Automated Production of Large Preforms Based on Robot-Robot Cooperation

07.02.2012
Dr. Tobias Gerngross
Outline

- Introduction: the Challenge
- Preforming with Cooperating Robots
- Video
- Experimental Validation
- Summary and Outlook
Introduction: the Challenge

- Large preforms
- High layup rates
- Many manual processes
- Potential issues
 - Material damages
 - Repeatability
 - Quality assurance
- Material attachment
- Robotic gripper weight for large cut pieces
Preforming Approach: Concept

- Large cut pieces up to 1.4 x 6 m
- Manual handling of cut pieces by 2 workers, i.e. 4 hands
- General idea: cooperating robots with 2 grippers

Process:
- Pick up without damage
- Transfer
- Exact, repeatable positioning
- Attachment
Preforming Approach: Grippers

- **Gripper principles**
 - Modularity
 - Vacuum (low pressure), high volume flow
 - Supply: 6 bar, 24 V, EtherCat
 - Flexible adjustment of deformation

- **Gripper details**
 - Components:
 - Valve cluster by Festo
 - Bus module by Beckhoff
 - Gripper mechanics by Kuka Systems
 - Bellows suction pads (optimized for choice of material)
 - Activation of thermoplastic binder by heating device on linear actuator
Preforming Approach: Preliminary Testing

- Initial steps
 - Gripper integration and controls
 - Validation of gripper principle
 - Optimization

- Preliminary test setup
 - Validation of positioning accuracy
 - Small sample cut piece 225 x 555 mm
 - Laser scanner for high accuracy measurements
Preforming Approach: Setup

- **Setup**
 - Permeable surface for pick-up
 - Rectangular cut pieces
 - Dry NCF
 - 2.0 x 1.22 m
 - Thermoplastic binder
 - Two grippers, each 7 active modules

- **Geometric conditions**
 - Material forms catenary curve
 - Gripper position and orientation adjusted to catenary
Preforming Approach: Catenary

- Catenary can be computed for individual gripper-gripper positions

- Parameterised program: x, z, α

- Assuming constant length and width, then:
 - $z(x) = a \cosh\left(\frac{x-x_0}{a}\right) + z_0$
 - $l = 2a \sinh\left(\frac{w}{2a}\right)$
 - $F = \frac{mg}{\coth\left(\frac{w}{2a}\right)}$

- Here: distance $w = 1698$ mm, length $l = 1778$ mm, hence: radius $a = 1607$ mm, angle $\alpha = 28.8^\circ$, $m = 1.35$ kg, $F = 13.75$ N
Preforming Approach: Process

Pick-up
- Permeable table surface
- Resulting forces depending on gripper distance
- Gripper movements in 3 increments
- Cut piece forms catenary

Transfer on linear track
- Grippers keep their relative position and orientation
Preforming Approach: Process

Positioning

- Gripper no. 1: first cut piece edge held in position
- Activation of thermoplastic binder

Attachment

- Individual gripper movements
- Gripper no. 2 releases cut piece (now free for local cut piece attachment)
Preforming Approach: Video
Preforming Result

- Key aspects:
 - Positioning accuracy (absolute, relative)
 - Cut piece accuracy (boundary curve)
 - Cut piece deformation
 - Lay-up rate

- Pushing boundaries
 - Cut piece 1.22 x 6.0 m
 - NCF +/-45°
 - 4.06 kg
Layup Rate

<table>
<thead>
<tr>
<th></th>
<th>Initial testing</th>
<th>2 m Video</th>
<th>2 m expected</th>
<th>6 m expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick-up [s]</td>
<td>8</td>
<td>13</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Transfer [s]</td>
<td>4</td>
<td>11</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Positioning [s]</td>
<td>2</td>
<td>29</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Binder [s]</td>
<td>10</td>
<td>40</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Return [s]</td>
<td>7</td>
<td>30</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Mass [g]</td>
<td>69</td>
<td>1354</td>
<td>1354</td>
<td>4063</td>
</tr>
<tr>
<td>Layup rate [kg/h]</td>
<td>7.53</td>
<td>39.62</td>
<td>131.74</td>
<td>265.94</td>
</tr>
</tbody>
</table>

- **Time [s]**
 - Return
 - Binder
 - Positioning
 - Transfer
 - Pick-up

- **Mass [g]**
 - Initial Testing
 - 2 m Video
 - 2 m expected
 - 6 m expected

- **Layup rate [kg/h]**
 - Initial Testing
 - 2 m Video
 - 2 m expected
 - 6 m expected
Cut Piece Deformation

- Preliminary testing
 - Small test coupons
 max. 350 x 644 mm (W x L)
 - Unidirectional force applied
 max: 4.4 N

- Results for small test coupons
 - Elongation
 max: 2.1 mm
 - Lateral indentation
 max: -1.33 mm
Experimental Setup

- Specimen (cut pieces)
 - NCF, +/-45°, 2.0 x 1.22 m
 - Weave, 0/90°, 2.0 x 1.30 m

- Experiment
 - Flat table surface
 - Pick-up, catenary, transfer, re-positioning on table
 - Measurement of cut piece deformation

- Measurement method: photogrammetry
 - Camera Panasonic Lumix DMC-TZ7
 - Software EOS Photomodeler 2011
Experimental Setup

- Cut piece preparation
 - Attachment of coded targets
 - Positioning on table with limit stop

- Measurement
 - Rigid bar for scaling
 - Reference set of 6-8 photos
 - Set of photos of „deformed“ cut piece

- Processing
 - 3D computation of target coordinates in Photomodeler
 - Assessment of change of distance between pairs of targets
Experimental Results

Weave

- Change in width
- Elongation

NCF +/-45°

- Change in width
- Elongation

Precision of a single target position: 0.25 - 0.45 mm
Summary

- **Preforming approach with cooperating grippers does work**
 - Preliminary tests on positioning accuracy show good results
 - Grippers extended to full length
 - Implementation with KUKA RoboTeam
 - Cut pieces up to 2 m length have been handled
 - Process demonstrated: Pick-up, transfer, positioning and attachment

- **Measurement of cut piece deformation**
 - First assessment of influence on cut pieces
 - Preliminary results show little deformation
 - More testing required
 - No other cut piece damages observed

- **Fast process; high lay-up rates possible**

- **This is work in progress…**
Pushing boundaries
Outlook

Medium term development goals
- Short cycle time → increase of layup rate
- High process stability → possible process qualification

Possible improvements
- Improved heating system for faster binder activation
- Flexibility of gripper kinematics
- Live consideration of catenary
- Integration of quality control system

Next Steps
- Current gripper allows single curvature:
 Next generation gripper (for double curvature) in development with KUKA Systems
- Further testing of cut piece accuracy
- Optimization of process parameters
Outlook

- **Robotics scenario**
 - Gripper application in newly built multifunctional robotic cell at the DLR Augsburg
 - Industry and Institutes are welcome to do research on our robotics platform
The ZLP in Augsburg is being funded by the City of Augsburg, the Federal State of Bavaria and the Federal Ministry of Economics and Technology.

A special thanks goes to my colleagues at the DLR-ZLP in Augsburg. This work has been a team effort and their enduring help has made it possible.
Preforming Approach: Cooperating Robots

- Kuka RoboTeam features:
 - **Geolink:**
 Geometrically linked TCPs (pseudo-closed kinematic chain)
 Slave robot follows master’s TCP

 - **ProgSync:**
 Simultaneous start of instructions

 - **Sync Movements:**
 Synchronized movements (start and end of movement)

 - **RemoteCommand:**
 Issuing commands to other team members
Preforming Approach: Cooperating Robots

- Cooperation of (industrial) manipulators (especially synchronized movements)

- Possible approaches:
 - No synchronization (calculation & teaching of required movements)
 - Single controller manages all participating joints (Single master)
 - Synchronization of multiple controllers (Master - Slave)

- Here: Application of KUKA RoboTeam technology package
 - Master/Slave approach
Preforming Approach: Cooperating Robots

- Chosen configuration:
 - **Pick-Up from table:**
 ProgSync (at start of program and incremental pickup stages) and GeoLink (after final pickup position)
 - **Transfer on linear track:**
 Sync movements (no GeoLink for linear tracks because of 7-axis redundancy)
 - **Positioning in mould:**
 combination of GeoLink (for positioning) and ProcSync (for attachment) statements
 - Slave gripper control through remote commands