1

M
ea

n
D

iff
er

en
ce

R
ea

l
M

in
im

u
m

m
in

u
s

si
m

u
la

te
d

M
in

im
u

m

Mutation Rate

Influence of Recombination Rate and Mutation Rate on DeJong04 simulation

Recombination Rate 0.6
Recombination Rate 0.7
Recombination Rate 0.8
Recombination Rate 0.9

(a) Mean Difference f(x∗)− f(x̂)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.02 0.04 0.06 0.08 0.1

S
ta

n
d

ar
d

D
ev

ia
ti

on
R

ea
l

M
in

im
u

m
m

in
u
s

si
m

u
la

te
d

M
in

im
u

m

Mutation Rate

Influence of Recombination Rate and Mutation Rate on accuracy of DeJong04 simulation

Recombination Rate 0.6
Recombination Rate 0.7
Recombination Rate 0.8
Recombination Rate 0.9

(b) Standard Deviation f(x∗)− f(x̂)

Figure 2.33 – Influence of Recombination and Mutation Rate on Estimation for function 2.52

-20

0

20

40

60

80

100

120

0 50 100 150 200

d
ep

en
d

en
t

va
ri

ab
le

va
lu

e
of

fi
tt

es
t

p
op

u
la

ti
on

m
em

b
er

generation

Optimization process

dependent Variable 1

(a) Fittest Population Member

0

50

100

150

200

250

0 50 100 150 200

d
ep

en
d

en
t

va
ri

ab
le

m
ea

n
va

lu
e

of
p

op
u

la
ti

on

generation

Optimization process

dependent Variable 1

(b) Mean Value of Population

Figure 2.34 – Development of Dependent Variable Value in function 2.52

CHAPTER 2. OPTIMIZATION METHODS 42

Rastrigin Function

One of the most often used test functions for global optimization tasks is the Rastrigin function.

In the two dimensional case it is formulated as

f(x) = 20 + x21 + x22 − 10(cos(2πx1) + cos(2πx2) (2.53)

The function has many local minimas but only one global minimum at (0,0). Figure 2.35 gives

an overview how the function behaves. Because of the characteristics like low dimensionality in

combination with an high number of local minimums, here we implement this function. As used

in a lot of publications, by using it we achive comparability to other publications. As interval for

x1 and x2 the range [−5.12, 5.12] is chosen. The function is continuous, non-convex, unimodal,

low-dimensional and quadratic. No noise is added.

-4
-2

0
2

4

-4

-2

0

2

4
0

10

20

30

40

50

60

70

80

Figure 2.35 – Plot of function 2.53 in 3D - Space

CHAPTER 2. OPTIMIZATION METHODS 43

Figure 2.36(a) and figure 2.36(b) show how different probabilities influence the result of the al-

gorithm. We see clearly how the raising mutation rate has an positive influence to the evolution

process. Probably the high mutation rate helps the algorithm not get stuck in one of the many

local minimas. The effect of changing recombination rate in contrast seems quite low. As a re-

sult of this first test a mutation rate of 0.09 and a recombination rate of 0.6 is used for further

investigation.

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.02 0.04 0.06 0.08 0.1

M
ea

n
D

iff
er

en
ce

R
ea

l
M

in
im

u
m

m
in

u
s

si
m

u
la

te
d

M
in

im
u

m

Mutation Rate

Influence of Recombination Rate and Mutation Rate on Rastrigin simulation

Recombination Rate 0.6
Recombination Rate 0.7
Recombination Rate 0.8
Recombination Rate 0.9

(a) Mean Differencef(x∗)− f(x̂)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.02 0.04 0.06 0.08 0.1

S
ta

n
d

ar
d

D
ev

ia
ti

on
R

ea
l

M
in

im
u

m
m

in
u
s

si
m

u
la

te
d

M
in

im
u

m

Mutation Rate

Influence of Recombination Rate and Mutation Rate on accuracy of Rastrigin simulation

Recombination Rate 0.6
Recombination Rate 0.7
Recombination Rate 0.8
Recombination Rate 0.9

(b) Standard Deviation f(x∗)− f(x̂)

Figure 2.36 – Influence of Recombination and Mutation Rate on Estimation for function 2.53

The parameters in table 2.15 were chosen to analyze an optimization process in detail. Figure

2.37(a) illustrates an initial situation, figure 2.37(b) displays a final situation (with 70 instead

of 50 population members). It can be shown that a raising number of population members also

has an positive effect on the quality of the result, but for staying consistent with the previous

examples the population size of 50 was kept.

Parameter value
Population size 50 chromosomes
Nbr. of generations 63
Generation gap 0.85
Mutation rate 0.09
Crossover rate 0.6
gene length 11
search space xi = [−5.12 : 0.01 : 5.12]
possible solutions (1024)2

MAX f(5.12, 5.12) = 25
MIN f(0, 0) = 0

Table 2.15 – parameters for testing with function 2.53

Figure 2.38(a) and figure 2.38(b) show the development of the dependent variable for such an

CHAPTER 2. OPTIMIZATION METHODS 44

optimization process. Especially in figure 2.38(a) we see that the fittest population member can

get stuck for some generations in a local minima. But due to the high mutation rate, in most

cases the algorithm itself explores the search room and don’t gets stuck. Figure 2.39 and figure

2.40 describe the independent variables for the same run. The calculated values of the fittest

chromosome were x1 = −0.00250149, x2 = −0.00250149, f(x) = 0.0024828.

-4

-2

0

2

4

-4 -2 0 2 4

(a) Initial population

-4

-2

0

2

4

-4 -2 0 2 4

(b) Final population

Figure 2.37 – Development of Population in search space of function 2.53

0

1

2

3

4

5

0 10 20 30 40 50 60 70

d
ep

en
d

en
t

va
ri

ab
le

va
lu

e
of

fi
tt

es
t

p
op

u
la

ti
on

m
em

b
er

generation

Optimization process

dependent Variable 1

(a) Fittest Population Member

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70

d
ep

en
d

en
t

va
ri

ab
le

m
ea

n
va

lu
e

of
p

op
u

la
ti

on

generation

Optimization process

dependent Variable 1

(b) Mean Value of Population

Figure 2.38 – Development of Dependent Variable Value in function 2.53

CHAPTER 2. OPTIMIZATION METHODS 45

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 10 20 30 40 50 60 70

in
d

ep
en

d
en

t
va

ri
ab

le
va

lu
e

of
fi

tt
es

t
p

op
u

la
ti

on
m

em
b

er

generation

Optimization process

independent Variable 1
independent Variable 2

Figure 2.39 – Fittest Population Member Independent Variable Value function 2.53

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70

in
d

ep
en

d
en

t
va

ri
ab

le
m

ea
n

va
lu

e
of

p
op

u
la

ti
on

generation

Optimization process

independent Variable 1
independent Variable 2

Figure 2.40 – Independent Variable Mean Value of Population function 2.53

CHAPTER 2. OPTIMIZATION METHODS 46

Goldstein & Price Function

The function is given by

f(x1, x2) = [1 + (x1 + x2 + 1)2 ∗ (19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)]

∗[30 + (2x1 − 3x2)
2 ∗ (18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)] (2.54)

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

-2
-1.5

-1
-0.5

0
0.5

1
1.5

20

200000

400000

600000

800000

1e+06

1.2e+06

Figure 2.41 – Goldstein & Price function 2.54

Like Rastrigin function also Gold-

stein & Price function is included

here for giving some comparison

points to other publications. Fig-

ure 2.41 gives an overview of the

function behavior in space. The

first impression is that most of the

space is just a big valley, but this is

misleading. If we take the z-axes

into account we immediately rec-

ognize that the function value is

steadily changing over the whole

space.

The function itself seems to be

a quite simple task for minimiza-

tion algorithms. A first analy-

sis with combining different prob-

abilitis shows that for recombination rate the value of 0.9 and for mutation rate the value of 0.08

the result seems to be best fitting (compare with figure 2.42(a)and figure2.42(b)).

Parameter value

Population size 50 chromosomes

Nbr. of generations 19

Generation gap 0.85

Mutation rate 0.08

Crossover rate 0.9

gene length 10

search space xi = [−2 : 0.0078125 : 2]

possible solutions (512)2

MIN f(0,−1) = 3

Table 2.16 – parameters for function 2.54

Table 2.16 gives an detailed overview

of the setup. In figure 2.46(a) we see

that the fittest population member con-

verges very fast to the global minimum,

which is also true for the rest of the pop-

ulation (compare figure 2.46(b)). Fig-

ure 2.44(a) and figure 2.44(b) obtain

the same trend for the independent vari-

ables.

CHAPTER 2. OPTIMIZATION METHODS 47

-90

-88

-86

-84

-82

-80

-78

-76

0 0.02 0.04 0.06 0.08 0.1

M
ea

n
D

iff
er

en
ce

R
ea

l
M

in
im

u
m

m
in

u
s

si
m

u
la

te
d

M
in

im
u

m

Mutation Rate

Influence of Recombination Rate and Mutation Rate on GP simulation

Recombination Rate 0.6
Recombination Rate 0.7
Recombination Rate 0.8
Recombination Rate 0.9

(a) Mean Difference f(x∗)− f(x̂)

220

230

240

250

260

270

280

0 0.02 0.04 0.06 0.08 0.1

S
ta

n
d

ar
d

D
ev

ia
ti

on
R

ea
l

M
in

im
u

m
m

in
u
s

si
m

u
la

te
d

M
in

im
u

m

Mutation Rate

Influence of Recombination Rate and Mutation Rate on accuracy of GP simulation

Recombination Rate 0.6
Recombination Rate 0.7
Recombination Rate 0.8
Recombination Rate 0.9

(b) Standard Deviation f(x∗)− f(x̂)

Figure 2.42 – Influence of Recombination and Mutation Rate on Estimation for function 2.54

0

5

10

15

20

25

30

35

40

0 5 10 15 20

d
ep

en
d

en
t

va
ri

ab
le

va
lu

e
of

fi
tt

es
t

p
op

u
la

ti
on

m
em

b
er

generation

Optimization process

dependent Variable 1

(a) Fittest Population Member

0

20000

40000

60000

80000

100000

0 5 10 15 20

d
ep

en
d

en
t

va
ri

ab
le

m
ea

n
va

lu
e

of
p

op
u

la
ti

on

generation

Optimization process

dependent Variable 1

(b) Mean Value of Population

Figure 2.43 – Development of Dependent Variable Value in function 2.54

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 5 10 15 20

in
d

ep
en

d
en

t
va

ri
ab

le
va

lu
e

of
fi

tt
es

t
p

op
u

la
ti

on
m

em
b

er

generation

Optimization process

independent Variable 1
independent Variable 2

(a) Fittest Population Member

-1

-0.5

0

0.5

1

0 5 10 15 20

in
d

ep
en

d
en

t
va

ri
ab

le
m

ea
n

va
lu

e
of

p
op

u
la

ti
on

generation

Optimization process

independent Variable 1
independent Variable 2

(b) Mean Value of Population

Figure 2.44 – Development of Independent Variable Value in function 2.54

CHAPTER 2. OPTIMIZATION METHODS 48

Function Inversion

Function inversion is a common task in remote sensing. The previous mentioned problem domains

are forward models, to use EA for solving inverse problems here an EA for solving inverse problems

is stated. The goal of the algorithm is to distribute a set of points evenly on a manifold defined

by f(x, y) = c, where f(x, y) is some generating function and c is a constant [15]. As objective

function

f(x, y) =
[tanh(2− 4x+ 2y) + tanh(1 + 1x− 2y)]

2
(2.55)

is used, the fitness function is

g(x) = |f(x̂)− 0.5| (2.56)

The problem is quite different to the previous ones. Here, depending on the resolution, almost

infinite solutions satisfy the goal. By this example we also see how the fitness function influences

the solution. Variations of the fitness functions like cosine weighting in order to get better results

are possible. Reed [15] suggested to use gradient information, but for showing the basic idea

behind function inversion this example is sufficient.

Parameter value
Population size 50 chromosomes
Nbr. of generations 160
Generation gap 0.85
Mutation rate 0.1
Crossover rate 0.1
gene length 10
search space xi = [0 : 0.002 : 1]

Table 2.17 – parameters for testing with function inversion example

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

y

x

figure illustrating goal of function inversion for z=f(x,y)

(a) Initial distribution of population

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

y

x

figure illustrating goal of function inversion for z=f(x,y)

(b) Final distribution of population

Figure 2.45 – Development of Population in search space of function 2.55

CHAPTER 2. OPTIMIZATION METHODS 49

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0 50 100 150 200

M
ea

n
z-

va
lu

e
of

p
op

u
la

ti
on

generation

Optimization process

(a) Mean f(x) of population

0.494

0.496

0.498

0.5

0.502

0.504

0.506

0.508

0 50 100 150 200

z-
va

lu
e

of
fi

tt
es

t
p

op
u

la
ti

on
m

em
b

er

generation

Optimization process

(b) f(x) of fittest population member

Figure 2.46 – Development of Dependent Variable Value in function 2.55

Function Inversion in atmospheric Remote Sensing

As an application for the methodology of function inversion, a Remote Sensing problem is now

formulated. As objective function we use the radiation around the oxygen A-band (760 nm),

computed by the following parameters

• surface height (SH)

• surface albedo (SA)

• cloud top height (CTH)

• cloud geometrical thickness (CGT)

• cloud optical thickness (COT)

• solar zenith angle (SZA)

• viewing angle (VZA)

• relative azimuth angle (RAZ)

The function can then be thought of as

f(SH, SA,CTH,CGT,COT, SZA, V ZA,RZA) = radiation[62wavelength] (2.57)

The goal is to retrieve the three cloud parameters, which are the independent parameters in the

equation . In the following examples for CTH and COT random values were substituted with

lower and upper boundaries like:

The other six values were taken as known from a validation file. The file itself consists of 1000

spectra with the corresponding geophysical parameters. The algorithm was applied to all these

datasets, with several combinations of recombination and mutation rates. After termination for all

CHAPTER 2. OPTIMIZATION METHODS 50

Parameter lower boundary upper boundary
CTH 0 5
COT 0.5 1

Table 2.18 – cloud parameters and interval boundaries

of this combinations the mean difference between real parameter and estimation and the standard

deviation of the estimation was computed. As fitness function an approach like in the previous

example is used, just extended by taking the natural logarithm of the difference.

g(x) = ln| 1

f(x∗)− f(x̂)
| (2.58)

0.1

0.15

0.2

0.25

0.3

0.35

0 0.02 0.04 0.06 0.08 0.1

M
ea

n
D

iff
er

en
ce

R
ea

l
C

T
H

m
in

u
s

si
m

u
la

te
d

C
T

H

Mutation Rate

Influence of Recombination Rate and Mutation Rate on CTH simulation

Recombination Rate 0.6
Recombination Rate 0.7
Recombination Rate 0.8
Recombination Rate 0.9

Figure 2.47 – Mean Difference CTH

CHAPTER 2. OPTIMIZATION METHODS 51

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 0.02 0.04 0.06 0.08 0.1

M
ea

n
D

iff
er

en
ce

R
ea

l
C

O
T

m
in

u
s

si
m

u
la

te
d

C
O

T

Mutation Rate

Influence of Recombination Rate and Mutation Rate on COT simulation

Recombination Rate 0.6
Recombination Rate 0.7
Recombination Rate 0.8
Recombination Rate 0.9

Figure 2.48 – Mean Difference COT

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1

S
ta

n
d

ar
d

D
ev

ia
ti

on
R

ea
l

C
T

H
m

in
u

s
si

m
u

la
te

d
C

T
H

Mutation Rate

Influence of Recombination Rate and Mutation Rate on accuracy of CTH simulation

Recombination Rate 0.6
Recombination Rate 0.7
Recombination Rate 0.8
Recombination Rate 0.9

Figure 2.49 – Standard Deviation CTH f(x)

CHAPTER 2. OPTIMIZATION METHODS 52

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.02 0.04 0.06 0.08 0.1

S
ta

n
d

ar
d

D
ev

ia
ti

on
R

ea
l

C
O

T
m

in
u

s
si

m
u

la
te

d
C

O
T

Mutation Rate

Influence of Recombination Rate and Mutation Rate on accuracy of COT simulation

Recombination Rate 0.6
Recombination Rate 0.7
Recombination Rate 0.8
Recombination Rate 0.9

Figure 2.50 – Standard Deviation COT

CHAPTER 2. OPTIMIZATION METHODS 53

2.3 Hybrid Methods

In the previous chapters deterministic and heuristic optimization methods were discussed. It was

shown that for the deterministic algorithms the quality of the results and the number of iterations

are related to the starting point of the algorithm and of course the problem domain itself. For the

evolutionary algorithms we’ve illuminated the influence of the different driving probabilities and

how these factors affect the quality of the results and the number of computed generations.

It is already mentioned that by applying parallelization the run time of Genetic Algorithms can

be reduced significantly. In our case parallelization is implemented in the algorithm in order to

make use of the fully available CPU power.

Anotherl approach for reducing the run time is the combination of deterministic and heuristic

methods, so called hybrid algorithms. Both algorithm families have specific parameters which

influence their behavior in the problem domain. Therefor in many cases it cannot be said which

deterministic algorithm in combination with which probability values for the genetic algorithm

fits best for a specific problem.

In this section a hybrid approach is introduced. The initial inspiration for this development was

the GenMIN Toolbox, developed by Tsoulos and Lagaris [21]. They showed, like others [22], that

by combining heuristig and deterministic search algorithms, more robust results can be achived.

The genetic algorithm is enhanced with deterministic local search algorithms. The four algorithms

which were included are part of GSL, they are Gradient Descend, Fletcher-Reeves, Polak-Ribiere

and BFGS. The probability values for the genetic algorithm are taken from the previous results

based on pure global search. As a comparison value the number of function and gradient calls is

used. Besides of accuracy the present study focuses on run time reduction.

The goal of these tests is to find out, which local search algorithm fits best to which kind of

problem. Therefor we let run the hybrid algorithm 1000 times for each of the four local search

algorithms on the test functions. As a result, we retrieve again the mean difference between real

minimum and simulated minimum and the standard deviation of real minimum minus simulated

minimum. Furthermore histograms are added to show how the residuals are distributed. But

besides of these plots showing the residuals of the estimation, also tables are included which show

the mean number of function and derivative calls for the local search algorithm, the mean number

of function calls of the genetic algorithm, the mean number of loops and mean sum of function

calls for the hybrid algorithm and of course the percentage of correct estimates. As stopping

criterion for the hybrid algorithm stability over seven loops was chosen.

CHAPTER 2. OPTIMIZATION METHODS 54

Test function one - quadratic function

The first minimization problem the hybrid algorithm is applied on is the first of the DeJong

functions. This function has just one local minimum, which is also the global minimum. Because

of this it’s no surprise that the algorithm finds immediately the global minimum, no matter which

of the determinist search algorithms is used. Table 2.19 shows the percentage of correct estimates

for the four different test series.

FR PR BFGS GD

correct estimates (%) 100 % 100 % 100 % 100 %

mean nbr. of loops 8.72 8.7 7 7

mean f(x) calls - GA 436.1 435.25 350 350

mean f(x) calls - LS 37.4 37.46 30.1 50.75

mean f’(x) calls - LS 22.77 22.73 17.22 50.75

mean sum of calls 496.27 495.44 397.33 451.5

Table 2.19 – Analysis - Hybrid Algorithm on first DeJong function

All of the four algorithms

need in mean not more than

nine loops to satisfy the

stopping criterion, and they

find always the correct min-

imum. The Quasi-Newton

method which uses approxi-

mations of the second deriva-

tives needs less function calls

in mean than the other

three, probably because of

the quadratic behaviour of the first De Jong function. Figure 2.51(a) shows the mean difference

between estimation and solution, figure 2.51(b) shows the standard deviation of the estimations.

Both figures confirm that the hybrid approach fits for the given task. Histogram 2.52 gives an

overview of the distribution of the difference between estimations and real minimum.

-3.5e-08

-3e-08

-2.5e-08

-2e-08

-1.5e-08

-1e-08

-5e-09

0

Fletcher-Reeves Polak-Ribiere BFGS Gradient Descent

M
ea

n
D

iff
er

en
ce

R
ea

l
M

in
im

u
m

m
in

u
s

si
m

u
la

te
d

M
in

im
u

m

Optimization Method Forward Model

Influence of Optimization Method on first DeJong function simulation

(a) MeanDifference

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

Fletcher-Reeves Polak-Ribiere BFGS Gradient Descent

S
ta

n
d

ar
d

D
ev

ia
ti

on
R

ea
l

M
in

im
u

m
m

in
u
s

si
m

u
la

te
d

M
in

im
u

m

Optimization Method Forward Model

Influence of Optimization Method on accuracy of first DeJong function simulation

(b) Standard Deviation

Figure 2.51 – Hybrid Algorithm - local seach comparison

CHAPTER 2. OPTIMIZATION METHODS 55

0

200

400

600

800

1000

-1 -0.5 0 0.5 1

Fletcher-Reeves

0

200

400

600

800

1000

-1 -0.5 0 0.5 1

Polak-Ribiere

0

200

400

600

800

1000

-1 -0.5 0 0.5 1

BFGS

0

100

200

300

400

500

-1e-07 -8e-08 -6e-08 -4e-08 -2e-08 0

Gradient Descent

Figure 2.52 – Histogram: Real minimum - Estimated minimum

Rastrigin function

For the used two dimensional Rastrigin function, the combination of BFGS with the genetic

algorithm fits best. This can be explained again by considering that the used Rastrigin function

is quadratic. Because of this the used quasi Newton approach should deliver the best results.

But in the test series BFGS did not just deliver better results than the other three methods,

the percentage of correct estimates is more than twice as high as that by the other methods.

FR PR BFGS GD

correct estimates (%) 37% 37.6% 86% 38.7%

mean nbr. of loops 10.52 10.38 11.53 10.31

mean f(x) calls - GA 526 518.8 576.8 515.65

mean f(x) calls - LS 235.34 232.98 414.44 121.82

mean f’(x) calls - LS 53.45 52.81 62.17 121.82

mean sum of function calls 814.78 804.59 1053.4 759.29

Table 2.20 – Analysis - Hybrid Algorithm on Rastrigin function

It is worth to mentioning

that BFGS in mean needs

one more loop and therefore

also more function calls to

reach the stopping criterion,

which is shown in table 2.21.

But by comparing the results

with the other approaches

it reveals that BFGS is the

only method which delivers

reliable results. The other

CHAPTER 2. OPTIMIZATION METHODS 56

methods differ just slightly in the number of function calls and quality of estimation. The his-

tograms in figure 2.54 which shows the distribution of the differences between real minimum and

estimated minimum strongen the conviction that BFGS is the best choice in quadratic problem

domains. In contrast to the gradient and conjugate gradient methods no outlier is more distant

than -2 from the real minimum. Figure 2.53(a) and figure 2.53(b) complete the results gained by

this test series.

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

Fletcher-Reeves Polak-Ribiere BFGS Gradient Descent

M
ea

n
D

iff
er

en
ce

R
ea

l
M

in
im

u
m

m
in

u
s

si
m

u
la

te
d

M
in

im
u

m

Optimization Method Forward Model

Influence of Optimization Method on Rastrigin simulation

(a) MeanDifference

0.62

0.64

0.66

0.68

0.7

0.72

0.74

Fletcher-Reeves Polak-Ribiere BFGS Gradient Descent

S
ta

n
d

ar
d

D
ev

ia
ti

on
R

ea
l

M
in

im
u

m
m

in
u
s

si
m

u
la

te
d

M
in

im
u

m

Optimization Method Forward Model

Influence of Optimization Method on accuracy of Rastrigin simulation

(b) Standard Deviation

Figure 2.53 – Hybrid Algorithm - local seach comparison

0

100

200

300

400

500

600

-5 -4 -3 -2 -1 0

Fletcher-Reeves

0

100

200

300

400

500

600

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

Polak-Ribiere

0

200

400

600

800

1000

-2 -1.5 -1 -0.5 0

BFGS

0

100

200

300

400

500

600

-5 -4 -3 -2 -1 0

Gradient Descent

Figure 2.54 – Histogram: Real minimum - Estimated minimum

CHAPTER 2. OPTIMIZATION METHODS 57

Test function four - function with noise

The hybrid algorithms in general had problems with the fourth De Jong function. The weakness

of the algorithm can be explained by considering that this function has 30 dimensions, more-

over to each dimension gaussion noise is added. As table 2.21 shows, the different approaches

FR PR BFGS GD

correct estimates (%) 1.6% 0.4% 1.4% 1.1%

mean nbr. of loops 12.55 12.66 12.57 14.56

mean f(x) calls - GA 627.6 633.2 628.55 727.9

mean f(x) calls - LS 461.94 463.48 458.91 215.96

mean f’(x) calls - LS 38.97 37.55 33.91 215.96

mean sum of function calls 1128.5 1134.2 1121.4 1159.8

Table 2.21 – Analysis - Hybrid Algorithm on fourth De Jong function

do not differ to much in

the number of function calls

and percentage of correct es-

timates. But by analyzing

figure 2.55(a), figure 2.55(b)

and figure 2.56 the conclu-

sion can be made that Gra-

dient Descent method in this

case fits better than the

other three more complex

methods. The Standard de-

viation is highest with Gra-

dient Descent, but the mean difference is smallest which is also shown by the histograms of the

residuals.

-6

-5.8

-5.6

-5.4

-5.2

-5

-4.8

-4.6

Fletcher-Reeves Polak-Ribiere BFGS Gradient Descent

M
ea

n
D

iff
er

en
ce

R
ea

l
M

in
im

u
m

m
in

u
s

si
m

u
la

te
d

M
in

im
u

m

Optimization Method Forward Model

Influence of Optimization Method on fourth DeJong function simulation

(a) MeanDifference

5

5.5

6

6.5

7

7.5

Fletcher-Reeves Polak-Ribiere BFGS Gradient Descent

S
ta

n
d

ar
d

D
ev

ia
ti

on
R

ea
l

M
in

im
u

m
m

in
u
s

si
m

u
la

te
d

M
in

im
u

m

Optimization Method Forward Model

Influence of Optimization Method on accuracy of fourth DeJong function simulation

(b) Standard Deviation

Figure 2.55 – Hybrid Algorithm - local seach comparison

CHAPTER 2. OPTIMIZATION METHODS 58

0

50

100

150

200

-20 -15 -10 -5 0 5

Fletcher-Reeves

0

50

100

150

200

-25 -20 -15 -10 -5 0 5

Polak-Ribiere

0

50

100

150

200

-25 -20 -15 -10 -5 0 5

BFGS

0

50

100

150

200

250

300

350

400

-25 -20 -15 -10 -5 0 5

Gradient Descent

Figure 2.56 – Histogram: Real minimum - Estimated minimum

CHAPTER 2. OPTIMIZATION METHODS 59

Rosenbrock function

Applying the hybrid algorithms to Rosenbrock function it delivered no surprises. Gradient Descent

method couldn’t compete in this problem with the other three algorithms. The reason gets

FR PR BFGS GD

correct estimates (%) 100 % 100 % 100 % 14.6 %

mean nbr. of loops 7.11 7.07 7.08 10.99

mean f(x) calls - GA 355.7 353.5 354.3 549.6

mean f(x) calls - LS 159.66 154.99 186.34 1185.2

mean f’(x) calls - LS 131.53 127.56 125.81 1185.2

mean sum of function calls 646.89 636.05 666.45 2920

Table 2.22 – Analysis - Hybrid Algorithm on Rosenbrock function

clear by watching figure 2.22.

In the long banana val-

ley the algorithm does not

gains enough gradient infor-

mation. This lack of infor-

mation is not balanced by

the genetic algorithm, be-

cause of this the Gradient

Descent Solution needs in

mean more function calls for

less accurate solutions. De-

tails are shown in table 2.22.

Figures 2.57(a), 2.57(b) and 2.58 support the conclusion that despite of Gradient Descent all other

three methods are able to solve this minimization problem.

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

Fletcher-Reeves Polak-Ribiere BFGS Gradient Descent

M
ea

n
D

iff
er

en
ce

R
ea

l
M

in
im

u
m

m
in

u
s

si
m

u
la

te
d

M
in

im
u

m

Optimization Method Forward Model

Influence of Optimization Method on Rosenbrock simulation

(a) MeanDifference

0

0.05

0.1

0.15

0.2

0.25

Fletcher-Reeves Polak-Ribiere BFGS Gradient Descent

S
ta

n
d

ar
d

D
ev

ia
ti

on
R

ea
l

M
in

im
u

m
m

in
u
s

si
m

u
la

te
d

M
in

im
u

m

Optimization Method Forward Model

Influence of Optimization Method on accuracy of Rosenbrock simulation

(b) Standard Deviation

Figure 2.57 – Hybrid Algorithm - local seach comparison

CHAPTER 2. OPTIMIZATION METHODS 60

0

200

400

600

800

1000

-5e-05 -4e-05 -3e-05 -2e-05 -1e-05 0

Fletcher-Reeves

0

200

400

600

800

1000

-3.5e-05-3e-05-2.5e-05-2e-05-1.5e-05-1e-05-5e-06 0

Polak-Ribiere

0

200

400

600

800

1000

-3.5e-05-3e-05-2.5e-05-2e-05-1.5e-05-1e-05-5e-06 0

BFGS

0

100

200

300

400

500

600

700

800

-2 -1.5 -1 -0.5 0

Gradient Descent

Figure 2.58 – Histogram: Real minimum - Estimated minimum

CHAPTER 2. OPTIMIZATION METHODS 61

Goldstein & Price Function

In contrast to Rosenbrock function in solving the Goldstein & Price Function the Gradient

FR PR BFGS GD

correct estimates (%) 100 % 100 % 100 % 100 %

mean nbr. of loops 8.72 8.7 7 7

mean f(x) calls - GA 436.1 435.25 350 350

mean f(x) calls - LS 37.4 37.46 30.1 50.75

mean f’(x) calls - LS 22.77 22.73 17.22 50.75

mean sum of function calls 496.27 495.44 397.33 451.5

Table 2.23 – Analysis - Hybrid Algorithm on Goldstein & Price func-
tion

Descent method delivered

competitive results. Like

BFGS in mean it took just

seven loops for finding the

global minimum. Surpris-

ingly this was the only test

function despite the first

De Jong function were all

four hybrid algorithms suc-

ceeded.

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

Fletcher-Reeves Polak-Ribiere BFGS Gradient Descent

M
ea

n
D

iff
er

en
ce

R
ea

l
M

in
im

u
m

m
in

u
s

si
m

u
la

te
d

M
in

im
u

m

Optimization Method Forward Model

Influence of Optimization Method on GP simulation

(a) MeanDifference

2

2.5

3

3.5

4

Fletcher-Reeves Polak-Ribiere BFGS Gradient Descent

S
ta

n
d

ar
d

D
ev

ia
ti

on
R

ea
l

M
in

im
u

m
m

in
u
s

si
m

u
la

te
d

M
in

im
u

m

Optimization Method Forward Model

Influence of Optimization Method on accuracy of GP simulation

(b) Standard Deviation

Figure 2.59 – Hybrid Algorithm - local seach comparison

CHAPTER 2. OPTIMIZATION METHODS 62

0

200

400

600

800

1000

-100 -80 -60 -40 -20 0

Fletcher-Reeves

0

200

400

600

800

1000

-30 -25 -20 -15 -10 -5 0

Polak-Ribiere

0

200

400

600

800

1000

-100 -80 -60 -40 -20 0

BFGS

0

200

400

600

800

1000

-30 -25 -20 -15 -10 -5 0

Gradient Descent

Figure 2.60 – Histogram: Real minimum - Estimated minimum

CHAPTER 2. OPTIMIZATION METHODS 63

2.4 Conclusions concerning the methodology

Some conclusions can be reached already after this methodology part.

First, deterministic algorithms for multidimensional minimization in the form of minx∈Rn f(x) were

applied on a set of test functions. These algorithms differ in computing the search direction and

step length. Because of this it can not be guaranteed that equal results are gained, nor that they

need an equal number of iterations until termination. Furthermore the influence of the starting

point in local search was shown.

Second, the evolutionary computing framework and the operators of genetic programming were

introduced. It’s impossible to give general advices on how to set the probabilities for the genetic

algorithm. It has been seen that results are strongly problem dependent. Nevertheless it seems

that higher mutation rates fit better for problems with lots of local minimas. The genetic algorithm

is quite fast in finding high quality regions in search space for optimization. It was shown,

that by reformulating the fitness function not just problems in the form minx∈Rn f(x) but also

minx∈Rn |y − f(x̂)|2 can be solved.

Parallelization on thread level was added to the genetic algorithm. It was shown that GA are

in general easy to parallelize. The object oriented programming style was beneficial in this task.

The decrease in runtime is, depending on the computer, remarkable.

Hybridization of the genetic algorithm was done with the different multidimensional minimizers

of GSL. The comparison of the different local search algorithms gives clear results. Here by

comparison we see that BFGS is superiour to the other three methods not just by quality of the

estimate, but also by means requiring less function calls than the competitors. Probably because

of this in comparable hybrid algorithms like GenMIN [21] just BFGS is used for local search.

The genetic algorithm is quite fast in finding the most promising regions for global optimization

in the search space. In these regions the deterministic algorithms converge much faster to the

minimum [22]. This leads to the conclusion that in general a hybrid algorithm delivers more

reliable results than pure genetic algorithms, and this results are reached by needing less function

calls.

CHAPTER 3. OPTIMIZATION OF AN OZONE RETRIEVAL ALGORITHM 64

3 Optimization of an ozone retrieval

algorithm

In this part the optimization is a combinatorical task. We have level one data from GOME1, which

are processed to level 2 data using UPAS. The UPAS system gets as input not just the filename

of the orbit, which it should process, furthermore as argument a vector containing 88 numbers is

passed. The numbers are just zeros and ones. For the processing with UPAS 88 spectral channels

in the range from 325 nm to 335 nm are of interest, the vector indicates with an one that a channel

should be used, a zero indicates that a channel shouldn’t be used. The level two product is stored

as a HDF2 file, the interesting part of this product is the total ozone column in dobson units,

which is stored in an vector.

The best accuracy can be achived by using each of the available spectral bands. By using less

spectral bands the computational effort can be minimized, but of course also for the loss of

accuracy. The question here is, if we take a fixed number of spectral channels, for example

40, which combination of the channels gives the most accurate result? For solving these task

analytically, each possible combination with 40 ones and 48 zeros has to be computed. Then the

residuals between the computed total ozone columns and the resulting total ozone column for

using all measurements have to be computed. The level two dataset with the smallest residuals

belongs then to the optimal combination of zeros and ones in the input vector. The number of

possible combinations is given by the binomial coefficient

C40
88 =

88!

40!(88− 40)!
= 1.83E + 25 (3.1)

The processing from level one to level two with UPAS with a given input vector takes about 20

minutes. This means, that computing each combination would take 6.96E + 20 years. Because

of this it’s impossible to calculate each combination within an adequate time, even if we work on

multi-core platforms.

1Global Ozone Monitoring Experiment
2Hierarchical Data Format

CHAPTER 3. OPTIMIZATION OF AN OZONE RETRIEVAL ALGORITHM 65

3.1 Algorithm design

In contrast to calculating each possible combination and its corresponding total ozone column

values, an evolution strategy may solve the search for the best input vector quite fast. The idea

is to have a population, each chromosome of this population represents an input vector. The

independent variable is the input vector, the dependent variables are the retrieved ozone column

values. Figure 3.3(b) shows an random input vector, the bars show the positions of the ones in

the vector. Figure 3.3(a) shows the input vector for computing the reference ozone column, for

which all 88 measurements were used. The fitness of each chromosome is calculated by taking the

sum of the squared residuals between computed total ozone column and the reference total ozone

column.

r =
1428∑
i=1

|(yi − f(xi))
2| (3.2)

This value, and also the residual for each single ozone measurement, is also part of each chro-

mosome. In each generation the evolutionary operators selection, recombination and mutation

are applied, with the restriction that the number of ones in the input vector stays equal. The

objective function which is most time consuming is called in parallel. Therefore the not yet in

Boost included Boost.Process library3 is used. This library offers the ability to call executables,

pass arguments to these executables and to wait for the running processes until they finish. In

this case we called UPAS, passed for each chromosome the included input vector and then waited

for the results. The working processes were started in parallel and taken out on 4 blades of a

blade server, each having 12 cores. Because of this a population size of 48 was chosen. After

termination of the working threads the results of the single working processes were written in

separate directories in hdf - files. These files were then read and the retrieved ozone values were

used for updating the values in the O3 Total Column vector. For reading these hdf-files, the freely

available hdf-library4 was used. Figure 3.1 gives an overview of the used classes and their member

variables and methods.

Figure 3.1 – Class diagram O3

The stopping criterion is that the residuals of the fittest population member do not decrease

3available from http://www.highscore.de/boost/process0.5/ - 23.05.2013
4available from http://www.hdfgroup.org/ - 23.05.2013

CHAPTER 3. OPTIMIZATION OF AN OZONE RETRIEVAL ALGORITHM 66

over seven loops. Figure 3.3(a) shows the reference ozone values, figure 3.3(b) shows the reference

spectra and the computed spectra, which belongs to the input vector of figure 3.3(b). The residuals

in this case are 21109.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Full Input Vector used for computing Reference

(a) Reference Input Vector

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Initial Input Vector

(b) Random Input Vector

Figure 3.2 – Input Vectors

240

260

280

300

320

340

360

380

0 500 1000 1500 2000

D
ob

so
n

U
n

it

Measurement

Total Ozone column - computed with reference vector

(a) Reference Input Vector

240

260

280

300

320

340

360

380

0 500 1000 1500 2000

D
ob

so
n

U
n

it

Measurement

Total Ozone Column derived with UPAS using Micro Windows

(b) Random Input Vector

Figure 3.3 – Total Ozone Column

Figure 3.5(a) shows the result of the optimization process for using 40 out of 88 measurements, the

residuals were minimized to a value of 429. Figure 3.5(b) shows the ratio between the reference

and the estimate, which stayed stable over the whole number of 1428 measurements in the data

set. Different values for the recombination and mutation rate were taken to determine how these

values influence the results of the optimization. By applying these tests it was found out that

the algorithm does not always converge to one global minimum. The resulting input vector varies

often quite much, nevertheless the sum of the squared residuals stays for the example with 40 ones

in a range between 400 and 2500.

CHAPTER 3. OPTIMIZATION OF AN OZONE RETRIEVAL ALGORITHM 67

This means that

• the chosen values for recombination rate and mutation rate do not affect the result

• the algorithm don’t converges to an global minimum

0

500

1000

1500

2000

2500

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

S
u

m
of

sq
u

ar
ed

d
iff

er
en

ce
s

of
O

3
T

ot
al

C
ol

u
m

n

Mutation Rate

Plot for 10 datasets at each mutation rate with Recombination Rate 0.6

Mean
Minimum
Maximum

(a) Residuals for Recombination Rate 0.6

0

500

1000

1500

2000

2500

0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09

S
u

m
of

sq
u

ar
ed

d
iff

er
en

ce
s

of
O

3
T

ot
al

C
ol

u
m

n

Mutation Rate

Plot for 10 datasets at each mutation rate with Recombination Rate 0.7

Mean
Minimum
Maximum

(b) Residuals for Recombination Rate 0.7

Figure 3.4 – Comparison of different Recombination and Mutation Rate combinations

240

260

280

300

320

340

360

380

0 500 1000 1500 2000

D
ob

so
n

U
n

it

Measurement

Total Ozone Column derived with UPAS using Micro Windows

Full Input Vector
Input Vector using 40 Measurements

(a) Residuals between Reference and Estimate

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

0 500 1000 1500 2000

Measurement

Ratio of Reference Total Ozone Column to derived Total Ozone Column

Ratio Reference to Estimate

(b) Ratio between Reference and Estimate

Figure 3.5 – Estimated Optimum

3.2 Optimization Results

The algorithm was applied with the restriction criterion of not using more then 20, 23, 29, 30,

35 and 40 measurements. According to the almost negligible influence of different mutation and

recombination rates, as recombination rate the value 0.6 and as mutation rate 0.04 were chosen.

CHAPTER 3. OPTIMIZATION OF AN OZONE RETRIEVAL ALGORITHM 68

The algorithm was applied several times for each setup. Against the expectation the results

were never equal. To separate at least between important and not that important measurements,

the probability of being taken into account was computed with respect to the results of the

algorithm. Figure 3.7(a) to 3.7(f) shows these distributions. The idea then was to take the most

probable positions of the different input vectors to create the new vector which should be the

global optimum. Unfortunately the assumption that by taking the most probable positions of

ones in the input vector we can create an input vector with minimized residuals was wrong. It

was seen that by doing so residuals were quite big, about the factor of 15 in comparison to the

minimum residuals which were achieved by the algorithm. This leads also to the conviction that

more than just the single positions the neighborhood relations between the single positions play

a major role.

Another result is, that as expected by taking more measurements into account the residuals get

smaller. Figure 3.6 gives a quite good picture of this. While with just 20 of 88 measurements

the residuals range between 2200 and 8200, with more measurements both the minimum and

maximum residual value decreases. Furthermore the range of the residuals shrinks with a raising

number of measurements.

0

2000

4000

6000

8000

10000

20 25 30 35 40

S
u

m
of

sq
u

ar
ed

R
es

id
u

al
s

Number of used Measurements

Minimum
Mean

Maximum

Figure 3.6 – Range of Residuals for different number of Measurements

CHAPTER 3. OPTIMIZATION OF AN OZONE RETRIEVAL ALGORITHM 69

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

P
ro

b
ab

il
it

y
in

P
er

ce
n
t

Position in Input Vector

Probability distribution for position of One in Input Vector - 20 Measurements

(a) Probability Analysis - 20 Measurements

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

P
ro

b
ab

il
it

y
in

P
er

ce
n
t

Position in Input Vector

Probability distribution for position of One in Input Vector - 23 Measurements

(b) Probability Analysis - 23 Measurements

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

P
ro

b
ab

il
it

y
in

P
er

ce
n
t

Position in Input Vector

Probability distribution for position of One in Input Vector - 29 Measurements

(c) Probability Analysis - 29 Measurements

0

0.5

1

1.5

2

0 20 40 60 80 100

P
ro

b
ab

il
it

y
in

P
er

ce
n
t

Position in Input Vector

Probability distribution for position of One in Input Vector - 30 Measurements

(d) Probability Analysis - 30 Measurements

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

P
ro

b
ab

il
it

y
in

P
er

ce
n
t

Position in Input Vector

Probability distribution for position of One in Input Vector - 35 Measurements

(e) Probability Analysis - 35 Measurements

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

P
ro

b
ab

il
it

y
in

P
er

ce
n
t

Position in Input Vector

Probability distribution for position of One in Input Vector - 40 Measurements

(f) Probability Analysis - 40 Measurements

Figure 3.7 – Probability Analysis

CHAPTER 4. INVERSION OF A CLOUD RETRIEVAL ALGORITHM 70

4 Inversion of a cloud retrieval algorithm

The task of this chapter is the retrieval of two cloud parameters the cloud top height (CTH)

and the cloud optical thickness (COT). A radiative transfer model (RTM) as forward model is

employed. The RTM needs eight geophysical parameters to compute a spectra, as described in

equation 2.2.4. As extension the RTM provides also the Jacobians for two parameters, CTH

and COT. The problem is inverse stated. This means that the fitness function is formulated

in the form minx∈Rn |y − f(x̂)|2. It was already shown that hybridization of GA leads to faster

convergence and less function calls in contrast to pure GA. Because of the availability of partial

derivatives, the genetic algorithm is enhanced with a local search algorithm which can make use

of this additional information. A total least squares approach is used for local search according

to Gauss-Newton-Method. The formula for iteratively updating CTH and COT is given with

equation 4.1, the residuals are computed according to equation 4.2.

xi+1 = xi − (ATA)−1AT r (4.1)

r = |y − f(xi)|2 (4.2)

The measurements have similar accuracy, therefor no weighting has to be done. The local search

algorithm was realized by using the CBLAS library as part of GSL. Both the genetic algorithm

and the local search are forced to minimize the residuals between the estimated and the measured

sprectra. Figure 4.1 shows in blue the measured spectra with the parameters CTH = 0.5 and

COT = 0.113943. The red line shows a spectra derived with the genetic algorithm, the estimated

values are CTH = 0.776452 and COT = 0.477708.

4.1 Algorithm design

The algorithm and its single components were fitted to the specific inversion problem as much as

possible. Like in the previous chapter the main components are the three classes for population,

chromosomes and genes. The population class includes now a local search method which can

be applied to a single chromosome. The chromosomes two independent variables for CTH and

COT are stored in a vector, the same is true for the dependent variable, the spectra. Because

of the multi-threading, it was decided to declare the dependent and independent variables plus

the fitness value as private and be only accessible via get and set operators. The genes contain

CHAPTER 4. INVERSION OF A CLOUD RETRIEVAL ALGORITHM 71

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 10 20 30 40 50 60 70

in
te

n
si

ty

spectral range

measurement
estimate

Figure 4.1 – Comparison between computed Spectra using estimated cloud parameters and measured
spectra

CHAPTER 4. INVERSION OF A CLOUD RETRIEVAL ALGORITHM 72

methods for computing the independent value out the genetic string and for computing a genetic

string out of an floating point number. The second is necessary because of the local search, which

works with real numbers. The result of the local search than has to be converted into a genetic

string. Figure 4.2 shows the setup of the classes.

Figure 4.2 – Class diagram Clouds

As stopping criterion stability in the independent variables for 14 loops was chosen. The local

search was applied for maximum 10 iterations per generation, to ensure not to spend to much

computational resources for the local search. Further steering parameters of the developed program

are listed in table 4.1.

Parameter value
Population size 50 chromosomes
Nbr. of generations 160
Generation gap 0.85
Mutation rate 0.07
Crossover rate 0.7
gene length 15
search space CTH xi = [0.5 : 0.000274658 : 5]
search space COT xi = [0.11394 : 0.00012103 : 2.0969]

Table 4.1 – parameters for testing with function inversion example

4.2 Optimization results

For assessing the quality of the retrieved parameters a representative data set of 48000 measure-

ments is used. The algorithm was applied two times to this data set, one time without local search,

the other time using local search. Figure 4.3 shows the residuals of the two retrieved parameters

for the algorithm without local search, figure 4.3(a) for CTH and figure 4.3(b) for COT. Figure

4.4 shows the residuals of the same retrievals for the algorithm which included local search, figure

4.3(a) for CTH and figure 4.3(b) for COT. The root mean squared error (RMSE) was computed

CHAPTER 4. INVERSION OF A CLOUD RETRIEVAL ALGORITHM 73

0

5000

10000

15000

20000

25000

30000

35000

-6 -4 -2 0 2 4 6

Residuals CTH

(a) Residuals CTH

0

10000

20000

30000

40000

50000

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Residuals COT

(b) Residuals COT

Figure 4.3 – Residuals for CTH and COT retrieved with multi-threaded genetic algorithm

0

10000

20000

30000

40000

50000

-6 -4 -2 0 2 4 6

Residuals CTH - Local Search

(a) Residuals CTH

0

10000

20000

30000

40000

50000

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Residuals COT - Local Search

(b) Residuals COT

Figure 4.4 – Residuals for CTH and COT retrieved with multi-threaded hybrid genetic algorithm

CHAPTER 4. INVERSION OF A CLOUD RETRIEVAL ALGORITHM 74

for the two retrieval algorithms by

RMSE =

√∑n
i=1(y − f(x̂))2

n
(4.3)

The RMSE of the genetic algorithm is for CTH = 0.74441 and for COT = 0.14837. The hybrid

genetic algorithm performs better with RMSE for CTH = 0.37747 and for COT = 0.11852. This

means the hybrid GA delivers for CTH an accuracy which is about the factor 1.97 higher than

for the pure GA. Also for COT the hybrid GA achieves the higher accuracy, but here the factor

is just 1.25.

In contrast to the previous results in section 2.3 the number of function calls used for the search

is lower for the pure GA. It needs in mean about 3379 objective function calls until termination.

The GA which makes use of local search needs in mean 3915.3 function calls until termination.

This gives a ratio of 1 to 1.15 between pure GA and hybrid GA. The main reason for this is

probably the stopping criterion for the local search algorithm, which terminates after 10 loops or

if the difference between new and old CTH and COT is lower than 0.0000001. The local search

needs 10 function calls, but the whole GA also just terminates if there is no change in CTH and

COT of the fittest chromosome for 14 generations, so even this almost negligible changes in the

local search force the hybrid GA to not terminate. In future the maximal accuracy determined by

the genetic encoding of the variables should be taken into account here. By doing so, the number

of function calls will probably decrease for the hybrid GA without loosing accuracy.

CHAPTER 5. CONCLUSION 75

5 Conclusion

Several conclusions can be made out of this project. From the methodological side the prove is

made that EA fit well for a wide range of optimization and search problems. Different forward

and inverse problems were discussed in detail. The quality of solution depends at least mostly

on how well the problem has been discussed and analyzed. A priori knowledge on the objective

function behavior is the key to produce reasonable results. Therefor the user has to know how

the different operators of EA influence the process. With this knowledge the user can set the

probabilities dependent on the problem to guide the search.

But besides of the theoretical side, the main focus lies on the results the program delivers for the

real world problems. The first task was to find an optimal input vector for the ozone algorithm

with the restriction of not using more than a given number of measurements. This task was from

computational side quite complicated, the problem is in practice not solvable by a deterministic

approach because of the needed runtime. Here heuristic approaches like the developed GA con-

vince. Combinatorical problems fit almost ideal for genetic algorithms, because of the feature to

deliver results which are almost optimal in short time. By adding parallelization to the algorithm,

the run time was reduced even more. The program was running on a blade server with 48 cores

exclusive for the program. This meant a run time reduction by the factor of 48 in contrast to a

sequential program. The algorithm did not always converge to the same results. This behavior

is explained by the nature of combinatorical problems. An probability driven approach was done

in order to retrieve even better fitting input vectors out of the single results of the program. It

was shown that this approach don’t works. This leads to the conviction that despite of the sin-

gle positions of the used measurements furthermore neighborhood relationship between the single

measurements play a role. Further research can be done here in investigating these relationships.

For the inversion of a complex function the algorithm works successful. High quality results

were achieved on a reliable base. Despite of the parallelization for run time reduction, a local

search algorithm was added. Because of the inverse formulation of the problem, in contrast to

minimization algorithms for forward models a total least squares approach was introduced. It is

shown that the retrieved results of this hybrid algorithm are for CTH about the factor 1.97 that

precise than the one of the pure genetic algorithm, for COT the accuracy of the estimation is

about the factor 1.25 more precise.

Bibliography 76

Bibliography

[1] Hestenes, M.R. and Stiefel, E. (1952): Methods of conjugate gradients for solving linear

systems. Journal of Research of the National Bureau of Standards, 49, pp. 409-439.

[2] Fletcher, R. and Reeves, C.M. (1964): Function minimization by conjugate gradients. Com-

puter Journal, 7, pp. 149-154.

[3] Nocedal, J. and Wright, S.J. (2006): Numerical Optimization - Second Edition. Springer. New

York, USA.

[4] Schröder, Dierk. (2010): Intelligente Verfahren: Identifikation und Regelung nichtlinearer

Systeme. Springer Verlag. Heidelberg, Deutschland.

[5] Papula, Lothar. (2001): Mathematik für Ingenieure und Naturwissenschaftler - Band 1, 10.

Auflage. Vieweg Verlag. Braunschweig/Wiesbaden, Deutschland.

[6] Weicker, Karsten. (2002): Evolutionäre Algorithmen. Teubner Verlag. Deutschland.

[7] Fogel, D.B. (1995): Evolutionary Computation: Toward a New Philosophy of Machine

Intelligence . Piscataway, NJ: IEEE Press.

[8] Chipperfield, A., Fleming, P. J., Pohlheim, H. and Fonseca, C. M. (1994): Genetic Algorithm

Toolbox for use with Matlab. Technical Report No. 512, Department of Automatic Control

and Systems Engineering, University of Sheffield.

[9] De Jong, K.A. (1975): Analysis of the Behaviour of a Class of Genetic Adaptive Systems. PhD

Thesis, Dept. of Computer and Communication Sciences, University of Michigan, Ann Arbor.

[10] Baker, J.E. (1987): Reducing bias and inefficiency in the selection algorithm. Proc. ICGA 2,

pp. 14-21

[11] Goldberg, D.E. (1989): Genetic Algorithms in Search, Optimization and Machine Learning.

Addison Wesley Publishing Company.

[12] Whitley, D. (1989): The GENITOR algorithm and selection pressure: why rank-based

allocations of reproductive trials is best. Proc. ICGA 3, pp. 116 - 121.

[13] Huang, R. and Fogarty, T. C. (1991): Adaptive Classification and Control-Rule Optimization

Via a Learning Algorithm for Controlling a Dynamic System. Proc. 30th Conf. Decision and

Control, Brighton, England, pp. 867 - 868.

Bibliography 77

[14] Bagheri, E. and Deldari, H. (2006): Dejong Function Optimization by means of a Parallel

Approach to Fuzzified Genetic Algorithm. Proc. 11. IEEE Symposium on Computers and

Communications, Cagliari, Sardinia, Italy, pp. 675 - 680.

[15] Reed, R.D. and Marks, R.J. (1995): An Evolutionary Algorithm for Function Inversion and

Boundary Marking. Volume 2, IEEE International Conference on Evolutionary Computation,

pp. 794 - 797.

[16] Heuser, H. (1990): Lehrbuch der Analysis, Teil 1. Volume 8, Teubner Verlag, Stuttgart.

[17] Shekel, J. (1971): Test functions for multimodal search techniques. Fifth Annual Princeton

Conference on Information Science and Systems.

[18] Gordon V.S. and Whitley D (1993): Serial and parallel genetic algorithms as function

optimizers. In: Forrest S. (Ed.), Proceedings of the Fifth International Conference of Genetic

Algorithms, Morgen Kaufmann, San Mateo, CA, pp. 177 - 183.

[19] Baluja S. (1993): Structure and performance of fine-grain parallelism in genetic search. In:

Forrest S. (Ed.), Proceedings of the Sixth International Conference on Genetic Algorithms,

Morgan Kaufmann, San Mateo, CA, pp. 114 -121.

[20] Hart W.E., Baden S., Belew R.K., and Kohn S. (1997) Analysis of the numerical effects of

parallelism on a parallel genetic algorithm. Proceedings of the Worksphop on Solving Combi-

natorial Optimization Problems in Parallel. IEEE (Ed.), CD-ROM IPPS97.

[21] Tsoulos I. and Lagaris I.E. (2008): GenMin: An enhanced genetic algorithm for global

optimization. Computer Physics Communications, doi: 10:1016/j.cpc.2008.01.040.

[22] Bashir H.A. and Neville R.S. (2012): A Hybrid Evolutionary Computation Algorithm for

Global Optimization. IEEE World Congress on Computational Intelligence, June, 10-15, 1012

- Brisbane, Australia.

[23] Alba E. and Troya J.M. (2002): Improving flexibility and efficiency by adding parallelism

to genetic algorithms. Statistics and Computing 12: 91-114, Kluwer Academic Publishers,

Netherlands.

[24] Zhang J., Zhan Z., Lin Y., Chen N., Gong Y., Zhong J., Chung H., Li Y., Shi Y. (2011):

Evolutionary Computations Meets Machine Learning: A Survey. IEEE Computational Intel-

ligence Magazine, doi: 10.1109/MCI.2011.942584.

[25] Internetrecherche (2012) http://en.wikipedia.org/wiki/Convex_function date:

17.09.2012

[26] Internetrecherche (2012) http://en.wikipedia.org/wiki/Unimodal_function#Unimodal_function

date: 17.09.2012

[27] Internetrecherche (2012) http://en.wikipedia.org/wiki/Quadratic_function

date: 17.09.2012

	Titlepage
	Thesis

