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Abstract— This paper discusses a vibration suppression con-
trol method for a space robot with a rigid manipulator and
flexible appendage. A suitable dynamic model that considers
the coupling between the manipulator and flexible appendage
was developed for the controller to accomplish the vibration
suppression control of the flexible appendage. The flexible
appendage was modeled using a virtual joint model, and the
control method was developed on the basis of this model.
Although this type of control requires feedback of the flexible
appendage state, its direct measurement is generally difficult.
Thus, an estimator of the flexible appendage state was con-
structed using a force/torque sensor attached between the base
and flexible appendage. The control method was experimentally
verified using an air-floating system.

I. INTRODUCTION

Spacecraft with robot manipulators have been developed

to capture space debris and repair space structures [1][2].

Most of these spacecraft need to be equipped with flexible

appendages such as solar panels and antennas, as shown in

Fig. 1. For a free-flying system in a micro-gravity environ-

ment, the reaction of the manipulator motion used for a given

task excites a change in the base attitude, which induces

vibrations in any other flexible appendages. These vibrations

reduce the accuracy of operation, increase the risks of failure,

cause wear-and-tear that shortens the life expectancy, and

require a stronger and heavier mechanical design, which

translates into higher costs. In order to suppress such vi-

brations during operation, an appropriate control method that

considers the dynamic coupling among the manipulator, base,

and flexible appendage is required.

There is a limited amount of research being conducted

on the control of a space robot that considers the coupling

between rigid manipulators and flexible appendages. In [3],

the dynamics and control of such a system were studied.

However, in their research, the equations of motion of the

rigid manipulator and the flexible appendage were solved

separately. This computation ignored dynamic coupling,

which can lead to closed-loop instability [4].
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Fig. 1. Illustration of on-orbit servicing

The reactionless control of a manipulator was proposed

by Nenchev [5]. This control method realizes manipulator

motion that does not excite motion of the base by using

the null-space of a redundant manipulator. However, the

manipulator motion is severely restricted by the null-space

limitations. Therefore, this method is not sufficient for tasks

requiring manipulator motion over a large area.

Numerous studies in various fields have modeled and

analyzed flexible arms or appendages [6][7]. The assumed

mode method and finite element method are commonly used

to analyze the behavior of a flexible appendage. The attitude

control method for satellites with flexible panels employs

the assumed mode method to model flexible panels [8][9].

To estimate the panel state, it requires several sensors such

as piezoelectric elements on the panel or a visual monitoring

system. In general, these devices make the system and opera-

tion more complex. The finite element method is impractical

for online feedback control because of its high calculation

cost. In contrast, Yoshikawa proposed a virtual joint model,

which approximates flexible manipulators as virtual rigid

links and passive spring joints [10]. This model expresses

a complex flexible manipulator as a simple articulated body

with dominant dynamic characteristics. We employed this

model into a free-flying system. Using this method, a free-

flying robot with flexible appendages can be modeled as a

reduced articulated body system. This reduced model makes

it possible to calculate the dynamics of the robot in real

time using the limited computational resources of currently

available hardware. Therefore, in this research, we developed

the theory and technology which can be used in actual

missions, using a virtual joint model.

In this study, we developed a simple dynamic model of a

space robot with a rigid manipulator and flexible appendage,
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considering their coupling. Vibration suppression control and

state estimator of the flexible appendage are proposed on

the basis of this simple dynamic model. Their effectiveness

was verified experimentally through the use of an air-floating

system.

II. DYNAMIC MODEL

A. Dynamic Model of Flexible Appendage

A cantilever with a tip mass was considered as a flexible

appendage, as shown in Fig. 2(a). We approximated the

cantilever as a virtual joint model with one rigid link and one

passive joint, as shown in Fig. 2(b). This virtual joint model

has the stiffness of joint Kf as the unknown parameter. The

method to identify the parameter is described below.

The cantilever was assumed to be a Euler-Bernoulli beam.

From the Rayleigh law, the first eigenfrequency is described

by

fb =
1

2π

√

3EI

l3f (mt +
33

140
ms)

(1)

where E, I , lf , ms, mt are the Young’s modulus, second

moment of the area, length, mass of beam, and mass of the

tip, respectively.

In contrast, the eigenfrequency of the virtual joint model

is represented as follows:

fj =
1

2π

√

Kf

If
(2)

where If is the moment of inertia of the link. Note that If
is a function of the length of link lf .

The unknown parameter can be identified by comparing

the above eigenfrequencies.

B. Dynamic Model of Free-Flying Robot

A simple dynamic model is introduced here with a manip-

ulator and flexible appendage which is approximated by the

virtual joint model. As an example, Fig. 3 shows a dynamic

model with a three-joint manipulator and a one-joint flexible

appendage. We assumed that the robot is in a micro-gravity

environment; therefore, gravity does not apply. Given that no

external force and moment are exerted on the end-effector

and base, the equation of motion of this free-flying system

can be represented as follows [11]:



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HT
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where the symbols are defined as follows.

Hb : Inertia matrix of base

Hm : Inertia matrix of manipulator

Hf : Inertia matrix of flexible appendage

Hbm : Coupling inertia matrix between base and manip-

ulator

Hbf : Coupling inertia matrix between base and flexible

appendage

Hmf : Coupling inertia matrix between manipulator and

flexible appendage

mt

E I ρ

l f

(a) Mass-cantilever model

mt

l f
φ
f

τ f

(b) Virtual joint model

Fig. 2. Models of flexible appendage

xb : Vector of position and orientation of base

φm : Vector of manipulator angle

φf : Vector of flexible appendage angle

cb : Nonlinear velocity-dependent term of base

cm : Nonlinear velocity-dependent term of manipulator

cf : Nonlinear velocity-dependent term of flexible

appendage

τm : Vector of torque on manipulator joints

τ f : Vector of torque on flexible appendage joints.

The torque of the flexible appendage is given by the

following linearized form:

τ f = −Kfφf −Df φ̇f (4)

where Kf and Df are the matrices for the stiffness and

damping, respectively, of the flexible appendage.

By eliminating the base acceleration term ẍb from the

middle and lower parts of (3) using the upper part of (3),

the equation of motion can be rewritten in the following

joint coordinate form [11]:

Ĥ

[

φ̈m

φ̈f

]

+ ĉ =

[

τm

τ f

]

(5)

where

Ĥ =

[

Hm Hmf

HT
mf Hf

]

−HT
bcH

−1

b Hbc (6)

ĉ =

[

cm
cf

]

−HT
bcH

−1

b cb (7)

Hbc = [Hbm Hbf ]. (8)

The matrix Ĥ is referred to as the generalized inertia matrix.

III. CONTROL LAW

A control law is derived to suppress vibrations of the

flexible appendage on the basis of the proposed model. The

control inputs are the manipulator joints. The angular veloc-

ity of the flexible appendage is used for feedback to suppress

the vibrations. The basic law of vibration suppression was

introduced in [12]. The lower part of (5) can be expressed

with the components of Ĥ and ĉ as follows:

Ĥfmφ̈m + Ĥf φ̈f + ĉf +Df φ̇f +Kfφf = 0 (9)

where Ĥf and Ĥfm are components of the generalized

inertia matrix for the flexible appendage and the coupling
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Fig. 3. Dynamic model of free-flying robot with flexible appendage

term between the manipulator and flexible appendage, re-

spectively, and ĉf is a component of ĉ for the flexible

appendage. By choosing a manipulator acceleration to satisfy

Ĥfmφ̈m = Dcφ̇f − ĉf (10)

where Dc is a control gain, the vibrations of the flexible ap-

pendage are suppressed according to the following equation

of motion of a damping system.

Ĥf φ̈f + (Dc +Df )φ̇f +Kfφf = 0 (11)

Note that the control gain Dc changes the damping ratio of

the system. From the inverse solution of (10) , we obtain

the desired angular acceleration of the manipulator in the

following term:

φ̈
d

m = Ĥ
+

fm(Dcφ̇f − ĉf ) (12)

where the superscript “+” means the pseudo inverse. In

practical use, the damping term of the manipulator is added

as follows:

φ̈
d

m = Ĥ
+

fm(Dcφ̇f − ĉf )−Dqφ̇m (13)

where Dq stands for a damping matrix of the manipulator

joints. Note that this control requires angular velocity feed-

back from the flexible appendage φ̇f . The state estimator of

the flexible appendage for the feedback control is presented

below.

IV. DESIGN OF STATE ESTIMATOR

OF FLEXIBLE APPENDAGE

A. State Estimation

The state estimator of the flexible appendage for the

feedback control is described here. In a case where the

flexible appendage is modeled as a single virtual joint, the

angular velocity of this virtual joint can be estimated using

the force/torque sensor attached between the base and the

flexible appendage.

Assuming that the damping term is small enough to

vanish, the angle of the virtual joint can be represented from

(4) as follows:

φf = K−1

f τ f (14)

where τ f is the torque measured by the force/torque sensor.

The angular velocity φ̇f , which is used for the feedback con-

trol to suppress vibrations, can be obtained numerically from

the differential value of φf provided by (14) . However,

the force/torque sensor often has zero offset. Although the

angular velocity φ̇f is not affected by this offset because it is

obtained from the differentiation, the angle φf is affected and

difficult to measure with the force/torque sensor. Therefore,

approximated inertia matrices that do not depend on the

virtual joint angle are used to calculate the control input.

B. Approximation of Inertia Matrix

The vibration suppression control given by (13) requires

the calculation of Ĥfm and ĉf , which are obtained from

the inertia matrices Hb and Hbc. These inertia matrices are

the functions of the virtual joint angle φf . Because the direct

measurement of the virtual joint angle is difficult as described

above, we used the approximated inertia matrices. Suppose

that the virtual joint angle of the flexible appendage is small

and the inertia matrices can be approximated as the value

around the equilibrium point: i.e.,

Hb(φb,φm, φf ) ≃ Hb(φb,φm, 0) (15)

Hbc(φb,φm, φf ) ≃ Hbc(φb,φm, 0) (16)

where φb denotes the vector of the base attitude. From the

above approximations, the inertia matrices become functions

of measurable parameters.

V. EXPERIMENTAL STUDY

An experimental study was conducted to validate the pro-

posed control based on the simplified model and estimated

feedback value.

A. Experimental Setup

We developed an air-floating system to emulate a micro-

gravity environment [13]. This system uses pressurized air

to float a robot on a flat plane without friction and realize

motion under the micro-gravity environment in two dimen-

sions. Fig. 4 shows an air-floating robot with a three-joint

manipulator and flexible appendage. The details of the model

parameters are listed in Table.I. The symbols in this list are

the same as shown in Fig. 3. This robot has a gyro on its base,

which can measure its rotational angle and angular velocity.

The manipulator can be controlled by joint velocity control.

The manipulator encoders measure the angles of each joint

and provide the angular velocities from its differential values.

The flexible appendage is a cantilever with a tip mass.

The measured values from the gyro on the base and the

manipulator encoders are used for the feedback control. The

dynamic calculation and input-output data transfer for the

control are performed by an on-board computer.
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Fig. 5. Experimental setup

The motion of the robot and flexible appendage were

measured using an external camera that tracked markers on

the robot and flexible appendage, as shown in Fig. 5.

B. Experimental Conditions

In this experiment, we compared the results with and

without the vibration suppression control.

The initial state of the robot was stable, and the config-

uration of the manipulator was a straight line(Fig. 6 (left)).

During the experiment, the desired joint velocity was given

as follows:

φ̇
d

m =















[−60 120 − 60]T [deg/s] (0 ≤ t < 1)

[0 0 0]T [deg/s] (1 ≤ t < 2)

φ̇m + φ̈
d

m∆t (2 ≤ t)

(17)

where t denotes the experimental time and ∆t stands for

the time of the control loop. In this experiment, the control

loop was set to 5 ms. In the first 1 s, the manipulator

was controlled at a constant angular velocity. Vibrations in

the flexible appendage were induced by this manipulator

motion. During the period from 1 s to 2 s, the motion of

the manipulator was stopped (Fig. 6 (middle)). At t = 2, the

vibration suppression control began. The input was given to

realize the desired angular acceleration in (13) according to

TABLE I

MODEL PARAMETER VALUES

l1, l2 0.120 [m]

l3 0.067 [m]

lf 0.210 [m]

m0 8.590 [kg]

m1 0.555 [kg]

m2 0.621 [kg]

m3 0.267 [kg]

mt 0.320 [kg]

Kf 0.5561 [Nm/rad]

Df 0.0013 [Nms/rad]

Initial State (t = 0) No Control (1 < t < 2) Vibration Supression (2 < t)

Fig. 6. Overview of robot motion

Controller DC Motor Encoder

Estimator

Gyro

φmφ m

φb φb

φ f

φ m
d

FT Sensor
τ f

.

. .

.

Fig. 7. Block diagram of control

the last term of (17) . The control gains were set to Dc = 0.2
and Dq = 1.0. The feedback value φ̇f was obtained by the

state estimator. A block diagram of the control is shown in

Fig. 7.

C. Experimental Results

Figs. 8-13 show the experimental results for manipulator

joint angles, tip deflections of the flexible appendage, panel

angles, panel angular velocities, base positions, and base

attitudes. The solid lines indicate the results with the control,

and the dotted lines represent the results without the control.

The time history of the manipulator joint angles is shown in

Fig. 8. In the first 2 s, the manipulator motions in each case

were the same. After that, the manipulator was activated to

suppress the vibration in the vibration suppression control.

The tip deflections of the flexible appendage are compared

in Fig. 9. The vibration of the flexible appendage was

suppressed by the manipulator motion. Figs. 10 and 11 show

the results of angle and angular velocity of the virtual joint.

In Fig. 11, the estimated angular velocity of the virtual joint

with the control is presented as a red line. Compared to

the actual value, the estimated value was delayed for 10 ms

approximately due to filtering noise of the sensors. However,
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this time delay is sufficiently small in a comparison with the

vibration period of the flexible appendage, and therefore the

vibration suppression control can be realized. In Fig. 10,

the vibration was suppressed successfully. The above results

confirmed that the proposed vibration suppression control

is effective for this system. As a result of the vibration

suppression of the flexible appendage, as shown in Figs. 12

and 13, the vibrations of the base position and base attitude

were also suppressed. In contrast, without the control, the

base position and attitude continued to vibrate because the

base was affected by the flexible appendage’s vibration.

In Figs. 9 and 10, vibrations with a smaller amplitude

were observed, while the dominant vibration with a higher

amplitude was successfully suppressed. This may be due to

the limitations of the sensor and actuator of the manipulator.

The small deflections can not be measured exactly because of

mechanical noise, and motion with a small angular velocity

is difficult to realize because of the hardware limitations.

The above experimental results proved that the proposed

simple model and control method using the state estimation

for a flexible appendage are sufficiently able to suppress

vibrations of a flexible appendage for a free-flying robot.

VI. CONCLUSIONS

We presented a feedback control method for suppressing

the vibrations of a flexible appendage of a space robot. We

proposed a simplified dynamic model and the state estimator

of a flexible appendage that consider the coupling between

a rigid manipulator and flexible appendage. A verification

experiment demonstrated the practical viability of a feedback

control method based on the proposed model and state esti-

mation. The experimental results revealed their effectiveness.

In future work, we will investigate the theoretical stability

of the proposed method for a case involving high ampli-

tudes of higher vibrational modes. In addition, we intend

to develop a control method to accomplish an end-effector

motion and a vibration suppression simultaneously using

manipulator redundancy.
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