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Abstract

A common way to regularize mathematical ill-posed retrieval problems in atmospheric remote sensing is the incorporation
of single-spectrum Bayesian a priori mean values and standard deviations for the parameters to be retrieved, along with
measurement and simulation error information. This decreases the probability to obtain unlikely parameter values. For
a reliable evaluation of measurements with sparse spectral information content, like Venus’ nightside emissions in the
infrared as acquired by the VIRTIS-M-IR instrument aboard ESA’s Venus Express spacecraft, it can help to consider
further a priori knowledge.

A new multi-spectrum retrieval technique (MSR) is presented that allows to incorporate expected correlation lengths
and times for the retrieval parameters used to describe several spectra. It is demonstrated by examples that this
decreases the probability to retrieve spatial-temporal state vector distributions that are incompatible with these a priori
spatial-temporal correlations. Also, a priori correlations between the parameters used to describe a single spectrum and
exhibiting similar a priori spatial-temporal behavior, act to rule out unlikely single-spectrum state vectors. Parameters
with infinite correlation length or time and identic single-spectrum a priori data are spatially or temporally constant
and can be retrieved as parameters that are common to a certain selection of measurements. This is shown to be
especially useful to retrieve surface emissivity in the infrared as parameter that is common to several measurements that
repeatedly cover the same target, and to determine deep atmospheric CO; opacity corrections, which are common to all
Venus nightside spectra. Also this way, all considered measurements can be parameterized by a fully consistent set of
atmospheric, surface, and instrumental parameters that respects all available a prior: data as well as the measurement
and simulation error distributions and that does not neglect the context between adjacent measurements. MSR is
demonstrated to enhance the retrieval reliability and accuracy and pushes the VIRTIS-M-IR data evaluation to its

limits.
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1. Introduction

The geology and composition of Venus’ surface are top-
ics of active research. There are only a few in situ mea-
surements, performed by the VENERA probes [1]. Most
areas appear to consist of basaltic material, but it is poorly
classified. Knowledge of surface emissivity in the infrared
can provide constraints for surface composition and weath-
ering affected texture. Global surface emissivity maps can
only be acquired by applying remote sensing techniques.
A global topography, reflectivity, and emissivity data base,
referred to 2.385 GHz, has been obtained by the Magellan
mission [2]. However, a detailed analysis of Venus’ geology
requires input from spectral ranges that are more diagnos-
tic to surface composition, like the infrared.

Venus’ surface can not be directly observed in the vis-
ible and infrared. The hot surface (735K at Okm alti-
tude when assumed to be in thermodynamic equilibrium
with the bottom of the atmosphere according to the Venus
International Reference Atmosphere VIRA [3, 4]) emits
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altitude dependent thermal radiation, as it does the hot
deep atmosphere. This radiation is absorbed and multiply
scattered by the gaseous and particulate components of
the atmosphere, thereby strongly affecting the signals of
the surface emissions that carry information about surface
temperature and emissivity. The atmosphere is opaque
with the exception of a few transparency windows between
0.8 and 1.3pm that probe down to the surface. Addi-
tional windows between 1.3 and 2.6 um are affected by
the deep atmospheric temperature field and composition
[5, 6]. Reflected sunlight strongly outweighs these emis-
sions, thereby limiting the data usable for surface emissiv-
ity extraction in the infrared to nightside measurements.

ESA’s planetary probe Venus Express (VEX) orbits the
planet since 2006. The Mapping channel in the InfraRed
of the Visible and InfraRed Thermal Imaging Spectrom-
eter (VIRTIS-M-IR) aboard VEX acquires spectrally re-
solved (432 spectral bands uniformly dividing the range
1.0-5.2pm) two-dimensional images of targets on Venus
[7-9]. The carefully calibrated and preprocessed measure-
ments [10, 11] provide the data base where the surface
information shall be extracted from.

Hyper-spectral data can be quantitatively evaluated by
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using a retrieval algorithm in conjunction with a detailed
radiative transfer simulation model (’forward model’). The
radiance spectrum that is detected by the space-borne
measuring instrument, can be simulated by the forward
model that numerically solves the radiative transfer equa-
tion. The result depends on the state parameters of atmo-
sphere (altitude profiles of temperature and of gaseous and
particulate constituents, absorption and scattering prop-
erties of the constituents), surface (elevation, temperature,
emissivity), instrument (band-to-wavelength-mapping, full
width at half maximum (FWHM) of the instrumental re-
sponse function), and others (observational and illumina-
tional geometry, Oy nightglow, etc.). The parameters that
shall be retrieved are compiled into the so-called ’state
vector’. The retrieval algorithm compares the state-vector
dependent simulation to the measurement and iteratively
varies the state vector until the simulation well fits the
measurement. The corresponding state vector then ade-
quately parameterizes the measurement and is interpreted
to represent the physical states of the atmosphere, surface,
instrument, and others, that led to the measured spec-
trum. Herefore, a forward model is used, similar to that
described by Haus and Arnold [12]. Tt is a plane-parallel,
non-LTE, line-by-line code taking into account thermal
emissions by surface and atmosphere, and absorption and
multiple scattering by gases and clouds. Some additional
noteworthy details are presented in Section 4.1.

But depending on spectral resolution and information
content of the measurement and on complexity of the for-
ward model, different state vectors can parameterize the
same measurement equally well. Thus, this inversion of
the radiative transfer equation is mathematically an ill-
posed problem. The usual way to treat such problems is a
regularization [13], for instance by defining a priori proba-
bility distributions, which the state vectors are assumed to
follow. A convenient distribution is a Gaussian with cer-
tain mean value vector and covariance matrix. The a pri-
ort mean vector is defined to be the physically expected
value of the state vector and the a priori covariance ma-
trix its expected covariance matrix. The utilized a priori
data for VIRTIS-M-IR retrievals is based on former ob-
servational in situ results gathered during the VENERA
missions [1] and on the analysis of earlier ground based
high-resolution data [5, 6, 14, 15] as well as on other space-
borne experiments (limb observations [16], radio science
[17]). The spectra also suffer from measurement and cali-
bration errors on the one hand and from simulation errors
on the other hand. This information can also be incor-
porated into the retrieval algorithm in order to arrive at
a Bayesian interpretation [18] of the regularization. Here,
the measurements and simulations, along with the a prior:
and error information, lead to an a posteriori probability
distribution. The location of its maximum represents the
best estimate of the state vector and has to be iteratively
determined by the retrieval algorithm. The standard devi-
ations of, and the correlations between, the retrieved pa-
rameters can be estimated through an approximation of
the Hessian of this a posteriori probability distribution
at the best estimate of the state vector. They are mea-
sures for the retrieval uncertainties and interferences. This
single-spectrum regularization decreases the probability to
obtain unlikely parameter values.

However, influence of noise, the presence of parameters

with very similar impacts on spectra, as well as the pos-
sible existence of subsidiary solutions due to the complex
non-linear dependence of radiance on the state vector may
cause unexpected discontinuities in the spatial and tempo-
ral distribution of the retrieved parameters. Especially for
measurements with sparse spectral information content,
like the VIRTIS-M-IR measurements of Venus’ nightside
emissions, this may seriously degrade the reliability of re-
trieved single-spectrum parameters.

To overcome this problem, a multi-spectrum retrieval
algorithm (MSR) is presented (Section 2) that allows for
the utilization of additional a priori knowledge such as
a priori spatial-temporal correlations. These are usually
neglected but nevertheless always present, since contigu-
ous measurements are unlikely to originate from completely
unrelated state vectors. One pivotal aspect is the design
of a suitable a priori covariance matrix (Section 3) that
is positive definite by construction and allows for the en-
coding of the single-spectrum parameters’ a priori stan-
dard deviations, spatial-temporal correlations, and local
correlations (for instance as required for single-spectrum
temperature profile regularization). In the limit of infinite
correlation lengths or times for certain parameters, this
covariance matrix will degenerate. Then, a special-case
treatment can be derived that corresponds to the concept
of retrieving parameters common to a selection of measure-
ments (Section 3.5). Details of the forward model as well
as retrieval parameters relevant for VIRTIS-M-IR mea-
surements of Venus’ nightside are presented in Section 4.
Section 5 demonstrates by corresponding examples that
MSR . decreases the probability to retrieve unlikely param-
eter distributions, helps to avoid subsidiary solutions and
to disentangle parameters with strongly differing spatial-
temporal a priori correlations, compensates for noise ef-
fects, and allows to combine the information content of
several spectra to determine hard-to-retrieve parameters
that are common to a selection of measurements. A selec-
tion of mathematical details is presented in Appendix A,
as well as some notes on the implementation of MSR. First
results have been presented by Kappel et al. [11, 19, 20, 21],
and the present paper develops the corresponding mathe-
matical background.

2. Multi-spectrum retrieval algorithm (MSR)

This section recites the basics of Bayesian regulariza-
tion as presented by Rodgers [18, Sections 2.3 and 5.2],
but already in a generalized multi-spectrum retrieval for-
mulation, and the involved quantities are defined. The
required a priori covariance matrix will be constructed in
Section 3.

Let y, € R™i, i € {1,---,r} be the column vector
representing the measured spectrum number i out of r
measurements. The entry number j € {1,--- ,m;} of y;
shall be denoted as (y;); and is the radiance acquired
by measurement ¢ at a certain wavelength or wavenum-
ber. The dimensions m; of the y; may differ, to allow
for the utilization of spectra from different data sources at
varying spectral resolution and different spectral intervals.
This also allows for the proper treatment of Na/N ('Not a
Number’) values at certain wavelengths by simply ignor-
ing these data points. Then let the ’extended measurement



vector’ Y be the concatenation Y = (y7,--- ,y/)T € RM,
forming an element of the ’extended measurement space’
of dimension M = >"'_, m;, which is the direct sum of
single-spectrum measurement spaces. For notational con-
venience, column vectors like (y¥,--- ,y7)T will be abbre-
viated as (y1, - ,y,) in the following.

X shall denote the ’extended state vector’ used to com-
pute the ’extended simulation outcome vector’ F(X). The
iterative algorithm has to fit F(X) to Y by varying X.
X is the concatenation of r single-spectrum state vectors
(x1, -+ ,X,). In anticipation of Section 3.5 that introduces
the concept of the retrieval of a parameter vector xo € R*
common to r spectra, the extended state vector may also
assume the form X = (x¢,X1, -+ ,%,) € RY. All single-
spectrum state vectors x; are assumed to have the same
dimension, x; € R"™, and thus N = ¢ + rn, but general-
ization is straightforward. When the m;-dependent single-
spectrum simulation outcome for spectrum 7 is denoted as
the column vector f; € R™, then F(X) € RM can be
written as (fi(x¢,x1),-+,£.(x¢,%,)). In the following,
for convenience, the adjective ’extended’ will not be ex-
plicitly written anymore, except when it is not clear from
context, whether a single-spectrum or a multi-spectrum
object is referred to.

Similar to Rodgers [18], it may be assumed that the
measurement, calibration, and simulation error distribu-
tion can be characterized by a Gaussian distribution in
the residual Y — F(X) between measurement Y and sim-
ulation F(X) of the measurement given the state vector
X. The corresponding error covariance matrix Sg is of
dimension M x M. A Gaussian distribution is usually a
good approximation for real world errors (central limit the-
orem) and simple enough to derive useful formulas. Also,
the probability distribution function with the least infor-
mation content (meaning without implying further knowl-
edge) that is consistent with the parameterization by a
mean value vector and a covariance matrix, is the corre-
sponding Gaussian [18]. Then the conditional probability
distribution function for measurement Y, provided that
the state vector is X, is given by

P (Y|X) = N% exp ( %(Y ~F(X)) sl (Y - F(X))),

with normalization factor N;. Due to the only limited
knowledge on measurement errors and their relations across
several measurements, Sg is assumed to be of block di-
agonal shape, such that the errors of different measure-
ments are treated as independent. The individual blocks
on the diagonal will be denoted as S,; for the correspond-
ing spectrum number i. Also, the S,; are all assumed to
be diagonal, such that the errors at different wavelengths
are treated as independent of each other. The values on
the diagonal are the variances of the errors (squares of
the standard deviations) and shall be independent of X.
However, the S.; may depend on ¢ and the wavelengths of
the corresponding measurements y;. For VIRTIS measure-
ments, twice the spectrally resolved standard deviation of
deep space observations is thereby a first estimation of
the random error. Further errors may also enter the error
covariance matrix, like those due to data calibration and
preprocessing [11] as well as simulation.

The a priori probability distribution function the state

vector X is assumed to follow, i.e. the probability density
of X before knowledge of the outcome of the measurement,
is analogously written as

Pp(X) = N% exp (_;(x _A)TS (X - A)).

N5 is the normalization factor and S 4 the extended a pri-
ori covariance matrix of dimension N x N. If S4 is as-
sumed to be a diagonal matrix, neither coupling between
entries corresponding to the same single-spectrum state
vector, nor between different single-spectrum state vec-
tors, nor between common parameters is expected. In
this case, the diagonal entries denote the individual a pri-
ori variances of the retrieval parameters. The better the
knowledge of a certain parameter is, the smaller should the
corresponding variance be set. For a detailed discussion
of non-trivial a priori covariance matrices, see Section 3.
A = (ac,a;, - ,a,) € RV is the extended a priori mean
value vector of the extended state vector X € RY. The
a priori data is not very well known for retrieval problems
related to Venus. For all practical purposes concerning
the VIRTIS measurements, it is therefore not possible to
set a priori data dependent on the measurement situation.
Thus, S4 will not depend on X, nor will A, and a; € R"”
will not depend on ¢ and will simply be denoted by a.

Let Pp; denote the probability distribution function of
the extended measurement before it is made. It is not
dependent on X, but on Y only.

The a posteriori probability distribution function of X
is the conditional probability distribution function P,(X|Y)
of the extended state vector X, provided that the extended
measurement vector is found to be Y.

It follows from Bayes’ theorem [18] that P,(X|Y) =
P, (Y|X)Pp(X)/Pr(Y). With the abbreviation F,(X) :=
—2log P,(X|Y) — 2log N3, the term F,(X) reads

(X—A)"S; (X —A)+ (Y -F(X))'S;! (Y - F(X)),

(1)
where the normalization terms and X-independent terms
are all absorbed into N3 and are unimportant for the re-
trieval.

Note that both Sg and S 4 as covariance matrices have
to be real, symmetric, and positive semi-definite. They
even have to be positive definite to allow for the proper
definition of the various probability distribution functions.
Also note that 0 < F.(X) € R, since S;' and S, are
consequently also positive definite.

The information on X is improved from Pp(X) before
measurement to P,(X]|Y) after measurement. Knowledge
of P,(X]|Y) corresponds to the solution of the retrieval
problem. It is useful to approximate P,(X|Y) as function
of X by a function parameterizable by a few characteristic
parameters. Again, this suggests a Gaussian, the least-
information-content function with mean value vector and
covariance matrix, now to be derived from P,(X]|Y).

The mean value vector is approximated by the loca-

tion of the (global) maximum X of P,(X|Y). F can be
assumed to be a continuously differentiable function of
X, provided that the basic input of the radiative trans-
fer equation solver (altitude profiles of optical depth, sin-
gle scattering albedo, Legendre moments of the scattering



phase function, and temperature; some boundary condi-
tions) depends differentiably on the retrieval parameters
[22]. Also, F should be bounded for finite arguments to be

physically reasonable. Thus, a necessary condition for X
to be the location of a local maximum of P,(X|Y) is its ze-
roing of the derivative of P,(X|Y), or equivalently of F,,
with respect to X. Since a local maximum of P,(X]|Y)
corresponds to a local minimum of F,., F. is called the
cost function of the retrieval problem, the function to be
minimized. It must be kept in mind that due to the possi-
bly complex nature of F as non-linear function on a high-
dimensional state space, there may be more than one local
maximum of P,(X]|Y), but the global maximum is the
best estimate of the state vector. In P,(X]|Y), Gaussian
damping by the a priori information Pp(X) mathemati-
cally somewhat improves the identification of the best es-
timate. If the a priori covariances are small enough, this
leads to the elimination of subsidiary solutions, at least in
the extreme case where the standard deviations tend to 0.
In this case, the solution is forced to attain the vector of
the a priori mean values. But in practice, it must be kept
in mind that a determined local maximum could be just
a subsidiary maximum. In absence of a fast and reliable
global minimizer, the retrieval algorithm will determine
local minima of F.(X), see Appendix A.1, and as a rough
test, it should be checked whether different initial guesses
and a priori data lead to the same or a similar solution.

An expression for the width of P,(X|Y) can be ob-
tained by using the quadratic term in the Taylor expansion
of F. at X. By neglecting the derivative of the Jacobian
in comparison to the other terms, one arrives at

S'=s'+K(X)TS;'K(X) (2)

of dimension N x N, where VF(X) =: K(X) is the Jaco-

bian of dimension M x N of the forward model at X. S
will be interpreted as the covariance matrix of the a poste-
riori probability distribution function of the state vector
X at the retrieved solution X [18]. The diagonal entries
provide a measure of the uncertainty of the retrieved pa-
rameters, and the off-diagonal entries bear information on
the interdependence of the parameters. However, it is still
necessary to perform a detailed retrieval error characteri-
zation [23], as will be presented in a subsequent paper.

Appendix A discusses some details of the implementa-
tion of MSR.

3. A priori covariance matrix

In this section, an a priori covariance matrix S, is
constructed that is suitable for use in MSR.

First, the retrieval of common parameters shall not
be considered. Let there be n single-spectrum retrieval
parameters (x;); for each of the r measurements (i €
{1,---,r}and k € {1,--- ,n}).

Let the number 4 of the spectrum be fixed. Then for the
measured spectrum y;, S4 shall encode (diagonal entries)
the a priori variance of the corresponding single-spectrum
state vector x; that parameterizes the corresponding for-
ward model simulation f;(x;). Also, S4 shall encode ex-
pected correlations between the n entries (x;); of single-
spectrum state vector x; (a priori ’local correlations’).

Such correlations can be accomplished by a non-diagonal
covariance matrix for the single-spectrum retrieval prob-
lem.

Now let k be fixed and 7 vary. Then S 4 shall encode ex-
pected correlations between the r parameters (x;);. These
will be called a priori ’spatial-temporal correlations’, as
they describe the correlation behavior of the entries num-
ber k of the single-spectrum state vectors in space and
time. These exist due to a certain continuity of the physi-
cal state of the atmosphere, caused by the inertia of matter
and the drive to compensate thermodynamic disequilibria.

Finally, S 4 shall allow to treat parameters with infinite
spatial or temporal a priori correlation. As will be seen
(Appendix A.3), such parameters are spatially or tempo-
rally constant, i.e. they are common to certain sets of
spectra.

S 4 shall be constructed as an easily parameterizable co-
variance matrix that can transparently encode both a pri-
ori local and spatial-temporal correlations as special cases.
Also, it shall encode the standard deviations of all parame-
ters of all single-spectrum state vectors, and shall allow to
retrieve common parameters. It must be positive definite
and ideally so already by construction. In the following,
the terms ’a priori correlation’ and ’coupling’ will be used
synonymously.

Section 3.1 reduces the construction of the covariance
matrix S 4 to the construction of a correlation matrix C 4.
Also, for multi-spectrum problems without common pa-
rameters, the general structure of C4 is presented. As
a first step in the construction of such a C4, the single-
parameter problem for several spectra with arbitrary spatial-
temporal data point distribution is discussed in Section 3.2.
Next, single-spectrum correlation matrices for several pa-
rameters are discussed in Section 3.3. Then, for given
single-parameter spatial-temporal correlation data and lo-
cal single-spectrum correlation data, the Kronecker prod-
uct is the key to construct correlation matrices for several
parameters and several spectra in Section 3.4. The treat-
ment of common parameters is discussed in Section 3.5.

3.1. A priori correlation matriz

A finite dimensional covariance matrix is a matrix con-
taining the covariances between finitely many random vari-
ables. It is therefore real, symmetric, and positive semi-
definite. Conversely, each finite dimensional, real, sym-
metric, positive semi-definite matrix is a covariance matrix
[24, Theorem 2.3.1].

A positive semi-definite matrix has exclusively non-
negative eigenvalues. But for a covariance matrix, a zero
eigenvalue corresponds to a parameter which is exactly
known (zero uncertainty) or perfectly coupled to a linear
combination of other parameters. Such a parameter does
not need to be retrieved or must be treated in a different
way (Appendix A.3), respectively. Therefore, only real,
symmetric, positive definite matrices (positive eigenvalues)
will be considered in the following. This also ensures the
existence of the inverse, which is needed in Section 2.

To make the construction of a covariance matrix Sy4
more transparent, a normalized form is defined, the corre-
lation matrix C 4 with entries

(CA)ij = 7(SA)U, or

0i0;

C, = B7S,B, (3)



and with the a priori standard deviations o; := /(Sa)i
and the diagonal matrix B that has the entries B;; = 1/0;.
C 4 is well defined, since the diagonal entries of a positive
definite matrix are positive. All entries of C4 must be in
the (closed) real interval [—1, 1] (a consequence of Cauchy-
Schwarz inequality [25, 0.6.3] when applied to vectors v; :=
v/Sae;. Here, /S, is defined by spectral decomposition
[25, 4.1.5], and e; is the i-th standard vector). According
to Eq. (3), each diagonal entry equals 1 (each parameter
is perfectly correlated to itself), C4 is symmetric, and it
is positive definite since B is [25, 7.1.6].

For an easy construction and parameterization of S 4,
first C4 will be constructed, and then S, is obtained by
scaling C 4 with the a priori standard deviations o; ac-
cording to Eq. (3). For ease of use, not the variances o2,
but 2 times the standard deviations (20;) are used as the
input variables in the computer implementation, encoding
the typical lengths of the expected variation intervals of
the parameters.

Not considering the retrieval of common parameters
(Section 3.5), in the notation of Section 2, the structure
of the nr-dimensional extended parameter vector X (with
¢ = 0) implies the structure of S4. The correlation ma-
trix C4 inherits the same structure. As X consists of r
sub-vectors of length n, C4 has to be a symmetric nr x nr
matrix composed of r x r blocks of size n x n. For 7,5 €
{1,---,r} and k,l € {1,--- ,n}, (bij), the entry (k,I)
of block (i,7), encodes the a priori correlation between
parameter k corresponding to measurement i and param-
eter [ corresponding to measurement j. It should not be
different from the coupling between the I-th parameter of
measurement ¢ and the k-th parameter of measurement
j, because neither of the measurements ¢ or j shall be
distinguished from the other, i.e. (b;;)T = b;; = (bj;)7,
where the latter equality follows from symmetry of C4. In
particular, the blocks b;; on the diagonal of C,4 are sym-
metric, and they are positive definite and all identically, as
they are the couplings between the parameters of the same
measurement and no measurement shall be distinguished
from the other. This single-spectrum correlation matrix
b;; =: h will be constructed in Section 3.3.

3.2. Single-parameter problem for several spectra

As a first step in constructing C 4, a correlated retrieval
problem for several measurements with arbitrary distribu-
tion of distinct footprints in space and time is considered,
where each of the spectra is described by only one single
parameter. This could be a total cloud column factor, for
instance. Therefore, all blocks b;; (Section 3.1) of C4 are
just real numbers, with b;; =: (g;;) € R! and all g;; := 1.
Assume that correlation between any two measurements
only depends on distance between their footprints. Here,
distance is initially defined by an abstract metric d(-, -) and
will be specified later. It could be Euclidean distance in R?
(planetary surface treated as plane), R? (as surface in R?),
or R* (including temporal separation). The ’distance ma-
trix’ d € R” with entries d;; := d(x;,x;) is defined as the
matrix of distances between the measurement footprints
at locations x;, ¢ € {1,--- ,r} of r measurements.

For an easy and transparent parameterization and in-
terpretation of C 4 for the single-parameter problem, only
correlation length and correlation time shall determine the

strengths of the a priori correlations for a fixed footprint
distribution. A long correlation length A > 7 Rvenus, with
the maximum spatial distance 7 Ryenys for footprints on
Venus and Venus radius Ryenus, corresponds to a strong
coupling close to 1, and similar with correlation time 7 and
reference time scale of four Earth days (time scale of at-
mospheric super-rotation). The correlation matrix for the
case where any coupling is absent is defined as C4 := 1,
which should also be the limit of C4 for A | 0 and 7 | 0.

In the following, it will be discussed, how a proper
correlation matrix C4 can be yielded from d. The dif-
ficulty lies in the requirement that for arbitrary distinct
footprints, C 4 will turn out positive definite by construc-
tion. The occurrence of some measurements with coincid-
ing footprint space-time coordinates is not treated here.
That case is only possible by using more than one measur-
ing instrument.

3.2.1. Positive definite functions

Before a proper treatment of general spatial-temporal
separations between measurement footprints will be estab-
lished in Section 3.2.3, only spatial separations are consid-
ered for now.

The key to yield C 4 from d, is the concept of positive
definite functions, see Schoenberg [26] for a collection of a
series of the original papers from 1938, and Baxter [27] for
the notation and definitions adopted for this work.

Let 2 be a real (possibly infinite dimensional) sepa-
rable Hilbert space with norm || - ||2 and f: Ry — R be a
function for which the quadratic form

> aiaif(lxi — x;13) (4)

i=1j=1

is non-negative for any r € IN*, any real a = (ay,- -+ ,a,)7
€ R", and any points x1,--- ,X, € J€, then f is called
positive definite on J€. f is positive definite on 7, if and
only if f is completely monotonic [26], i.e. f is continuous

in 0 and
(—D*f®(2) >0, VkeNU{0}, and for 0 < z < co.
(5)

This can be applied to 7 = R™ with Euclidean norm
| - Il2, to see that for xi,--- ,x, € # and for d(x;,x;) :=
| x; —x;||2 = dij;, the real symmetric r x r matrix C4 with
entries (C4);j := f((dij)Q) is positive semi-definite, and it
is even positive definite for non-constant f (note that then
£(0) > 0) and distinct points in Euclidean R™ [27]. Hence,
C 4 is a valid correlation matrix, when f is non-constant
and normalized such that f(0) = 1.

According to Miller and Samko [28, Eq. 1.13], the func-
tion defined by f(z) := exp (—+/r) is completely mono-
tonic. Measuring physical distances d,, in terms of a char-
acteristic length scale A to get rid of physical units, i.e.
x = dp/A, it follows that for arbitrary distinct points in
Euclidean R", the matrix with entries exp (—d;;/\) is a
correlation matrix.

However, this is not the most suited choice. Define the
‘correlation function’ fy(x) := f(z?). It takes the (nor-
malized) distances as arguments and reads for this choice
fi(z) := exp(—x) = exp(—d,/)) with the physical dis-
tance d,. Its non-zero derivative at x = 0 means that



observations that are only slightly separated, are modeled
to perceive fast changing correlations for varying distances.

[ (z) is associated with a first order Gauss-Markov-process,

a 'memory-less’ system describing an atmosphere where
only location is of importance [29, Section 4.3] and [30].
For many physical processes, it is more realistic to consider
systems which respect certain inertial properties. This
includes atmospheric physics with its inert atmospheric
molecules and the fast balancing of thermodynamic dis-
equilibria. These systems are more suitably modeled by
a second order Gauss-Markov-process where location and
momentum are considered [31, pp. 44-45, and exam-
ple 3.9-1]. Balgovind et al. [30] derive f37(x) := (1 +
x)exp (—z), which has a derivative of 0 at x = 0, i.e
observations that are only slightly separated, are modeled
to perceive slowly changing correlations. f7 is also given
by other investigations on Earth’s atmosphere [29, 31, 32].
Note that the derivative of f3(/z) is —exp (—/z)/2. Since

exp (—+/z) has already been established as completely mono-

tonic, fZ(y/x) satisfies Eq. (5) and is therefore positive
definite.

But widely separated measurements have non-vanishing
correlations for both f} and f2. This is on the one hand
not realistic, see discussion by Rood et al. [32, Section 4.4]
and references therein on forecast error correlations for
Earth’s troposphere. On the other hand, the largest struc-
ture in MSR, the Jacobian (Eq. (A.2)), would have many
small non-zero entries which are unimportant for the re-
trieval. To not waste computational resources, the Jaco-
bian should possess many zero entries (see sparse matrix
formulation in Appendix A.4), and the correlation func-
tion should thus have compact support, i.e. it should
be zero outside of a compact (closed and bounded in Eu-
clidean space) set. Even for the very well probed terres-
trial atmosphere, the empirically substantiated correlation
is quite ambiguous and there is no unique ’best’ model
[29, Fig. 4.5], and Venus correlations are much less known.
Thus for simplicity it seems best, to choose a single appro-
priate correlation function that is compatible with the con-
siderations above and will be utilized with suitable scaling
for different retrieval parameters, and to test robustness
against reasonable a prior: data variations.

Therefore, a third class of correlation functions with
compact support, vanishing derivative at x = 0, and sat-
isfying Eq. (4) is used. Rood et al. [32] construct such
a function as self-convolution ¢ := g % g of a continu-
ous real function g with compact support. Herefore, ob-
serve that p := F[c] = (2m)"/2F[g] - F[g] > 0, where
* denotes convolution, 9‘ the Fourier transform in n di-
mensions such that 9 = [g(x)exp (—i(k,x))dx,
dx = dx"/(2m)"/?, <,> the Euchdean standard scalar
product, and p the Fourier transform of a correlation func-
tion ¢ with ¢(x; —x;) := f(||x; —x;||3) as in Eq. (4). Then

for any vector a = (a,--- ,a,)T € R", the quadratic form

Z a;a;c(X; )= Z aiajf_l p)(x; — x;5)
ij=1 ij=1

Z ala]/ exp i(k,x; —x ]))d‘k

i,j=1

:/|Zaiexp (i(k, x;)) }u )dk > 0,
i=1

will be non-negative. Hence, the matrix with entries ¢(x; —
x;) will be positive semi-definite. See Reed and Simon [33,
Chapters IX.1 and IX.2] and Rood et al. [32, Theorems
2.10 and 3.a.3] for a more complete discussion.

Rood et al. [32] use the real function ¢(z) := (1 —

<
12/v)T,(|12]) on R® > 7, where I(jz]) — {é Iz: =

The radial dependence of the resulting homogeneous and
isotropic correlation function on R? is a fifth-order piece-
wise rational function f3 [32, Eq. 4.10]

z° zt 5z° 522
i b Shal SRl 0<z<1
film)=q & -2 43 4 5 _5p44- 2 1<z<?2
0 x> 2

(6)
with z = |z|/v = d,,/v. f3 is continuous and twice contin-
uously differentiable on R. It is a proper correlation func-
tion by construction [32]. Thus, the non-constant f3(,/y)
is completely monotonic as function of y, and f3 is there-
fore a valid correlation function in any dimension. f3 has
derivative 0 at x = 0 and is explicitly of compact support
since it is set to 0 for d, > 2v.

The correlation length A is defined as the physical dis-
tance where the correlation function attains the value e~!
For f3 this is the case at d, = A = nzv with the normal-
ization factor ng ~ 0.808768. For comparison, n; = 1 for
fi, and ny ~ 2.14691 for f7, such that fi(n;d,/\) = e~ *
at d, = . Fig. 1 compares f3 and f7 with f}. Note that

f3 vanishes for d, > 2\/n3 ~ 2.47X. Also note its zero
derivative at d, = 0 and its stronger relative weighting
of the correlation of nearby measurements (d, < A) which
better represents the inertial properties of the physical sys-
tem.

8.2.2. Spherical planetary surface

The measurement footprints can be approximated to be
located on a spherical surface S? C R? (planetary surface
or top of cloud deck). A positive definite function on 52
can be induced by restricting a positive definite function
on R3 to S2. Therefore substitute the physical distance
d,, measured in R?, of points on the spherical surface, by
the chordal distance d,, = 2Rsin § [32, Section 2.3]. For a
sphere with fixed radius R, this distance depends only on
the geodetic angle of separation ¢ € [0, 7] between the two
points on the sphere, and the induced correlation func-
tion is invariant under isotropic transformations of S? [32,
Section 2.2]. ¥ follows directly from the Euclidean stan-
dard scalar product between any two considered vectors
v; and v; on the unit sphere: cos?;; = (vi,vj>. In terms
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Figure 1: Comparison of the correlation functions f;, fg, and fj

of geographic longitude ¢ and latitude 1), such a vector
reads v; = (cos ¢ cos1p;, sin ¢; cos;,sintp;)T. For a set
of r distinct points on the sphere, f3 then leads to the
wanted positive definite r» X r a prior: correlation matrix

with entries (Ca)i; = f3(ns2E sin 192—]) C 4 is symmetric
and its diagonal entries are manifestly 1, and thus only the

r(r—1)/2 entries below the diagonal have to be computed.

3.2.8. Spatial-temporal and other separations

By measuring temporal separation d;;; between mea-
surements ¢ and j in terms of a correlation time 7, points
on the planetary surface (or cloud top) with arbitrary dis-
tinct space-time footprints ("observation movies’) and with
Euclidean distance measured on the space R? x R} = R*
comprising the three-dimensional spatial space R? and the
temporal space R}, lead to the correlation matrix with en-
tries

2 2
(Ca)ij = fa n3\/(2fsin§2ij> +<dtT”> - (7

This includes as special cases the purely spatial (d; = 0)
version discussed in Section 3.2.2 as well as measurements
that were acquired at the same spatial coordinates but at
different times, like in time series observations of a cer-
tain surface spot (‘target tracking mode’, d, = 0). C4 is
positive definite, because f3 is a correlation function on
any Euclidean R"™, and it is associated to a second order
Gauss-Markov-process, reflecting the inertial properties of
the system. Measurements with a wide (compared to A
and 7) spatial-temporal separation are not correlated. A
hyper-surface of constant positive correlation is an ellip-
soid (JAx/A]2 +|At/7|* = K?).

However, current knowledge is not sufficient to single
out the best approximation to reality. It is also conceivable
to define the space-time distance as |d,/\| 4 |d;/7| or sim-
ilar. But then the argument with the Euclidean structure
does not carry over, and so Eq. (7) will be adopted.

There are also parameters that experience inter-mea-
surement a priori correlations, but not with respect to
the measurement target coordinates (Section 4). These
include detector related parameters like full width at half
maximum (FWHM) of the instrumental response function

of VIRTIS-M-IR which are related to the location on the
detector and to time. Small changes in these coordinates
are unlikely to yield abrupt changes in the parameters, and
the a priori correlations can be defined by

=gt [yl (2520) (%))

where s; is the sample coordinate on the detector associ-
ated with the measurement ¢. o is the correlation strength
in sample direction.

Finally, there are parameters that will be treated as
temporally constant, like local surface emissivity when it is
retrieved as parameter common to measurements covering
the same surface spot, or the deep atmosphere tempera-
ture profile as parameter common to measurements asso-
ciated to a fixed latitude. In these cases, the purely spatial
correlation matrix discussed in Section 3.2.2 is used, corre-
sponding to Eq. (7) with 7 = oo (compare Appendix A.3).

For easier use, all correlation types discussed in this
section will be referred to as spatial-temporal correlations,
in contrast to local correlations.

3.8. Single-spectrum problem for several parameters

As the next step in constructing C 4, this section dis-
cusses, how valid single-spectrum a priori correlation ma-
trices h with entries h;; (Section 3.1) for several parame-
ters can be constructed.

h;j encodes the strength of the coupling between single-
spectrum parameters z; and x;. Let ¢; (J¢;| < 1) denote
the 'nearest neighbor coupling” between the 'neighboring’
parameters z; and z;41. ¢; = 0 translates to vanishing
correlation and ¢; < 0 to anti-correlation. Define cou-
pling between parameters z; and z;12 as a function of the
nearest neighbor couplings ¢; and ¢;+1. The modulus of
‘next-to-nearest neighbor coupling’ shall be smaller than
either of the nearest neighbor couplings moduli. If one of
the nearest neighbor couplings is zero, the next-to-nearest
neighbor coupling shall be zero. If one of the nearest neigh-
bor couplings is positive while the other is negative, then
the next-to-nearest neighbor coupling shall be negative.
The simplest way to implement these requirements is, to
define the next-to-nearest neighbor coupling as the prod-
uct of the nearest neighbor couplings. Analogously, this
can be done with the coupling to the third neighbors, and
so on. Therefore h shall be defined as

1 C1
C1 1

C1C2 -+ Cp—1
02 ... Cn71

C1Cy +Cp_q Co+ Cp1 - 1
(9)
an easy-to-implement matrix, which is parameterized by
just the n — 1 nearest neighbor couplings of n parameters.
To show that h is a valid correlation matrix, recall
that any n x n matrix h with entries h;; = |h;;| =:
exp (—|x; — x;|l2/A) is a correlation matrix for distinct
vectors x; and x; € R™ and 0 < A € R (f} in Sec-
tion 3.2.1, A := 1, m := 1, the n vectors x; are points
on the real line with nearest-neighbor distances — log |cg|).
Define V; as a diagonal n x n matrix with the first [ entries



on the diagonal —1 and the remaining 1. VI hV, changes
signs of h,; in the blocks (i <1, j > 1) and (i > [, j <1).
Then VI 'hV| is positive definite [25, 7.1.6]. Since all of its
diagonal entries are still 1, it is a correlation matrix. This
can be reformulated by allowing —1 < ¢; < 0 in addition
to0<c¢, <1, ke{l,---,n—1} for hin Eq. (9) to still
qualify as correlation matrix. Similarly, this independently
follows for all I € {1,--- ,n — 1}. Hence, h in Eq. (9) is a
correlation matrix for |cx| <1, k € {1,--- ,n —1}.

h can describe local a priori correlations for a single
spectrum, like between column factors (minor gases, cloud
modes) that may have correlations or anti-correlations. It
can also describe inter-level correlations of atmospheric
profiles (cr := exp (—|zr — zg+1|/A) with z; the altitude
of level k and A the inter-level correlation length, an obvi-
ous generalization of Rodgers [18, Eq. 2.83]). Also, a pri-
ori correlations between common parameters (Sections 3.5
and 4.3) can be modeled this way. Note that, properly tak-
ing into account the signs (see VI () V), other correlation
functions than f} from Section 3.2.1 still lead to proper
single-spectrum correlation matrices.

3.4. Full covariance matrix for correlated retrievals

This section discusses the construction of the full co-
variance matrix for several parameters and several spec-
tra for given single-parameter spatial-temporal correlation
data (Section 3.2) and local single-spectrum correlation
data (Section 3.3). While there seems to be no simple
solution for arbitrary local couplings, it is possible to pro-
vide correlation matrices sufficiently general for VIRTIS
data retrieval.

First, a correlation matrix is constructed for a group of
several locally coupled parameters that experience identi-
cal fixed correlation length and time. For example, tem-
perature altitude profiles have local inter-level-correlations

and may be described by the same horizontal spatial-temporal

correlation data. The Kronecker product [34, Section 4.2]
is well suited to treat this case.

The Kronecker product A ® B [34, Definition 4.2.1] of
an m X n-matrix A with entries A;; and a p x ¢g-matrix B
is defined to be the mp x ng-dimensional block matrix

A B A,B

An1B ApnB
and is not commutative in general. According to Horn
and Johnson [34, 4.2.4 and 4.2.13], the result of the Kro-
necker product of symmetric positive definite matrices is
symmetric positive definite.

Let there be G groups of parameters with group-specific
correlation length A, and time 7, for each group g €
{1,--- ,G}. Then let h, be the positive definite ny x n,
matrix of the single-spectrum correlations between the n,
parameters of group ¢ (constructed as h in Section 3.3).

The total count n of single-spectrum parameters over all

groups amounts to n = Zle ng. The spatial-temporal

r x r correlation matrix for a single parameter from this
group g shall be denoted by g,. By using Ay, 74, and f3,
it is computed according to Section 3.2.3 from the space-
time coordinates of the r measurement footprints. It is the
same for all parameters of group g.

The matrix g, ® hy is then the correlation matrix cY
for group g (note that (@,)i = 1).

(2.) illg (Qg)12}}:g EQQ;”EQ

0,4)12 e O4)2r

0,®hy = 9: ’ . ! . g: ! =: C%
(Qg)lrhg (Qg)QThg (Qg)rrhg

(11)

C¥, satisfies all necessary conditions for the correlations
of parameters belonging to group ¢g. It includes spatial-
temporal coupling for single parameters as well as local
coupling for single spectra as special cases. CY is sym-
metric positive definite with all diagonal entries 1, and the
single blocks are symmetric, compare Section 3.1.

Next, groups of parameters with different spatial-tem-
poral correlations are combined. For example, tempera-
ture vs. cloud altitude profiles with different inter-level-
correlations may have different horizontal spatial-temporal
correlations.

Let (x;)x denote the k-th single-spectrum parameter of
spectrum ¢. The concatenated list X (as in Section 2) of
the n parameters for each of the r measurements

Lx s (a)n) (12)

measurement r

X = ()1, (X1)ms -+

measurement 1

is a permutation of the list X of the r» measurements for
each of the n single-spectrum parameters

(X5 () ). (13)

parameter n

X = () (),

parameter 1

The associated permutation IT” with X = IT” X acts for
allie {1,--- ,r} and for all k € {1,--- ,n} as

(X)n(ifl)Jrk = (Xi)k = (K)r(kfl)Jri = (ik%-

The permutation IIj, ~can be used to permute CY to ob-
: =
tain I}, (o, ® hg)(H;g)T =:Cj.

(h ) Qg (hg)12gg Eggglnggg

_ 120 o 2n, @

Ch = g: ’ : ’ - 9:99 (14)
(hg)lnggg (hg)QngQg (hg)ngnggg

This is the same as hy, ® g, and hence positive definite.
Eow a block diagonal matrix C 4 can be formed with
all Ci‘ as the G positive definite blocks on the diagonal.

h1®gl 0 e 0
Cu = 9 hy @ 0, (15)
: - 0

As a direct sum of positive definite matrices, C 4 is positive
definite (for a correspondingly partitioned v = (vy,--- ,vg)

# 0, the quadratic form (v,C4v) = <v1,6114v1> ot



(va, C§VG> is positive). In general, C4 can not be repre-
sented as Kronecker product.

Each of the G blocks on the diagonal corresponds to
the permuted correlation matrix of one of the G parame-
ter groups, encoding local as well as spatial-temporal cor-
relations. The correlation lengths and times are allowed
to differ from block to block but must be constant within
each block. Parameters belonging to a certain group may
locally be arbitrarily coupled among each other. However,
no local coupling between the different groups can be im-
plemented this way.

In order to recover the sorting associated to X (Eq. (12)),
the inverse permutation has to be applied to C 4 to obtain
Cy4 := (II1)TC4IT7,. Although the dimensions ngr x ngr
of Ci depend on g, this is the correct permutation, since it
is associated to r measurements and n parameters, which
is the underlying structure of C 4. As C4 is positive defi-
nite and a permutation matrix has full rank, C 4 is positive
definite [25, 7.1.6]. It is symmetric with all diagonal entries
1, because C 4 is.

The full covariance matrix S 4 is computed according to
Eq. (3), by scaling C4 with the single-spectrum standard
deviations oy, of the single-spectrum parameters k.

(SA)n(i—1)1k , n(j—1)+1 = OkOI (CA)n(i—1)+k,n(j—1)+(l :
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This is done for all measurements 4,5 € {1,--- ,r} and for
all parameters k,l € {1,--- ,n}.

The nr x nr matrix S 4 satisfies all requirements, except
for a possible inter-group coupling. As can explicitly be
shown for the case of two measurements, each described
by two locally coupled single-spectrum parameters that
have different a priori correlation lengths, C 4 can fail to
be positive definite for too strong inter-group coupling.
The underlying reason is that strong local coupling be-
tween the parameters forces the retrieved values to have
strongly correlated spatial-temporal behavior, which is not
consistent when strongly differing correlation lengths are
chosen. This manifests itself by the failure to construct
a proper correlation matrix, unless the local coupling is
relaxed or the spatial-temporal correlations are equalized.
This explains, why all correlation data can be chosen freely
and independently as long as inter-group coupling is dis-
regarded.

Thus, in order to allow arbitrary space-time distribu-
tions of the measurement footprints for problems with

many measurements and parameters, either arbitrary spatial-

temporal correlation data can be set for the different pa-
rameters, or arbitrary local coupling may be required. For
the first case, these parameters have to be assigned to dif-
ferent parameter groups and no local coupling is allowed
between them. For the second case, these parameters have
to be assigned to the same parameter group and spatial-
temporal correlation data must coincide.

In general, however, a correlation matrix is not unique
for given local and spatial-temporal correlation data. For
instance, the distance matrix approach (Section 3.2) could
be applied to a suitable point distribution on the Cartesian
product space of the spatial-temporal and the local param-
eter dimensions. But then, local and spatial-temporal cor-
relations for the full multi-spectrum problem would not be
independent anymore in their impacts, and the advantages

of the Kronecker product construction would get lost: It
is ideally suited to the computation of the scaled residual
(Appendix A.2) and the sparse matrix formulation of the
retrieval algorithm (Appendix A.4). It also enables a clean
derivation of the retrieval of common parameter vectors
(Appendix A.3). In addition, inter-group coupling is not
necessary for Venus retrieval problems, as is demonstrated
by Section 4.2, which presents a basic categorization of the
relevant parameter groups herefore.

3.5. Retrieval of common parameters

This section discusses the a priori covariance matrix
for retrieval problems involving parameters with perfect
spatial or temporal coupling (spatial or temporal a priori
correlation equal to 1, corresponding to infinite correlation
length or time, leading to parameters being affinely linear
functions of each other) and identic single-spectrum a pri-
ori data (affinely linear functions are then the identity
function, Appendix A.3). Such parameters can not spa-
tially or temporally vary for a certain set of r considered
measurements. To avoid a degenerated a priori covariance
matrix, such a parameter will not be treated as r individ-
ual parameters that are perfectly coupled, but as a single
parameter that is common to the involved measurements.
Also, this helps to save computer resources. To verbally
distinguish common parameters from spatially-temporally
varying parameters, the latter are cited as ’local param-
eters’. This should not be confused with 'local coupling
between parameters’ as opposed to ’spatial-temporal cou-
pling’.

The retrieved value of a common parameter can be de-
fined as the limit of the retrieved values of the correspond-
ing r local parameters for ever stronger spatial or tempo-
ral coupling. In Appendix A.3 it is shown that computing
this limit is equivalent to retrieving a common parame-
ter in the sense of Section 2 while uniquely defining the
corresponding a priori covariance matrix. A statistical
\/r-like relative weighting factor between common and lo-
cal parameters is conceivable that reflects the influence of
a common parameter on r spectra. Appendix A.3 clarifies
that the weighting is exactly equal.

The a priori covariance matrix S4 follows as block di-
agonal with Sz and Sy, as the blocks on its diagonal. S¢
encodes the a priori correlations between the various com-
mon parameters and their a priori standard deviations. It
can be constructed by defining a suitable correlation ma-
trix C¢ by nearest-neighbor-coupling (Section 3.3) or by
a distance matrix (Section 3.2.3), and by scaling C¢ with
the a priori standard deviations o of the common pa-
rameters (Eq. (3)). Sy can be constructed according to
Section 3.4 and encodes the a priori local and spatial-
temporal correlations as well as standard deviations of the
local parameters. S 4 is a proper covariance matrix when
Sc and S, are.

For VIRTIS-M-IR measurements of Venus, some rel-
evant common parameters along with a suitable Co are
discussed in Section 4.3.

4. Parameters for Venus retrieval problems

This section presents a basic categorization of relevant
parameters for Venus retrieval problems. Compare also



[11, 12] for a discussion of these parameters in context of
the radiative transfer forward model. Section 4.1 summa-
rizes the most important properties of the forward model.
The categorization of the parameters also demonstrates
that it suffices here to construct correlation matrices with-
out considering inter-group coupling. Local parameters
are treated by an a priori correlation matrix according to
Section 3.4, common parameters according to Section 3.5.

4.1. Forward model

A radiative transfer forward model is utilized to simu-
late the observable radiances. It is a plane-parallel, non-
LTE, line-by-line code taking into account thermal emis-
sions by surface and atmosphere, and absorption and mul-
tiple scattering by gases and clouds. It is similar to the
forward model described by Haus and Arnold [12], but the
underlying radiative transfer equation solver DISORT [35]
is replaced by LIDORT [22, 36]. This way, the forward
model is capable of providing analytic derivatives of the
simulated radiances with respect to a number of atmo-
spheric, surface, and instrumental parameters. Jacobians
with respect to the remaining parameters (mainly temper-
ature variables) can be evaluated perturbatively (slower
and possibly affected by numerical noise). To increase nu-
merical efficiency, uninteresting wavelength ranges can be
blacked out automatically (initial radiances or Jacobians
below certain thresholds) or manually.

From the VIRTIS-M-IR spectral range (1.0-5.2um),
only 1.0-2.5um shall be utilized for this study. Venus’
nightside emissions in this range mainly originate from
altitudes below 40km [12, Fig. 4] where temperature is
quite stable with time, and they are thus nearly unaf-
fected by the strong mesospheric temperature variations
above 59km [17]. Also, details of the cloud altitude distri-
bution have almost no impact here, since the main cloud
deck (>48km [37]) resides above the line forming altitude
region. In contrast, spectral signatures longward of 3pm
are strongly influenced by variations of temperature and
cloud altitude distributions above 48 km.

Temperature and pressure altitude profiles are taken
from the Venus International Reference Atmosphere (VIRA
[3, 4]) at the equator (midnight). The surface is assumed to
be in thermodynamic equilibrium with the bottom of the
atmosphere, and therefore, the surface temperature equals
the VIRA temperature at the respective surface elevation.
Surface emissivity must lie in the interval [0, 1].

The main constituent of Venus’ atmosphere is COq
(96.5% by volume). Considered minor gaseous constituents
are HoO, CO, SO,, OCS, HCI, and HF. Altitude pro-
files of their volume mixing ratios are given by Haus and
Arnold [12] and are based on the profiles by Pollack et al.
[5]. Quasi-monochromatic absorption cross sections due
to their allowed molecular transitions are computed from
the spectral line databases CDSD (CO; [38]), HITEMP
(CO4 [5], CO, H50 isotopes 1-3 [39]; to be in line with
[12], the more recent HITEMP2010 [40] is not yet consid-
ered here), and HITRANO8 (H:O isotopes 4-6, SO5, OCS,
HCI, HF [41]) by using spectral line shapes listed by Haus
and Arnold [12]. Molecular Rayleigh scattering is treated
according to Hansen and Travis [42]. Non-LTE Os emis-
sions (O nightglow’) at 1.27 pm from an altitude region
around 100km [43] are not considered, and therefore, the
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1.28 ym window will be blacked out in practice due to its
contamination by Oz nightglow.

The high pressure and high temperature environment
of Venus’ deep atmosphere makes it difficult to character-
ize the absorption properties of its main constituent COs.
Neither the line shapes of the allowed transitions, nor other
effects contributing to the absorption cross-section (con-
tinuum, collisional induced absorption, line mixing) are
sufficiently well constrained through laboratory or theory
in order to satisfactorily reproduce observed spectra in the
infrared. Also, the line data bases utilized for computing
the absorption cross-sections of the allowed transitions are
not perfect [12, 44]. They are based on theoretical models
and numerical computations, and not on laboratory mea-
surements [38]. Good knowledge of the CO5 opacity is im-
portant for a reliable retrieval of parameters like surface
emissivity. Wavelength dependent corrections to the COq
opacity as given by the allowed transitions, are in the fol-
lowing shortly referred to as ’continuum’. The continuum
depends on the utilized line databases and line shapes but
is independent of the measurement. For this study, contin-
uum is treated as spectrally constant throughout the range
of an atmospheric transparency window, but it can depend
on the window. These window-specific scalars for the spec-
tral windows at 1.02, 1.10, 1.18, 1.28, 1.31, 1.74, 2.3 nm are
set to 0, 2, 0.35, 3, 4, 15, 120 in units of 10729 cm?, re-
spectively. These values are inspired by preliminary results
from application of MSR. to actual VIRTIS-M-IR nightside
spectra.

The clouds of Venus are modeled to comprise the four
modes 1, 2, 2, and 3. Each mode consists of spherical
droplets of 75% sulfuric acid (refractive indices taken from
[45, 46]). Cloud particle radii are log-normally distributed
with modal radii of 0.3, 1.0, 1.4, 3.65 pm and unitless dis-
persions of 1.56, 1.29, 1.23, 1.28 for the four modes, respec-
tively [5]. Mode specific initial altitude profiles of particle
number densities are taken from [47]. Actual cloud modal
abundances are defined by 'cloud mode factors’ that scale
the number densities of these four initial altitude profiles.
The mode factors may strongly vary, and no detailed a pri-
ori knowledge is available. Wavelength dependent scatter-
ing and absorption properties of the clouds are computed
by using Mie theory [48].

Fig. 2 (offset 0.0) displays a typical synthetic spectrum
(’reference spectrum’). The Jacobians of several retrieval
parameters that shall be considered in the following and
are relevant for actual measurements, are shown with var-
ious offsets. The values that led to Fig. 2 are: FWHM
of instrumental response function 17 nm, surface emissiv-
ity 0.65, surface elevation 0km, no O, nightglow, cloud
mode factors all set to 1, nadir-looking observational ge-
ometry, no noise. The figure illustrates that surface emis-
sivity is observable in the spectral windows at 1.02, 1.10,
and 1.18pm (’surface windows’), continua affect all con-
sidered windows, the abundances of the different cloud
modes affect the spectrum in a very similar way and in
all windows, and the impact of the FWHM is quite dis-
tinct. Minor gases do not affect the short-wavelength flank
of the 2.3pm window (2.15-2.30 um), but strongly affect
the long-wavelength flank which thus shall not be used for
retrievals of cloud parameters. Even so, minor gas varia-
tions shall not be considered in this study, despite their
(moderate) impact on the 1.74um peak and the range
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Figure 2: [From bottom to top] Offset 0: synthetic radiance spec-

trum in W/(m? sr pm), various positive offsets: scaled Jacobians
with respect to surface emissivity CEm.’, unit W/(m? sr ym)), con-
tinuum ('Cont.’, between 2.1 and 2.5 pm scaled by factor of 10 rela-
tive to remaining range for better representation, unit W/(m? sr pm)
- 1022 cm~2), cloud mode column factors ('Cloud’, unit W/(m? sr
pm)), and FWHM of VIRTIS-M-IR instrumental response function
(CFWHM’, unit W/(m? sr pm nm)).

1.10-1.18 pm. As cloud parameters should not be retrieved
from the surface windows, and the 1.28 pm window shall
be blacked out due to its Oy nightglow contamination, the
range 1.295-2.300 pm is left to retrieve cloud parameters
from.

4.2. Local parameters

First, the atmospheric parameters may be divided into
the cloud group, the minor gases group, the atmospheric
temperature group, and Os nightglow.

Horizontally, the cloud opacity exhibits a rather short
correlation length of the order of several hundred kilo-
meters and correlation times of a few hours. This can
be checked by analyzing the auto-correlation function of
nightside radiance observation movies in the short wave-
length flank of the 2.3 um window as proxy. This corre-
lation data will be carried over to the column densities of
the individual cloud modes 1, 2, 2’, and 3.

Minor gas column density variations seem to be bet-
ter represented by longer correlation lengths of the order
of more than thousand kilometers. This can be estimated
for CO by observing the spatial variation in the results by
Tsang et al. [49] and is also applied to the other minor
gases as first estimate. Similarly, the correlation time is
likely larger than the cloud correlation time. The spatial-
temporal scales of atmospheric super-rotation and convec-
tion can serve as a motivation herefore.

For cloud or minor gases altitude density profiles, it is
reasonable to assign the spatial-temporal properties of the
column densities to the horizontal variability of the pro-
files as well and to treat the vertical variability as locally
coupled parameters.

Thus, the cloud parameter group comprises the total
cloud column factor, the column factors of the individ-
ual cloud modes, and the parameters describing the corre-
sponding cloud mode profiles. Similarly, the minor gases
parameter group includes the column factors and profiles
of all minor gases. A priori couplings between gases and
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clouds are neglected, but the parameters of either group
can be coupled to other parameters within their group.
This includes the vertical variability of the respective al-
titude profiles. Also, for instance, cloud modes 2’ and 3
may well be slightly anti-correlated, as might be OCS and
SO5, but this is not considered in practice.

Atmospheric temperatures in the mesosphere are treated
to have correlation properties similar to the minor gases
and thus could well be assigned to the minor gases group.
But couplings with the minor gases are not expected, and
so they will be regarded as a distinct group. O nightglow
is also treated as one separate parameter group.

Auxiliary instrumental parameters like the FWHM of
the instrumental response function and the slope and in-
tercept of the band-to-wavelength mapping are not suffi-
ciently well predictable by the calibration pipeline at the
moment and thus have to be retrieved as auxiliary param-
eters needed to adequately simulate the observed spectra
[11, Section 4.4]. They are not coupled to atmospheric
or surface parameters, but may be coupled among them-
selves. Therefore, they are assigned to one separate pa-
rameter group and treated according to Eq. (8).

All these different groups can safely be treated as inde-
pendent from each other, and inter-group coupling is not
necessary to describe the parameter correlations as long as
a priori knowledge is as limited as presently.

4.8. Common parameters

As discussed in Section 4.1, the CO4 continuum is not
sufficiently well known. However, the observed VIRTIS-M-
IR spectra themselves can be regarded as measurements
thereof, but now with the locally varying parameters as
interfering factors. Although for this study modeled as
window-specific and spectrally constant throughout the
range of an atmospheric transparency window, the contin-
uum may freely vary in wavelength direction and is treated
as a parameter vector. It is clearly common to all mea-
surements of Venus’ atmosphere and will be retrieved as
parameter that is common to a selection of as many as
possible spectra under as many as possible environmental
and observational conditions. This way, it shall be ensured
that it is compatible with all measurements and as reliable
as possible. The continuum has to be determined only
once and will thereafter be used as fixed value for subse-
quent retrievals of atmospheric and surface parameters. It
can be regularized by only allowing for limited variation in
wavelength direction. This can be achieved by a nearest-
neighbor coupling in wavelength direction (Section 3.2) or
also by a distance matrix with respect to distances in wave-
length direction (Section 3.3), but both ways are purely
heuristically, since not much is known about the wave-
length dependence of the continuum. First results that
are based on MSR have been presented by Kappel et al.
[11].

Surface properties should be quite unrelated to varia-
tions in the atmosphere, except for a possible coupling of
surface temperature and atmospheric temperature at the
surface, which will be neglected. When the occurrence of
volcanic activity (as observable by VIRTIS-M-IR in the
nightside NIR surface windows at 1.02, 1.10, and 1.18 pm)
is neglected [50], the spectral surface emissivity can be re-
garded as common to all measurements that repeatedly
cover the same target bin on the surface. Or in other



words, the entire surface emissivity map of the planet is
common to all measurements targeting the planet. Note
that a measurement is only sensitive (i.e. non-zero entry in
the Jacobian) to surface emissivity at surface bins that are
actually covered by the measurement. Retrieving surface
emissivity as parameter common to measurements repeat-
edly covering a target, yields a fully consistent parameter
set describing all considered measurements [21]. In con-
trast, the corresponding single-spectrum retrievals yield
different emissivity values for each of these measurements
in most cases. This implies an inconsistent parameter set
describing the full set of utilized measurements, implic-
itly also allowing for inconsistent atmospheric parameter
values. The emissivities at nearby spots are possibly cor-
related. This purely spatial situation can be treated by
using the correlation matrix from Eq. (7) with 7 = oo.
The typical correlation length is 100 km, i.e. the expected
surface resolution as it is limited by atmospheric blurring
[51].

The deep atmospheric temperature field is not yet suf-
ficiently well known for a reliable surface emissivity re-
trieval. The corresponding Jacobians are quite similar to
cloud Jacobians, and disentanglement is not feasible for
single-spectrum retrievals. A general circulation model
[52, personal communication] and measurements [1, 17] are
compatible with a temporally rather constant tropospheric
temperature field that is altitude and latitude dependent,
probably a consequence of high thermal inertia and ther-
modynamic stable layering in the deep atmosphere. This
is not the case for the highly variable mesosphere. Thus,
a deep atmospheric temperature altitude profile is essen-
tially a parameter vector common to measurements cover-
ing a given latitude. The latitudinal dependencies of the
temperature profiles can be coupled by using a correlation
matrix similar to that for the surface emissivity map, but
spatial separation is only measured in latitude direction,
ie. (Co)ij = f3(n3]9; —V;]/O), compare Section 3.2.3.
The latitude corresponding to measurement 7 is hereby 1J;,
and the correlation strength @ in latitude direction can be
set to 45°.

Finally, while it is possible to couple the different men-
tioned common parameter types, this seems not to be use-
ful. Any coupling to local parameters is also not needed.

5. Examples and discussion

Since MSR, determines locations of local minima of
the cost function F., a non-negative real function on a
possibly high dimensional parameter space (Eq. (1), also
applicable for single-spectrum retrievals by setting inter-
measurement couplings to zero), it is easy to find local sub-
sidiary minima, which are potentially far from the global
minimum, especially in presence of measurement noise.
This section discusses by two examples, how this situation
can be improved by using MSR, (Section 2, with a priori
covariance matrix S4 from Section 3) by not only incorpo-
rating information on expected parameter values, but also
expected relations between parameters. The more actually
available a priori knowledge is utilized, the better certain
solutions being incompatible with the a prior: data can be
ruled out from the outset. Some resulting improvements
in the data analysis of Venus nightside spectra acquired
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by VIRTIS-M-IR have already been published by [11, Sec-
tion 5.1]. The retrieval algorithm has been sketched there
only shortly, and the full description has been announced
to be published in a subsequent (the present) paper.

To test MSR, a set of synthetic VIRTIS-M-IR radi-
ance spectra of Venus’ nightside emissions in the range
1.0-2.5 um is generated by using the radiative transfer for-
ward model. The utilized ’true’ atmospheric, surface, and
instrumental parameters underlying these spectra are thus
exactly known by definition. Gaussian noise with a certain
standard deviation o is added to the simulated spectra
to emulate the loss of the spectra’s information content
caused by random measurement imperfections. System-
atic measurement and calibration errors will be consid-
ered in a subsequent paper (set parameters that are not
retrieved to values different from their assumed values, dis-
tort shapes of the radiance peaks). By using different reg-
ularization schemes, the relevant parameters are then re-
trieved from the synthetic spectra and compared to their
‘true’ values.

Example (A) studies a swath of 30 concurrent syn-
thetic spectra covering the equator at longitudes from 1—
30°E. Fig. 3 depicts the 'true’ cloud column factors 2, 27,
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Figure 3: Comparison of ’true’ cloud mode column factors (left key)
of longitudinal synthetic measurement swath with corresponding re-
trieved values (right key) for different models of a priori correla-
tion lengths A; for cloud mode i. I: Aa = Okm = Ayr = Az, II:
A2 = 20000 km, Aor = A3 = 500 km, III: Ao = 2000km = Ay = A3.

and 3. The remaining parameters are as for the reference
spectrum (Fig. 2), and Gaussian noise with the unrealisti-
cally small double standard deviation 20 =2-10~* W /(m?
sr pm) is added to the synthetic spectra. MSR is used to
retrieve the cloud mode factors from the radiance spec-
tra for three different regularization models from the spec-
tral range 1.295-2.300 pm (1.31, 1.74, and 2.3 um peaks).
A priori mean values and double standard deviations are
set to 1.0 and 2.0, respectively, to allow for a sufficiently
wide range the retrieved cloud mode factors may vary in.
Note that 1 *longitude at the equator corresponds to about
107 km referred to the cloud top level.

Model I sets all a priori correlation lengths to zero
and corresponds to single-spectrum retrievals. While cloud
mode 3 abundance can be retrieved quite reliably, modes 2
and 2’ are difficult to disentangle and strongly deviate from
their true values. This is a consequence of the smallness
of one of the three available peaks (1.31 pm-peak radiance



~ 1072 W/(m? sr pm)) that are used to determine the
three unknown cloud mode factors, the presence of noise,
and the similarity of the Jacobians especially of the cloud
mode factors 2 and 2’. Note that for zero noise, the true
values can be retrieved exactly.

Model II sets a priori correlation lengths that approxi-
mate the true parameter distributions. The dependence on
correlation length modifications by factors of 0.5 or 2 has
been verified to be relatively small. Mode 3 factors are not
depicted as they almost exactly coincide with their true
values. Mode 2’ factors are not shown because deviations
from their true values are opposite and of a similar mag-
nitude (but smaller) as deviations for mode 2 (compare
model I results in the figure). Retrieved mode 2 factors
deviate less than 10% from their true values.

Model III sets for all cloud modes identical a priori
correlation lengths that approximate the geometric mean
of the three correlation lengths from model II. Retrieved
mode 3 factors match the true values well. Modes 2 and
3 can not be disentangled (only mode 2 shown). Setting
all a priori correlation lengths to 20000 km, or to 500 km,
respectively, leads to worse results.

Averaged least-squares norms of residuals between syn-
thetic and fitted radiances are least for model IT and largest
for model I. Within model III, the geometric-mean-case
leads to the smallest residuals.

In Example (A), as in many real-world atmospheric
remote sensing problems, measurements are not isolated
soundings in space and time, but each measurement is ac-
companied by adjacent measurements. If they are never-
theless treated as independent from other soundings, then
spatial or temporal continuity in the measurements may
not translate to a certain expected continuity in retrieved
parameters like cloud column densities. This is due to the
ill-posed nature of the retrieval problem and the existence
of subsidiary minima of the cost function. Actually, con-
tiguous real-world measurements are unlikely to originate
from completely unrelated state vectors, since the physical
state of the atmosphere should obey a certain continuity.
This follows from the inertia of matter and the drive to
compensate thermodynamic disequilibria and results in a
certain continuity of the observable radiance. Therefore,
it can help to reduce the effective size of the parameter
space by not only incorporating a priori mean values and
standard deviations as usual, but by also taking a priori
spatial-temporal correlations into account. This decreases
the number of potential solutions and could be expected to
produce larger residuals between measurements and fits.
But for Example (A), as for actual retrievals of VIRTIS
spectra [11], the residuals in fact decrease on average. This
indicates avoided subsidiary solutions of F, justifying this
correlated retrieval. However, when the imposed correla-
tions are too strong, translating to an overly reduction of
the effective size of the parameter space, residuals turn out
to become larger again, since the global minimum itself is
overly affected.

In addition, Example (A) illustrates that parameters
with strongly differing correlation lengths can be better
disentangled by using multi- than by using single-spectrum
regularization. But the more similar any two parameters’
Jacobians are (smaller Euclidean angle), the worse they
can be disentangled (modes 2 and 2’). Note that for pa-
rameters with equal Jacobians, the distribution of the re-
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trieved parameters is determined by a priori correlation
data only, and disentanglement is not based on measure-
ments anymore. This case must be avoided and under-
lines the necessity to check robustness of the retrieved
results against reasonable a priori data and initial guess
modifications. In Example (A), noise is sufficiently small
to just disentangle cloud modes 2 and 2’ by using MSR,
but stronger noise destroys more information. In practice
(noise with 20 =2 - 1072 W/(m? sr pm) and systematic er-
rors), modes 2 and 2’ can not be disentangled from the
considered spectral range, and only mode 2’ and 3 varia-
tions are considered in the following. Resulting real-world
retrieval errors will be studied elsewhere.

Note that, when a smooth behavior of the retrieved
result is expected, it is far better to increase the proba-
bility to find a smooth parameter set as retrieval solution,
than to smooth results from uncorrelated retrievals. Due
to the non-linear nature of the forward model, smoothing
of parameters will in general not lead to a consistent pa-
rameter set describing the measurements, especially when
jumps between different subsidiary minima are involved,
or parameters close to their domain boundaries.

In conclusion of Example (A), a priori spatial-temporal
correlations can be regarded as ’elastic bands’ forcing the
parameters to stay close to self-establishing general spatial-
temporal trends. This increases the probability of conver-
gence to spatial-temporal parameter distributions compat-
ible with the expectations on continuity and distribution
of the true atmospheric state, attenuates the impact of
noise, and decreases the probability of running into sub-
sidiary minima of the cost function.

As discussed, parameters with strongly differing spatial-
temporal correlations can be better disentangled. The ex-
treme case herefore is that of infinite spatial or temporal
coupling, translating to spatial or temporal constancy of
the respective parameters when a priori mean values and
standard deviations are identic. But as that causes S4 to
degenerate, this case must be treated in a different way
(Appendix A.3), by retrieving parameters that are com-
mon to certain sets of spectra (Section 3.5).

To illustrate this case, Example (B) studies a syn-
thetic observation movie with 30 repetitions (1 h intervals)
of 30 surface bins that evenly cover the equator from 1-
30°E (Figs. 4 and 5). The spectra are generated as be-
ing acquired by the VIRTIS-M-IR detector that has 256
spatial samples in a row, by the samples with numbers
s = 4 + 8-Longitude/°E. Cloud modes 2’ and 3 are inde-
pendently varied according to a pseudo-random spatial-
temporal pattern with 1000 km correlation length, 10h
correlation time, mean value ~ 1.0, and double standard
deviation = 0.6. Along the sample direction, the FWHM
of the instrumental response function is varied according
to (17 + (s — 124)/48) nm which is inspired by test re-
trievals from actual measurements. Surface emissivities
in the spectral transparency windows at 1.02, 1.10, and
1.18 ym are common to all spectra covering the same re-
spective surface bin. 1.02 pm-surface-emissivity is mod-
eled to span the whole range 0-1 and to have three four-
bin plateaus at emissivity levels 0.2, 0.65, and 0.98, as
well as an abrupt anomaly around 21.5 °E. Emissivities in
the other two surface windows are all set to 0.65. The
remaining parameters are as for the reference spectrum
(Fig. 2). In particular, the continuum is common to all
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spectra. Gaussian noise with double standard deviation
20 =2-1073 W/(m? sr pm) is added to the synthetic spec-
tra.

In a first stage of the retrieval pipeline, cloud mode
factors 2’ and 3 (1 + 20, 1000km, 10h), FWHM ((17 &+
30) nm, 75 samples, 5h), and continua at 1.31, 1.74, and
2.3pm ((1410%)-1072% cm?, 0km, 0h) are retrieved from
1.295-2.300 pm, where the values in parentheses list a pri-
ori mean value + double standard deviation, correlation
length and time of the respective parameter. The second
stage retrieves 1.02 pm-surface-emissivity (0.5 £ 20, 0km,
0h), and 1.10pm- and 1.18 pm-surface-emissivity and -
continuum from their respective peaks. The a priori stan-
dard deviations are set very wide to largely exclude their
and the mean values’ impact. Results from single- (no
common parameters, no a priori correlations) and multi-
spectrum regularization (continuum common to all spec-
tra, surface emissivities common to all spectra covering the
same surface bin, a priori correlation lengths and times
as given except for common parameters) are compared to
true values in Figs. 4 and 5.

Retrieved single-spectrum continua (only depicted for
1.18 pm) have a large scatter. Their mean values £ their
double standard deviations are (1.8+1.2,0.504+-0.90,4.8+
7.6,15.8 4+ 4.2,124 + 50)-1072% cm? for the spectral win-
dows at 1.10, 1.18, 1.31, 1.74, 2.3 pm (note missing 1.02
and 1.28 ym windows). Continua as common parame-
ters 4+ their double a posteriori standard deviations are
(2.00 £ 0.09,0.33 £+ 0.03,4.2 £+ 0.3,15.02 £ 0.07,119.5 +
0.5)-10729 cm? (same windows). The single-spectrum mean
values and the multi-spectrum values agree with the true
values within the given margins, but the margins for the
single-spectrum results are considerably wider. Note that
the 95%-confidence intervals for the 900 single-spectrum
results (multiply double standard deviations by 1.96/(2 -
v/900) according to Student’s t-distribution) are in the or-
der of magnitude of the multi-spectrum a posteriori dou-
ble standard deviations, meaning that single-spectrum re-
trieval has statistically failed to retrieve the continuum.
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Figure 5: Detector sample dependence of various parameters.

FWHM: ’true’” FWHM of instrumental response function in nm,
FWHM S: retrieved single-spectrum results, FWHM C: results of cor-
related retrievals. Cont: ’true’ continuum parameter (3.5-10730 cm?)
for 1.18 pm window, Cont S: retrieved continuum parameters (single-
spectrum results, same unit), Cont S MV: their mean values for the
respective detector sample bins. Retrieved continuum as parame-
ter common to all spectra is 3.32 4+ 0.24 in the same unit. Res S:
least-squares norms in 1074 W/(m? sr pm) of residuals between syn-
thetic and fitted radiances, divided by number of utilized spectral
bands (single-spectrum results), Res C: the same for multi-spectrum
results.

Retrieved cloud mode 2’ factors (mode 3 factors) have
a root-mean-square deviation (RMSD) of 0.28 and 0.053
(0.15 and 0.027) to their true values for single- and multi-
spectrum results, respectively. As the true modes 2’ and
3 have the same mean value and standard deviation, this
shows that cloud mode 3 can be retrieved more reliably
than mode 2’. MSR results are more reliable than single-
spectrum results.

The FWHM can be retrieved quite reliably already for
single-spectrum regularization (RMSD 0.31 nm), although
MSR results (RMSD 0.19 nm) are more reliable.

Retrieved single-spectrum surface emissivities (only de-
picted for 1.02pm, RMSD 0.11) have a large scatter and
large a posteriori double standard deviations. Their bin-
wise mean values do not match very well to the true values.
Especially the larger emissivities are difficult to retrieve,
since the radiance response to emissivity changes near 1.0
is small compared with changes in the lower emissivity
range. This effect amplifies noise impacts at higher emis-
sivities. An additional contribution to the degree of the
emissivity underestimation is the presence of the upper
emissivity domain boundary. This can be seen in the ex-
treme case where true emissivity is 1 and scattered re-
trieved values are only allowed to extend to values < 1
such that the mean value must be strictly < 1 for non-zero
scatter. Still, the spatial fine structure (plateaus, jumps,
anomaly) is resolved to a certain degree. MSR results
(RMSD 0.0086) agree well with the true values and have
very small a posteriori double standard deviations, rep-
resenting the increased information content per spectrum
due to the restriction of the effective size of the parameter
space by incorporating finite and infinite a priori correla-
tions. As the 1.02 pm-continuum is not retrieved, but set
to its true value, wrong single-spectrum 1.02 pm-emissivity
mean values are here not related to a wrong continuum in



this window, but to wrong cloud modal abundances partly
caused by wrong continua between 1.295-2.300 pm, and by
convergence to subsidiary minima.

For the not depicted surface emissivities at 1.10 and
1.18 um, the true values are 0.65 and 0.65 for each of
the bins. The retrieved values are scattered according
to 0.49 + 0.8 and 0.69 + 0.5 with RMSD 0.40 and 0.21
(single-spectrum), and 0.65 £ 0.04 and 0.63 £ 0.02 with
RMSD 0.016 and 0.024 (multi-spectrum bins). This shows
that MSR results are more reliable than single-spectrum
results. Also, emissivities at 1.10 and 1.18 pym are more
difficult to retrieve than those at 1.02 pm, in part a conse-
quence of the lower surface radiance contribution in these
peaks [12, Fig. 5]. But it is also due to the utilization
of the ’true’ 1.02 pm-continuum, and thus, neglect of its
retrieval error.

Example (B) underlines that retrieved common param-
eters (continuum, emissivity) are not just mean values of
single-spectrum results. This can be explained by observ-
ing the least-squares norms of residuals between synthetic
and fitted radiances. While they are very close to the arti-
ficial noise level for MSR fits, they are about 60% larger on
average for single-spectrum fits. About 30% of the single-
spectrum fits are significantly worse than the correspond-
ing MSR fits. As in Example (A), this demonstrates the
superiority of MSR in avoiding subsidiary minima of the
cost function. Example (B) also illustrates improved disen-
tanglement between parameters with similar Jacobians in
two examples for extreme cases of strongly differing a pri-
ori correlation behavior. The first example is the disentan-
glement of continua (infinite correlation length and time)
from clouds (finite correlation lengths and times) in the
first stage of the retrieval pipeline (1.295-2.300 pm). The
second example is the disentanglement of surface emissiv-
ities (correlation length 0, correlation time co) from con-
tinua (correlation length oo, correlation time oo) in the
second stage of the retrieval pipeline (1.000-1.235 pm).

An example to illustrate the retrieval of locally coupled
parameters in presence of spatial-temporal couplings (e.g.
temperature altitude profiles with vertical coupling of level
temperatures and horizontal spatial-temporal coupling of
temperatures from contiguous measurements, preventing
arbitrarily large retrieved temperature fluctuations between
contiguous levels and footprint locations) will be studied
in a subsequent paper.

6. Conclusions and outlook

Currently, VIRTIS-M-IR spectra of Venus’ nightside
emissions establish the only data source in the infrared
with high repetition and spatial resolution, where Venus’
surface emissivity can be extracted from on a global scale.
A radiative transfer forward model is required to simulate
spectra in dependence on surface, atmospheric, and instru-
mental parameters. A retrieval algorithm iteratively varies
these parameters until the simulated well fit the measured
spectra. The so-retrieved parameters are interpreted as
the surface, atmospheric, and instrumental state that led
to the measurements. But single VIRTIS-M-IR spectra
have a comparatively low information content, and differ-
ent parameter combinations can describe the same mea-
surement equally well. Hence, the inversion of the forward
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model is mathematically an ill-posed problem and must
be regularized. A common approach is the minimization
of a non-negative retrieval cost function that arises from
the incorporation of Bayesian a priori mean values, stan-
dard deviations, and correlations the retrieval parameters
are to respect, as well as measurement and simulation er-
ror information. This essentially rules out unlikely state
vectors. Still, this cost function is a non-linear function
on a possibly high-dimensional space, and it is easy to
run into subsidiary local minima far away from the global
minimum.

It was exemplarily shown that the multi-spectrum reg-
ularization presented in this paper (MSR) can consider-
ably improve the data analysis of contiguous measure-
ments with sparse spectral information content by mini-
mizing a retrieval cost function on a parameter space that
encompasses several measurements and that incorporates
a priori spatial-temporal correlations between the state
vectors of the different measurements. This naturally aris-
ing regularization decreases the probability to retrieve un-
likely spatial-temporal parameter distributions. Uninter-
esting subsidiary minima of the retrieval cost function and
unphysical jumps between them can be better avoided,
and the impact of noise can be attenuated.

A detailed error analysis of the single-spectrum retrieval
of local surface emissivity at 1.02, 1.10, and 1.18 ym on
Venus shows that this parameter is difficult and error-
prone to retrieve [23], as will be presented in a subsequent
paper. But neglecting VIRTIS-observable geologic activity
on Venus, surface emissivity is common to measurements
that repeatedly cover the same surface spot on Venus. In
the same way, corrections to the COs opacity in the ex-
treme environmental conditions in the deep atmosphere of
Venus (’continuum’) are common to all measurements of
Venus’ nightside emissions. Knowledge gain from single-
spectrum retrieval of these hard-to-determine parameters
is very limited due to interfering atmospheric variations.
As it was shown, their single-spectrum retrieval thus sta-
tistically fails, although the spectra are sensible to these
parameters.

But MSR is especially useful to disentangle retrieval pa-
rameters with similar Jacobians and strongly differing cor-
relation lengths or times. The extreme case for parameters
with infinite correlation lengths or times and identic single-
spectrum a priori data corresponds to the retrieval of pa-
rameters common to certain selections of measurements,
so for instance for surface emissivity (correlation length
0, correlation time oo) and continuum (infinite correla-
tion length and time). It was demonstrated that this ap-
proach leads to a better disentanglement of continua from
spatially-temporally varying atmospheric parameters and
of emissivities from continua, to smaller residuals between
measurements and fits, and thus to more reliable retrieval
results than corresponding single-spectrum retrievals.

The a posteriori retrieval uncertainties are lower for
MSR compared to single-spectrum retrievals, as it was
shown (see also Kappel et al. [11] for real-world exam-
ples). This results from the incorporation of the context
of adjacent measurements, making more information avail-
able that contributes to the determination of the parame-
ters describing a certain spectrum. Especially when single-
spectrum information content is low, this is important to
improve the quality of the retrieved information. Single-



spectrum retrieval, on the other hand, can be regarded as
an only very rough approximation of reality, since the pres-
ence of spatial-temporal correlations is rather the regular
case.

It was verified that a simple smoothing or averaging of
retrieved single-spectrum results does in general not lead
to correct results or to a consistent parameter set describ-
ing the measurements, especially when there are unphysi-
cal jumps between different subsidiary minima or param-
eters close to their domain boundaries. By using MSR,
all considered measurements can be parameterized by a
fully consistent set of atmospheric, surface, and instru-
mental parameters that respects all available single- and
multi-spectrum a priori data as well as the measurement
and simulation error distributions. But as always, when
regularizing an ill-posed problem, it must be checked that
retrieved results do not significantly change for a priori
and initial guess modifications.

Section 5 demonstrated that MSR allows to retrieve
continua and surface emissivities from VIRTIS-M-IR mea-
surements, when random measurement errors are assumed
to be the only error sources. Note that common parame-
ters retrieved from real-world measured spectra have to be
carefully interpreted, since systematic measurement and
simulation errors are also common to the spectra. The
impact of systematic errors will be discussed in a subse-
quent paper. First tests revealed that in their presence,
knowledge of continua is crucial to reliably retrieve emis-
sivities, and it may be necessary to first assume mean
surface emissivities in order to determine surface window
continua. The constraint that emissivities globally must
be non-negative and must not exceed unity then helps to
constrain valid continua. On the other hand, it may be suf-
ficient to utilize more diverse measurements (particularly
with respect to topography) to disentangle emissivities and
continua, but further studies are required.

Kappel et al. [11] already applied MSR to actual VIRTIS-
M-IR spectra of Venus’ nightside in order to disentangle
continua from spatial-temporal atmospheric variations. As
shall be presented in a subsequent paper, it will also be
applied to retrieve surface emissivity maps of Venus as pa-
rameter vectors that are common to measurements that re-
peatedly cover the same surface bins. Compared to single-
spectrum retrieval, this approach also has a higher chance
of success, because relative changes in the spatial distri-
bution of surface emissivity may be easier to detect than
absolute values. This is a consequence of the underlying
physical continuity in spatial-temporal variations of inter-
fering parameters like minor gas and cloud modal distribu-
tions, temperature variations, and others. The presented
multi-spectrum retrieval algorithm is ideally suited for this
task, since it allows to incorporate all these continuity and
consistency constraints. In conjunction with a refined con-
sistent data calibration and preprocessing [11], retrieval re-
liability and accuracy can thus be pushed to their limits.
However, while the processing time overhead of MSR com-
pared to corresponding single-spectrum retrievals is negli-
gible for up to a few thousand spectra, any retrieval based
on full radiative transfer forward model simulations re-
quires considerable computational resources. Thus, MSR
will be selectively applied at first to localized targets that
were beforehand identified to be of special geological in-
terest [53-55].
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A. Appendix

Some mathematical derivations and details on the im-
plementation of MSR are presented here.

A.1. Cost function as least squares norm

This appendix reformulates the cost function in terms
of a least-squares norm and discusses MSR’s inputs, i.e.
residual and Jacobian of the extended forward model sim-
ulations, as well as its outputs, i.e. the best estimate of the
state vector and the corresponding a posteriori covariance
matrix.

The best estimate of the state vector that is compatible
with the a priori and error knowledge and adequately pa-
rameterizes the measurements, is the global minimum of
the cost function F, from Eq. (1). An iterative algorithm is
used to identify local minima of F,. When a cost function
has the form of a least-squares residual norm ||R(X)]2,
this special structure can be exploited to improve numer-
ical efficiency, like it is done by the numerically quite ro-
bust trust region formulation of the Levenberg-Marquardt
algorithm [56]. Here, an X is determined that locally min-
imizes the least-squares norm, or equivalently ||R(X)]|3.
To see that F,. has this structure, define the ’scaled resid-
ual’” in the notation of Section 2

S, 4(X — A)

R(X) := (SEW (¥ - F(X))> € RNTM, (A1)

which implies |R(X)[2 = R(X)TR(X) = F.(X). R
is a mapping from RN to RN*TM, 821/2 is such that

(8,'/%)7s,;'/? = 87!, and analogously with Sg. S;'/*
is the inverse square root of the positive definite symmet-
ric matrix S, and is here not computed by using spec-
tral decomposition, but by the numerically fast and sta-
ble Cholesky decomposition. Any real, symmetric, posi-
tive definite N x N matrix S4 can be Cholesky decom-
posed into the product S4 = UTU of the transpose of an
upper triangular matrix U and U itself by using asymp-
totically N3/3 [57, Section 4.2] arithmetical operations,
compared to 9N?3 arithmetical operations for diagonaliza-
tion by the symmetric QR algorithm [57, Section 8.3].
(UT)~1 = U-T =: §,"/? is then an inverse matrix square
root of S, in the required sense. See Appendix A.2 for
an efficient computation for matrices S with a structure
as presented in Section 3. The difference to the matrix
square root, if defined by matrix diagonalization, is just
an orthogonal transformation of R(X) that is consequently
not observable when minimizing the least-squares norm of
R(X). The inverse square root of Sg, when assumed to be
a diagonal matrix, is just the matrix Sg with its diagonal
entries replaced by their inverse square roots.

The Jacobian J of R is needed as input to the iterative
algorithm [56] and follows from Eq. (A.1) as

SZ1/2

J(X) =VR(X) = (S;/2K(X)

> c ]RN+M % ]RN,
(A.2)
with the Jacobian K of the forward model F. J(X) is the
largest data structure in MSR and determines the prob-
lem size still manageable on a given computer hardware.



Sparse matrix formulation of J(X), and thereby of the en-
tire retrieval algorithm, considerably increases that limit
and is discussed in Appendix A.4.

When the best estimate of X is denoted by X (the
retrieved solution), the N x N-dimensional a posteriori
covariance matrix S at the retrieved solution follows from
(compare Eq. (2))

§1 = (1%)

I(X). (A.3)

The corresponding correlation matrix C follows from
Eq. (3). The block structures of S and C are inherited

from the structure of X. The diagonal entries (S);; of S
are the variances o? of the retrieved parameters accord-
ing to the a posteriori probability distribution. 2o; pro-
vides a first measure for the retrieval uncertainty, but a
detailed retrieval error analysis should be performed in
addition, as will be presented in a subsequent paper. The
off-diagonal entries of C provide an estimate on how well
a retrieved parameter is disentangled from the influences
of other parameters. An absolute value close to 1 indi-

cates bad disentanglement. C may be costly to compute
and to store, and often, it is sufficient to compute the
blocks corresponding to a few measurements and the re-
lated common-parameter-blocks. This already provides a
good impression on the disentanglement of common from
local parameters, the correlations between parameters as-
sociated to different measurements, between common pa-
rameters, and between local parameters belonging to one
measurement. For an efficient computation of the diagonal
entries of S and a few representative off-diagonal entries
of C, see Appendix A.4. Note that the correct WeightinAg
of the common parameters (Appendix A.3) affects both X

and S.

Violations of the retrieval parameters’ physical domain
boundaries are prevented by the logarithmic barrier method
[58, Section 17.2], but with slight modifications to match
the presented least-squares-norm formulation. The barrier
function B? is added to the cost function F, as a penalty
for each parameter (X); that approaches one of its domain
boundaries (e.g. 0 or 1 for the 1.02 pm-surface-emissivity
of a certain spectrum), where B(X) :
B? is chosen as barrier function instead of B, to allow bet-
ter incorporation into the least-squares formulation of F,
by introducing an additional dimension to R(X) with the
entry B(X), such that R(X)TR(X) corresponds to the
original F,(X) plus (B(X))Z. ¢; is continuous, piecewise
differentiable, positive when (X); is inside its domain, and
linearly approaches 0 at the boundaries. As an additional
modification, to minimize impact of the barrier function,
log(c;) shall be 0 outside a certain small boundary region
within the domain. To remove the influence of B on the
retrieved result, u is decreased by a factor of 10 each time
a certain number of iterations is completed, until B(X) is
neglectable compared to F.(X). When an iteration step
would lead a number of parameters to violate a domain
boundary, they are set back into their domain, close (de-
pendent on p) to the boundary. This prevents the trust
region radius to contract to zero too early and still leads
to correct results. The Jacobian of R including the bar-

=—pu va:o log (Ci [(X)J)
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rier dimension follows immediately by differentiation. For
1 small enough, S is unaffected by B.

A.2. Inverse square Toot of a priori covariance matriz
This appendix discusses the efficient computation of

the inverse square root Szl/ % of the covariance matrix S A
as needed in Appendix A.1. As S, is block diagonal with
Sc and Sy, on its diagonal (Section 3.5), the inverse square
roots of S¢ and Sy, can be computed independently. Even
for larger retrieval problems, S¢ is of rather low dimen-
sion (see example in Appendix A.4), and it is already effi-
cient to Cholesky decompose S¢ =: UTU and to compute
SEI/Q :=TU"T. But S;, for instance for thousands of mea-
surements and ten retrieval parameters per measurement,
is of the order of dimension 10,000 x 10,000 and costly
to Cholesky decompose. However, the Kronecker product
structure of Sy (Section 3.4) allows for a computational
shortcut. Without loss of generality, retrieval of common
parameters is not considered here, i.e. S, is assumed to
only comprise Sy, to share notation with Section 3.4.

According to Golub and van Loan [57, Section 4.5.5],
Cholesky decomposition and Kronecker multiplication com-
mute in the sense that

UlUs=S:=H®G =
(UUn) ® (UgUg) = (Ua ® Ug)" (Un ® Ug)

with obvious notation. This is due to the relations (A ®
B)T = AT ® BT and (A ® B)(C ® D) = (AC) ® (BD)
(which also implies (A ® B)™! = A~! @ B™!) [34, Sec-
tion 4.2], and the fact that the Kronecker product of upper
triangular matrices is upper triangular, all following imme-
diately from definition. This can be used to rearrange the

computation of S;ll/ % as follows.

S, is defined as Cyu (TII7)TCAII", (Section 3.4)
scaled with respect to the a priori standard deviations
oy of the retrieval parameters (Eq. (3)) with C4 from
Eq. (15).

As a first step, it can be verified that S4 may also
be computed by first scaling the h, in Eq. (15) with the
a priort standard deviations, and only then to perform the
Kronecker products, form the large block diagonal matrix,
and finally permute. Herefore, observe that

(Sa)nii-1)+k, nGi-1)+1 = kL (CA)r(k—1)+i, r(1-1)+5>
(A.4)
for all measurements ¢,j € {1,---,r} and for all parame-
ters k,l € {1,--- ,n}, corresponding to Eq. (16) and con-
sidering the permutation in the definition of C 4.

Let h be the block diagonal matrix with the matrices
hy,--- ,hg on its diagonal and entries hy;. H shall be the
covariance matrix that arises from h, i.e. Hy; = oroq hy,
and the blocks on the diagonal of the block matrix H are
denoted by Hy, - -+ ,Hg. According to Egs. (15) and (10),
Eq. (A.4) can then be written as

(SA)n(i—1)+k , n(i—1)+1 = okorhri(0,)ij = Hri(0y)ij,

where g € {1,---,G} depends on the partitioning of h.



Hence, Sy = (IT7)TS AII", with

H1®gl 0
SA: . . .

(A.5)

0 He ® oq
Incidentally, this requires fewer multiplications for the
scaling, since h has to be scaled just once (n? multiplica-
tions), whereas for the scaling of C 4, each of the r? blocks
of size n x n has to be scaled. B
Next, observe that the block diagonal structure of S4
and the uniqueness of Cholesky decomposition ensure that

the upper triangular Cholesky factor U of Sy = U'Uis
block diagonal with the upper triangular Cholesky factors
U, of the single blocks Hy ® @, = UJ'Uy as the blocks on
its diagonal.
uf - 0 U, 0
SA=U U= : :

0 Ul 0 Ug
Clearly, U is upper triangular. Since Cholesky decomposi-
tion and Kronecker multiplication commute, each Uy can
be computed as Uy, = Uy, ® U, with obv1ous notatlon
Note that the U, are p0881b1y all of different dimension
Ngr X ngr.

Consider the permutation (IT7)7(-)II" that maps the
index pair (r(k — 1) +i,7( — 1) +j) to (n(i — 1) +
k,n(j — 1) +1). According to the definition of the Kro-
necker product, each U, is a block matrix with blocks of
size 7 x r that are all upper triangular. Thus, U also is
an upper triangular block matrix with blocks of size r x r
that are all upper triangular. Hence, the indices of the
entries U, (—1)44,r(1—1)+; that are non-zero, satisfy k <1
and ¢ < j. This implies n(i — 1) + k < n(j — 1) + 1, i.e.
that (IT7)TUII", is upper triangular. This proves that
(1) ToT) " (I17)TOTL, = (7)) TS ATI7, = S 4 s a (ie.
the) Cholesky factorization of S, = UT'U, with upper tri-
angular Cholesky factor U = (II7, )TUH’", i.e. U can be
computed by permuting U.

Finally, observe that

$,/?:=U" = (m,)TTm,) " = 1r)"0 I,
Note that the transposed inverse of the upper triangular

matrix U is lower triangular. Also, as U is upper trian-
—T . . .
gular, U = is lower triangular. Due to the block diag-

onal structure of U, its inverse can simply be computed
by forming the block diagonal matrix with the U;l as the

blocks on its diagonal. Because of [A@B]™! = A~1@B~!

and [A ® B]T = AT @ BY, it finally follows
-7 -7
UH1 ® Ug1 e 0
8, = @m;)” : : IT,.
-T _
0 Uy, @ U0
(A.6)

Thus, direct Cholesky decomposition of Sy = UTU and
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inversion of U can be avoided. Only the G ng x ng-
dimensional matrices Hy and the G r x r-dimensional ma-
trices g, need to be Cholesky decomposed and their upper
trlangulqar factors inverted. Permutation and Kronecker
multiplication are computationally fast operations. Com-
pare for large r the number of arithmetic operations for the
resource dominating Cholesky decompositions: (nr)3/3 for
Sa vs. Zle n3/3 4+ Gr?/3 for the Cholesky decomposi-

tions involved in Eq. (A.6). For r > n, Zle n3/3 can be

neglected against Gr3/3, and the speedup is of the order
of n?/G, which exceeds n? due to G < n. Generically, for
ten retrieval parameters per measurement, the speedup
exceeds 100. Incidentally, this framework is also ideally
suited for the sparse matrix formulation of MSR, as will
be seen in Appendix A.4.

A.83. Limit for perfect spatial-temporal coupling

In this appendix, the limit of retrieved values for ever
stronger spatial or temporal coupling between r measure-
ments for ¢ single-spectrum parameters with identic single-
spectrum a priori data will be discussed. It will be shown
that computing this limit is equivalent to retrieving ¢ pa-
rameters common to these measurements in the sense of
Section 2, with a certain relative weighting between com-
mon and not-common (’local’, i.e. spatially-temporally
varying) parameters. It suffices to show that in both ap-
proaches, the a posteriori probability distribution (Sec-
tion 2) yields the same best estimates and uncertainties of
the retrieval parameters. The main purpose of this section
is the derivation of the proper relative weighting between
the common and the local parameters in the a priori co-
variance matrix. From the outset, it is not clear whether
there is a statistical 1/r-like relative weighting factor that
reflects the influence of a common parameter on r spectra.

First, the setting will be defined by considering the
permuted parameter space (Eq. (13)). The correspond-

ing a priori covariance matrix S, can be written as in
Eq. (A.5). Parameters with, in the limit, perfect spa-
tial or temporal coupling (’perfect-coupling-parameters’)
must be implemented as separate from, and without inter-
group coupling to parameter groups describable by con-
stant finite spatial or temporal coupling (’finite-coupling-
parameters’), as they obey different spatial-temporal cor-
relation behavior (Section 3.4). To allow coupling between
themselves, these perfect-coupling-parameters may well be
combined into one single group, since they can be de-
scribed by identical spatial-temporal correlation behavior.
Denote this parameter group by the index P, such that
Sa= (5

0 S,
trix for the finite-coupling-parameters (for the permuted
parameter space) and can be written as in Eq. (A.5). Be-
cause the perfect-coupling-parameters shall all have iden-
tic single-spectrum a prior: data, their a priori covariance
matrix can be written Sp := H¢ ® 9p, where the r x r
matrix gp describes their spatial-temporal coupling, and
H¢ is their (for all measurements the same!) ¢ x ¢ single-
spectrum a priori covariance matrix. Let the perfect-
coupling-group comprise the parameter vector p = II_p =
(ﬁl, e ,ﬁc) analog to the notation in Eq. (13) for the per-
muted parameter space. p, € R"isforeach k € {1,--- , ¢}
a vector describing the spatial-temporal distribution of

). Here, Sy, is the a priori covariance ma-



single-spectrum parameter number k, and (py); = (pi)x is
the parameter number k of measurement ¢ € {1,--- ,r}.
For easier notation, the limit will be computed by using
the unpermuted parameter spaces (Eq. (12)) separately for
the perfect- and for the finite-coupling-parameters, i.e. the
permutation (IT”, )7 will be applied to the permuted pa-

c,mn
) ( )H: n to SA7
where II7 , = 1‘([); l.?r ) This has the advantage of be-

ing able to work in the respective unpermuted spaces while
still transparently separating perfect- from finite-coupling-
parameters in the a prior: covariance matrix. It does not
change results, provided it is kept track of the associations
of the entries of the matrix to the entries of the parameter
space. Hence, Sy = (SOP sOL) and (p1, -, Pr X1, " ,Xp)
are the basic quantities to work with, where p; € R¢ and
x; € R™, and the i-independent (identic single-spectrum
a priori datal) a priori mean value vector for the p; is
ap € R and that for the x; is a € R"™.

It will now be shown that in the limit of perfect spa-
tial or temporal coupling between the p; that have identic
single-spectrum a priori data, the retrieved values of the
p: all coincide, i.e. that p; is common to the r measure-
ments. Also, it will follow directly from the a posteriori
probability distribution that the proper relative weighting
between the common and the local parameters is exactly
1.

rameter space, and correspondingly (TI7,

First, some additional notational conventions shall be
fixed. Denote p; —ap =: z; and x; —a =: Z; with z =
(z1,-+ ,2.) and Z = (Z4,--- ,Z,), such that (z,Z) =2 W
is the partial permutation of the parameter vector X trans-
lated by its a priori mean value vector. The a posteriori
probability distribution P,(X[Y) = & exp ( — 2 F.(X)),
compare Eq. (1) with normalization factor N can now be
written as

—2log (NP,(W[Y)) =

WTS'W + (Y — F(W)) 8,1 (Y - F(W))

with correspondingly transformed functions marked by tildes.

In particular, F(W) =F((p1,x1),  , (Pr, %)) =
compare notation in Section 2 not con51der1ng XC.
Let the strength of the spatial-temporal coupling of the
parameters z be parameterized by €. In the limit of € | 0,
it shall continuously approach perfect spatial or temporal
coupling (‘or’ also allows ’spatial and temporal’). Of the
two blocks on the diagonal of the block diagonal matrix
S, the first block Sp(e) is associated to the parameters
z and depends on €, and the other block Sy, is associated
to the parameters Z and does not depend on €. Clearly,
lim o Sp(e) = lim.o(0p(e) ® He) = 1,4, @ He, where
1, is the 7 X r matrix with all entries 1. 1,, is degen-
erate and thus has no inverse. This is the reason, why the
a posteriori probability distribution for perfect coupling
has to be defined by a limit. Note that the normalization
factor IV depends on €. For € > 0, the inverse of S 4 is the
block diagonal matrix with the inverses of the blocks of S 4
as its blocks on the diagonal. The a posteriori probability

distribution for z, P.(z,¢) := [ P, (z,Z)[Y)dZ, for finite

(fl (P1,x1) braldaﬂ
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e can thus be written

1 1
P,(z,e) =: mexp (—2ZTS

where G(z

—1
P

2) 525 6 @)
A7)

= [exp (—3Go(z, Z)) dZ with auxiliary term

Go(z,Z) = Z"S;'Z+ (Y —F(W)) 8,1 (Y - F(W)).
(A.8)

Here, Ni(c) := [exp (—32"S5'(¢)z) dz is the normaliza-
tion factor for the exponential term in Eq. (A.7) that is
going to be singular in the limit, and Ny(e) is such that
[ P.(z,¢)dz Note that Na(e) does not normalize
G(z) in general, and that the normalization is split into
two factors Nj(e) and Na(e) in order to separate singular
from regular terms to properly manage the limit functions.

In order to properly define the a priori covariance ma-
trix for the retrieval of common parameters, lim. o P,(z, ¢)
has to be evaluated. Since Sp(e) degenerates in the limit,
P.(-,¢) shall be regarded as tempered distribution. See
Reed and Simon [59, Section V.3] for distribution theory.
Let test function ¢ be an element of Schwartz space, the
space of rapidly decreasing infinitely differentiable func-
tions. Then lim. o [ P.(z,¢)¢(z) dz provides the a poste-
riori probability distribution in the sense of distribution
theory. This term shall now be rearranged in order to
compute the limit.

Let € > 0. The first factor of Sp(e) = op(e) ® He,
the matrix op(g), is real symmetric and can thus be di-
agonalized by an orthogonal matrix Q(e) that consists of
eigenvectors of gp(e) [25, Theorem 4.1.5], i.e. op(e) =
Q(e)D(e)Q7 (¢), where the diagonal matrix D(e) has the
corresponding eigenvalues Dy;(¢) on its diagonal. The eigen-
values are continuous functions of the entries of gp(e) [60,
Theorem 5.2]. Moreover, an algebraically simple eigen-
value is an analytic function of perturbations of the matrix
entries, and so is the corresponding eigenvector [60, Theo-
rem 5.3]. For eigenvalues that are not algebraically simple,
the eigenvectors need not be continuous. The eigenval-
ues 0 1 Mejo = 1,4, are r and 0, and r is an alge-
Gitg elgenvalue with eigenvector (1,---,1)T =

Here, 1, € R" is the vector with all entries 1 There-
fore, and since gp(€) continuously depends on €, D(¢) and
Q(e) can be written as

r+ dy(e) 0 0
D(e) = 0 da(<) and
: ’ .0
0 0 d(e)
048 e
2(€)) Jv(e
Qe) = ! . S (A.9)

(1 +Q7‘( )) [v(e)

where Dj;(e) > 0 for ¢ > 0 and lim.pd;(¢) = 0. Fur-
thermore, lim.|¢;(¢) = 0, and v(¢) normalizes the first
column of Q(e), whence lim. o v(e) = y/r. While v and all
d; and g; are continuous in €, the remaining columns * of
Q(¢) need not be continuous functions of €. However, the



absolute values of their entries are bounded from above by
1, since Q(e) is orthogonal.

Let /D~1(¢) be the diagonal matrix with the entries

(Dn‘(e))fl/2 on its diagonal. Then by using the iden-
tity matrix 1.4, of dimension ¢ X ¢, the substitution £ :=

(VD= 1(e)QT(2)) ® Lexcz yields for [ P.(z,e)¢(z) dz

/(

det D(s))c/2

1 _
) o (~5€7 [ 0 e
1

NQ(E)

with (e, €) = [(Q(e)y/D(e) ) ® Lexc|€. This is a conse-

quence of the change-of-variables formula || (V) f(z)dz =

Jyy fF(@(&))] det Ty (€)| A€ [61, Theorems 8.26, 8.28] and
due to

| det [(Q(e)V/D(e) ) @ Toxc]|
= |det (Q(e)v/D(e) )| = (detD(E))C/27

which holds because of det (A @ B) = (det A)™(det B)™
for matrices A of dimension m x m and B of dimension
n x n [62, Section 2.3, X] and det Q(g) = 1.

As the x in Eq. (A.9) are bounded, it follows that

lim Q(e)v/De) e R,

and therefore

1;]%11/)(8’&) = (617. o ’€1> = 17' ®£1 S RTC.

To now compute lim. o [ P.(z,¢)p(z) dz, Lebesgue’s
Dominated Convergence Theorem [61, Theorem 1.34] shall
be applied to evaluate lim, o of Eq. (A.10) by interchang-
ing limit and integral. Thereto, it shall be checked whether
the Theorem’s assumptions apply (i.e. whether for the se-
quence of functions that point-wise converges to the limit
function under the integral, there exists an integrable dom-
inating function).

First, observe that Eq. (A.8) implies that G is bounded,
since it can be written as [ exp (—1Z7S;'Z)K(z,Z)dZ,
with K bounded by 1 and the positive definite Szl provid-
ing an exponential damping for the integration. Here, K
is bounded and continuous, since S;Jl is positive definite
and the forward model outcome F is continuous (see Sec-
tion 2), and therefore also F. Furthermore, |G(z)—G(z)| <
Jexp (—%ZT821Z) - 2dZ, providing an integrable domi-
nating function for the verification that G is continuous
because K is, by applying Lebesgue’s Dominated Conver-
gence Theorem to |G(z) — G(z)|.

Next, the properties of Ny (e) and Nz2(e) as normalizing
factors in Eq. (A.7) for small (i.e. Eq. (A.9) holds) e > 0
shall be investigated.

By using the same substitution that was used to arrive
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at Eq. (A.10), one obtains

Ni(e) = (2m)7/2(det He)™? (det D(e)) 7,

since [exp (— 3xTAx)dx = (2m)"/2/v/det A for a real
symmetric positive definite matrix A of dimension n X n.
By the same substitution, Ny can be written as

Na(e) = (2m) /2 (det He) ™/

./eXp (—;gT[nW®H51}5>G(¢(g,g)) d¢. (A.11)

The arguments that yielded boundedness and continuity of
G, carry over to the verification that N is in € continuous

at € = 0, because Q(¢)y/D(e) and hence (g, &) are. As
G is bounded, there exists some finite K > 0 such that for

all ¢ > 0, Kexp (—% T[]lrx,« ®H51]£> is an integrable

dominating function in &€ for the integrand in Eq. (A.11).
Thus Lebesgue’s Dominated Convergence Theorem can be
applied to Eq. (A.11) to obtain Na(0) := lim. o Na(e).

Ny (0) = (27) /% (det He) ™"

[ (-3¢ 10 0 He )60, 0 6) e

as G is continuous and (e, £) converges point-wise to 1,®
&, for € | 0. For generic Y and positive definite S;, and
SE, G(z) is positive for finite F, see Eq. (A.8). But for
finite arguments, F should be finite (Section 2). Hence,
for small € > 0, Na(¢) is some finite positive number.
Lebesgue’s Dominated Convergence Theorem can now
be applied to evaluate lim. o of Eq. (A.10). As a test
function in Schwartz space, ¢ is continuous and bounded,
as is G. Na(e) is positive for small ¢ > 0, finite, and
continuous in € at € = 0. Thus, for some finite K > 0,
K exp (—% T [Lrxr ® H51]£> is an integrable dominating

function in £ for the integrand for small € > 0, and by ap-
plying the theorem, it follows that lim. o [ P.(z,¢)p(z) dz
is equal to

—re/ -2 1
(2m) 2 ( det Hc) M (0)
[ (—;eT L ® Hcl}s)G(L@&l)so(lT@sl) de.

Since &" [1,«, @ Ho']€ = 31 €TH'€, € R, evalu-
ating the integral over d&, - - - d§, and absorbing the unin-
teresting terms into the constant NV, yields

%/exp (—;ﬁfH;El)G(lr ®&)e(1l, ® &) dE;.

This term can be rewritten by using the c-dimensional -



distribution ([ 6°(t)f

hm/ (z,€)p

- exp <_;zipHclz1> G(lr ® z1)<p(z) dz.

(t)dt = f(0) for t € R°), such that

z)dz = = /5c Z1 —22) - 0(21 — 2,)

This equation shows that the a posteriori probability dis-
tribution for z concentrates to the plane 1, ® z; (all z;
coincide). This means that z; is spatially or temporally
constant, i.e. it is common to the r measurements. For
the whole space (including the Z-dimensions), the induced

non-zero entries and their positions [63]. The ’coordinate
list’ format (COO) requires 16 bytes of storage space for
each non-zero entry (4 for integer row index, 4 for integer
column index, 8 for value in double precision). The ’com-
pressed column’ format (CCS) requires about 12 bytes per
entry (4 for row index, 8 for value) for matrices with many
more non-zero entries than the number of columuns (pointer
to where in the value list the columns start, is then ne-
glectable). A matrix stored in ’dense’ format as M x N
array, requires 8 bytes per entry. Matrix creation is con-
venient with COQO, matrix computations are efficient with
CCS. Sparse matrix formulation of MSR saves computer
memory (use sparse matrix storage) and processing time

probability distribution on that plane can be written % exp (—%(Epply sparse matrix operations), and for VIRTIS data, it

with cost function F,(z,Z) that reads

z{ H; 'z, + Z7S;'Z+

(Y-F(1,®2,2)'8; (Y-F(1, ®2,2)). (A.12)

Define the new extended parameter space as the di-
mensionally reduced parameter space on that plane, i.e.
(1, ® z1,Z) is dimensionally reduced to obtain (z1,Z).
Rename the vector of the common parameters z; =: z¢
and its a priori covariance matrix Ho =: S¢. Here and in
the following, the subscript ’C” is intended to flag quanti-
ties that involve common parameters. Revert the transla-
tional substitutions with respect to the a priori mean val-
ues at the beginning of this section, and denote the vector
of the parameters associated to Sy, by X, := (x1,--+ ,X;),
along with its a priori mean value vector A, := (a,--- ,a),
such that Z = X — A}, and similarly with z¢ =: x¢c—ac,
where ac := ap. The extended parameter vector shall
be denoted by X := (x¢,Xpr), and its a priori mean
value vector by A := (ac,Ar), leading to the same no-
tation as in Section 2. F(1, ® z1,Z) can be written as
F((XC7X1)7 R (XCaX'F)) = (fl(XCaX1)7 e
will be denoted by F¢(X).

Thus, finally the a posteriori probability distribution
can be written 4 exp (—4F,), with normalization factor

N
N and cost function F,.(X) that reads

(xo —ac)" 85! (x¢ —ac)+(X,—Ap) S (XL —Ap)
+(Y —Fo(X) 'S5 (Y - Fo(X)), (A.13)

and which has to be minimized by the retrieval. This
shows that the relative weighting between the common
and the local parameters is exactly 1, and not some /7-
like value. Also, it follows that spatially or temporally
perfectly coupled parameters can be treated as common
parameters in the sense of Section 2, where S 4 is a block
diagonal matrix with S and Sy as its blocks on the di-
agonal.

For VIRTIS-M-IR measurements of Venus, some rel-
evant common parameters along with a suitable S are
discussed in Section 4.3.

A.4. Sparse matriz formulation

Most entries of the largest structure in MSR, the Ja-
cobian J (Eq. (A.2)), are zero. This can be exploited by
using sparse matrix storage formats that only store the

- (xc, xr)) and
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allows to treat retrieval problems that are larger by one
order of magnitude.

Sparse matrices can be manipulated by using Suite-
Sparse, a suite of sparse matrix routines that include for-
mat conversion and QR factorization [64-73]. SuiteSparse
relies on METIS [74].

As an example that is on current standard desktop
hardware easily treatable in sparse format, let there be
r = 1,000 spectra of an effective size of 100 wavelengths
each, ¢ = 100 common retrieval parameters (surface emis-
sivities in a surface patch of 10 x 10 bins) and n = 10
local retrieval parameters per spectrum. Then J is of size
110,100 x 10, 100, corresponding to about 10° (dense) en-
tries, and can be compiled as follows, see Eq. (A.2) and
Sectlon 3.5.

Scl/ * as a small dense matrix (100 x 100 for the ex-
ample) is created in dense format according to Section 4.3
and then converted to CCS.

S, 1/2 (10 000 x 10,000 for the example) as given by
Eq. (A.6) is ideally su1ted to be directly created in sparse
format. First, the dense H, (Appendix A.2) and 0, have
to be computed (Sections 3.3 and 3.2.3) for the G param-
eter groups g, yielding the dense U;IZ and UEQT. This is
efficient due to the small sizes of these matrices (ng X n,
where Z;;:l ng =n, and r x 7). The Kronecker products
Uy oUu,”

g g
G sub-matrices are combined and permuted according to
Eq. (A.6) in COO representation and converted to CCS.
At no point, the dense representation of the full matrix
is needed. Note that, the sparser the Hy or g, are, the

are computed to yield COO matrices. These

sparser 821/2 tends to be, but in general the inverse of a

sparse matrix needs not to be sparse anymore. The worst

case relative population of Szl/Q is about %2521 n?,/n2

for large r and n.
J in CCS format can now be assembled column-wise by

combining S, /2 and S, 1/2 , and by collecting the columns

of the sparse —S, 2K . In the worst case (G = 1, maximal
population of all single-spectrum Jacobians), J is about
3.5% populated in the example above, translating to about
5.2% required storage space compared to dense format.
The single most expensive matrix operation in MSR is
the QR factorization of J as needed in the trust region
algorithm [56]. A sparse J = QRP7 can be factorized
by SuiteSparse into an orthogonal matrix Q and an upper
triangular matrix R [57, Section 5.2], [64], where P is a
permutation matrix that can lead to fewer non-zero entries



of the sparse R, and Q needs not to be stored. The ac-
tual determination of the Levenberg-Marquardt step [56,
Section 3] is performed as an additional sparse QR factor-
ization.

Appendix A.1 discusses the interpretation of the co-
variance matrix S (Eq. (A.3)) and the correlation matrix
C at the retrieved result. Only the diagonal and a few
off-diagonal entries SZJ of S may be needed, and the cor-
responding entries of C follow from Eq (3). In the last re-
trieval iteration, J is evaluated at X to yleld J with sparse

QR factorization J= QRPT J7J = PRTRPT imme-
diately (neglecting the structurally empty lines to yield a

N x N matrix from ﬁPT) provides a permuted Cholesky
decomposition of S—1! = J7J which is needed to efficiently
invert S—!. But the inverse of a sparse matrix needs not
to be sparse, and it may not be possible to store all of its
entries. To avoid the costly computation of JTJ and its
inversion via Cholesky decomposition, note that

Sij = (ei,Se;) = (e;, PRT'R"P"e;)

= <f{_Tf’Tei,]§A{_T1?’Tej> = <Zi,Zj>.
with the standard basis vectors e; and Euclidean standard
scalar product (-,-). z; can be determined by solving the

sparse linear equation RT = PTei.

A.5. Further notes on implementation

The retrieval of parameters whose impacts on the simu-
lated spectra can be separated, may be arranged into sev-
eral stages. Each stage corresponds to a complete run of
the retrieval algorithm in order to determine the best esti-
mate for the corresponding retrieval parameter subset by
considering a suitable stage-specific spectral range. The
a priori and error covariance matrices have to be newly
constructed for each stage, as has the covariance matrix
at the retrieved result. The retrieved values from earlier
stages can either be used as fixed input values with now
known uncertainties, or as initial guesses for a refined de-
termination of parameters from earlier stages. Such re-
finements might be necessary, since the adjustment of ad-
ditional parameters and the inclusion of different wave-
length ranges can cause previously retrieved parameters
to become suboptimal. This partitioning into stages re-
sults in Jacobians of smaller dimensions and consequently
decreased maximal computer memory usage, and also pro-
cessing time that tends to increase faster than linear with
problem size. A tight choice of parameters and wavelength
ranges for each retrieval stage can decide the processable
size of the retrieval problem.

In order to take advantage of multi-core computer hard-
ware, the program is parallelized by using the Message
Passing Interface (MPI) [75] as implemented, for instance
in OpenMPI [76]. As computer memory is a limiting factor
for the processable problem size, only one of the parallel
processes has all information needed for the retrieval algo-
rithm, including the a priori covariance matrix and the Ja-
cobian, and manages and performs the retrieval iterations.
The remaining processes act as co-processors that evaluate
their share of the single-spectrum simulations and single-
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spectrum Jacobians and communicate them via MPI to
the main process.
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