Highly Integrated Heat Exchangers for Automotive Thermoelectric Generators (TEG)

Knowledge for Tomorrow

Methodical functional integration and numerical analysis of TEG heat exchangers

Institut of Vehicle Concepts

M. Kober H. Friedrich

Outline

- Introduction
- Methodical concept development acc. to VDI Guideline 2221
- Module structure used for functional integration
- Comparison between three heat exchanger approaches
- Numerical and analytic analysis with focus on
 - Fin buckling
 - Reduction of thermomechanical stress
 - Homogenisation of contact pressure

Evolution of TEG at DLR

Introduction Why use high temperature TE-Materials?

- Comparison between Bithmuth Telluride and Skutterudite
- Exemplarily Materials with zTmax = 1

Abgas

heiß

kalt

Kühlmittel

Introduction Why use high temperature TE-Materials?

 Higher efficiency at high temperatures mainly through higher Carnot efficiency

• zTmax=1 leads to an exergy efficiency $\eta_{ex} \sim 17\%$

Introduction Why use high temperature TE-Materials?

 Higher efficiency at high temperatures mainly through higher Carnot efficiency

• zTmax=1 leads to an exergy efficiency $\eta_{ex} \sim 17\%$

Procedural method *VDI Guideline 2221*

List of requirements

e.g. Vehicle boundary conditions

- DLR test vehicle
- → BMW 535i
- → 3I, 6 cylinder, spark ignition
- → 190kW @ 6600 1/min

1) Kober, M.; Häfele, C.; Friedrich, H. E. (2012) Methodical Concept Development of Automotive Thermoelectric Generators (TEG). 3. International Conference 'Thermoelecrics goes Automotive', 2012, Berlin, Deutschland.

List of requirements

e.g. Gas temperatures along exhaust system

Gas temperatures along exhaust system at different steady state driving conditions with replaced NO_x-catalyst.

1) Kober, M. ; Häfele, C. ; Friedrich, H. E. (2012) Methodical Concept Development of Automotive Thermoelectric Generators (TEG). 3. International Conference 'Thermoelecrics goes Automotive', 2012, Berlin, Deutschland.

Interactions of TEG and vehicle system

back pressure / cooling of exhaust (ΔP_{pr})

rolling resistance (ΔP_{ro}) (weight increase)

TEG concept development – Function structure

1) Kober, M.; Häfele, C.; Friedrich, H. E. (2012) Methodical Concept Development of Automotive Thermoelectric Generators (TEG). 3. International Conference 'Thermoelecrics goes Automotive', 2012, Berlin, Deutschland.

TEG concept development – Sub-solutions

1) Kober, M.; Häfele, C.; Friedrich, H. E. (2012) Methodical Concept Development of Automotive Thermoelectric Generators (TEG). 3. International Conference 'Thermoelecrics goes Automotive', 2012, Berlin, Deutschland.

Overall system simulations

Results for design point 135 km/h

1) Kober, M. ; Häfele, C. ; Friedrich, H. E. (2012) Methodical Concept Development of Automotive Thermoelectric Generators (TEG). 3. International Conference 'Thermoelecrics goes Automotive', 2012, Berlin, Deutschland.

How can functional integration be done to reduce the TEG weight and thermomechanical stress?

Module structure (acc. to VDI 2221) for functional integration within heat exchangers

Module structure (acc. to VDI 2221) for functional integration within heat exchangers

Module structure Hot gas heat exchanger

Thermoelectric Generator (TEG) Module structure (acc. VDI Guideline 2221) Hot gas heat exchanger 2D - Simulation model Hot gas heat exchanger with TEM

Analytic analysis of fin buckling

• buckling formulation:

$$F = \frac{\pi^{2} * E * I}{L^{2}} \implies p = \frac{\pi^{2} * E * I}{L^{2} * A}$$

factor of safety s = 3
analytic pressure p = 5 MPa

- Variation of
 - fin distance
 - fin thickness
 - heat exchanger height (fin leght)

Analytic analysis of fin buckling

Compromises for functional integration between thermal and mechanical functions are too high

Thermal functions:

thin fins required

Mechanical functions:

thick fins required

Approaches

- Homogenisation of contact
 pressure
- Reduction of thermomechanical stress at thermoelectric modules (TEM)
- Integration of thermal and mechanical functions within the heat exchanger fins

2.) Oval Design 2)

3.) Functional Integration

(Two or more levels of fins - Approach of this work)

1) Patent: DE102010042603 A1

2) Bürkle, A.; et al.: Numerical optimisation of contact pressure with respect to the heat exchange properties of a thermo-electric generator. 2. International Conference 'Thermoelecrics goes Automotive', 2010, Berlin, Deutschland.

Numerical Analysis

Procedure

- Quarter of a heat exchanger module structure is simulated
- Symmetry in x- and y-direction
- Constant pressure or deformation load

Goals

- Avoidance of fin buckling
- Homogeneous contact pressure
- Min. contact pressure of 1MPa
- Low mechanical stress at the TEM

Results - Design with Reinforcements

• Result: Inhomogeneous contact pressure

Contact pressure < 1 MPa High local stress at TEM

Results - Oval Design

- Fins do not homogenise the contact pressure significantly by reason of buckling
 Analysis simplification: modeling without fins
- Result: Inhomogeneous contact pressure

Contact pressure < 1 MPa

High local stress at TEM

D: Thermomechanical_Analysis_Var2.2

Figure Type: Pressure Unit: Pa

Results - Functional Integration

- Reduction of fin length through two fin layers
 - Thermal and machanical functions integrated within the fins without functional compromises
- Result: Homogeneous contact pressure

Contact pressure > 1 MPa

Low stress at TEM

Analytic analysis of fin buckling in multilayer fin structures

• Required fin thickness in a two layer fin structure:

Summary

- Functional integration by using the module structure of VDI Guidline 2221
- Comparison of three approaches to homogenise contact pressure
- Multilayer fins is the only approach that achieve the requirements:
 - Homogeneous contact pressure
 - Low mechanical stress at TEM
- Successful integration of thermal/mechanical functions within heat exchanger

Acknowledgement

This work is supported by the Ministry of Finance and Economics of

Baden-Württemberg by funds of the Baden-Württemberg Stiftung.

Thank you for your attention!

Institut of Vehicle Concepts Pfaffenwaldring 38-40 70569 Stuttgart

Dipl.-Ing.(FH) Martin Kober Phone: 0049 - 711 6862 -457 martin.kober@dlr.de www.DLR.de/fk