
A Pre-Processing Interface for Steering Exascale
Simulations by Intermediate Result Analysis through

In-Situ Post-Processing

Gregor Maturaa, Achim Basermanna, Fang Chenb, Markus Flatkenb, Andreas
Gerndtb, James Hetheringtonc, Timm Krügerc, Rupert Nashc

aDistributed Systems and Component Software, Simulation and Software Technology,
German Aerospace Center, Linder Höhe, 51147 Köln, Germany

bSoftware for Space Systems and Interactive visualisation, Simulation and Software
Technology,

German Aerospace Center, Lilienthalplatz 7, 38106, Braunschweig, Germany
cCenter for Computational Science, University College London, 20 Gordon Street,

London, WC1H 0AJ, United Kingdom

Abstract

Today’s simulations are typically not a single application but cover an entire
tool chain. There is a tool for initial data creation, for partitioning this data, for
actual solving, for afterwards analysis, for visualisation. Each of these tools is
separated and so is the data flow. This approach gets unfeasible for an exascale
environment. The penalty for every data movement is extreme. A load balance
optimised for the solver most likely does not hold true for the complete run time.
Compared to tweaking each part, our solution is more disruptive: Merge the
tools used and thereby improve overall simulation performance. In this paper,
we provide a first step. We combine pre-processing, simulation core and post-
processing. We outline our idea of a general pre-processing interface steering the
overall simulation and demonstrate its applicability with the sparse geometry
lattice-Boltzmann code HemeLB, intended for hemodynamic simulations.

The tasks of the pre-processing tool developed start with partitioning and
distributing simulation data. Main aspect is to balance computation and com-
munication costs of the entire simulation by using the costs of each simulation
part. Measurement of these costs for each simulation cycle makes possible fur-
ther performance improvement: Data can be redistributed in between cycles in
order to achieve a better load balance according to these costs. Additionally,
the pre-processing interface developed offers the possibility of integrating ex-
tensions covering, e.g., an automated mesh refinement or fault tolerance aware-
ness. Finally, we investigate the applicability of our interface within HemeLB.

Email addresses: gregor.matura@dlr.de (Gregor Matura), achim.basermann@dlr.de
(Achim Basermann), fang.chen@dlr.de (Fang Chen), markus.flatken@dlr.de (Markus
Flatken), andreas.gerndt@dlr.de (Andreas Gerndt), j.hetherington@ucl.ac.uk (James
Hetherington), t.krueger@ucl.ac.uk (Timm Krüger), rupert.nash@ucl.ac.uk (Rupert
Nash)

Preprint submitted to Elsevier June 28, 2013

We exploit the integrated partitioning methods and especially consider latest
HemeLB-specific in-situ result analysis and visualisation methods.

Contents

1 Introduction 3

2 Related work 4
2.1 Partitioners and pre-processing 4
2.2 Visualisation and post-processing 5
2.3 Lattice-Boltzmann and HemeLB 5

3 Major challenges of pre- and post-processing at exascale 6
3.1 Pre-processing . 6
3.2 Post-processing . 6
3.3 HemeLB . 7

4 PPStee: introduction 7
4.1 Properties . 7
4.2 Integration into simulation work flow 8
4.3 Basic usage example . 10

5 PPStee: analysis 11
5.1 Advantages . 11
5.2 Disadvantages . 11

6 HemeLB and PPStee 12

7 Conclusion 14

8 Future work 15

9 Acknowledgement 15

2

1. Introduction

A simulation can be logically divided into several parts, pre-processing, sim-
ulation core, and post-processing are examples. So far, i.e. up to the petascale
regime, these parts are often separated strongly, e.g., by large IO operations or
even by separation into different programs. Such cuts in the simulation work
and data flow are not alone very expensive but become unbearable when core
counts rise above hundreds of thousand; they have to be overcome if a simula-
tion wants to perform in an exascale environment.
The data flow in a typical simulation cycle starts with a proper initialisation of
simulation data. Primordial simulation data, like a mesh of the simulated object
or coordinates of the blood vessel boundary, is read into the memory where it
is further processed. It is obvious that this step is inevitable. Yet it will be
necessary to improve the situation by reducing the number of IO operations
where possible. This could be achieved, e.g., by loading only a coarse mesh or
data set and extrapolate a fine version in the next part of the simulation cycle.
After the initial read-in mesh manipulation techniques can be applied. It may
be necessary to refine the mesh in particular spots to force a more accurate
solution there. Or alter the shape of the mesh so it fits the real geometry bet-
ter. Or general smoothing could be applied. However, in an exascale regime,
this mesh manipulation has to be automated and thus relies on experience or
measurements from former simulation runs.
When all simulation input data is prepared the solver could be applied if there
would not be one hitch to it. After the fairly random initial read and all applied
mesh manipulations the data may not be aligned properly, i.e., an immediate
solving procedure could lead to an unequal utilisation of the available com-
puting, memory and communication resources. For an exascale system, this
situation becomes much more severe as, in the worst case, hundred thousands
of cores are waiting for just one to complete. Hence, the most crucial task of
pre-processing is to balance the load. Additionally, it is important to consider
the complete simulation cycle with all of its components; if, for example, an
in-situ visualisation is integrated that may impose uneven and additional work
load on the system, this cannot be neglected.
The calculation core of large-scale simulations produces huge data sets. Con-
ventional post-processing relies on output data which is stored on disk. For
exascale simulations, it will be no longer possible nor efficient to write out visu-
alisation data to disk. Instead, in-situ data visualisation and analysis are giving
promising solutions for data post-processing. In-situ post-processing extracts
and analyses simulation output on the fly, providing the simulation experts with
possibilities to explore and modify simulation parameters at run time. Choices
on data structure and visualisation techniques have to be co-designed with the
pre-processing and simulation scientists, in order to minimise overall latency
and to achieve efficient and interactive data processing and analysis.
In total, we identify a delicate and common point: All simulation parts can-
not stay apart and have to grow together or an exascale system will not be
exploitable to its full performance. Since every part remains responsible for

3

its particular task, and this should stay unchanged from a software engineering
point of view, it is necessary to establish a communication of information be-
tween all parts of a simulation cycle. Once each part is aware of the others and
capable to use those additional yet performance-vital information the simula-
tion is enabled to use the full potential of an exascale system.
This is where our work starts: We establish an interface between core simulation,
where a solution is calculated, and post-processing in order to enable efficient
in-situ visualisation techniques. This helps to avoid expensive off-system oper-
ations to process visualisation data. An interface between pre-processing and
other simulation parts, called PPStee, manages overall simulation load-balance
which is its primary task. It can be extended by further steering capabilities
covering other important exascale-relevant duties like automated mesh manip-
ulation or fault tolerance.
Our primary test bed is the simulation code HemeLB. It is intended for hemody-
namic simulations and was developed at the Centre for Computational Science at
University College London. The core of HemeLB provides a lattice-Boltzmann
solver for blood flow simulation with sparse geometries. Since the geometry
of an artery, e.g., is read in, processed, simulated and illustrated, HemeLB is
particularly suited for exemplarily optimising pre- and post-processing of a sim-
ulation.
In this paper we introduce a first prototype interface for pre-processing steering
named PPStee and point out its integration within HemeLB and HemeLB’s re-
cent visualisation methods. After some remarks on previous work in section 2,
we name vital points exascale computing imposes on simulations and their pre-
processing and post-processing (see section 3).
In section 4, we present PPStee. This software integrates in the simulation cycle
and is fed with graph or mesh data and various communication costs and work
load parameters from all simulation loop components. It uses state-of-the-art
partitioning libraries to provide an overall simulation load-balance and can be
extended with further functionality like mesh manipulation methods or connec-
tion to a fault tolerance framework.
We sketch features and properties of PPStee and show advantages and disadvan-
tages of its architecture. We illustrate the integration into a generic simulation
work flow in terms of both data flow in combination with PPStee and actual
implementation using a basic usage example.
Section 5 points out advantages and disadvantages of PPStee. The specific in-
tegration of PPStee into HemeLB and its latest in-situ visualisation methods is
covered in section 6. We end with concluding words on the prototype software
PPStee, its usage in HemeLB and some prospects.

2. Related work

2.1. Partitioners and pre-processing
ParMETIS [1] is an MPI-parallel and highly scalable extension of METIS [2].

It provides algorithms for partitioning unstructured graphs and meshes as well

4

as for computing fill-reducing orderings of sparse matrices. ParMETIS imple-
ments a parallel multilevel k-way method for graph-partitioning and adaptive
repartitioning. It is particularly suited for dynamic multi-phase simulations be-
cause of its multi-constraint graph-partitioning algorithm. [3]
Scotch’s [4] purpose is to apply graph theory to scientific computing problems.
It pursues a divide and conquer approach to achieve graph and mesh partition-
ing, static mapping and sparse matrix ordering. It implements programs and
libraries performing these tasks. Scotch claims a running time linear in the
number of edges of the source graph and logarithmic in the number of vertices
of the target graph for mapping computations. PTScotch [5] uses the MPI in-
terface to provide a parallel optimised version of Scotch.
The Zoltan [6] library focuses on load-balancing, data movement, unstructured
communication, and memory usage difficulties in parallel dynamic applications.
It provides an object-based interface to simplify its usage and imposes no re-
strictions on application data structures thus improving its flexibility. Zoltan
implements various tools for parallel applications: a suite of parallel partition-
ing algorithms and data migration tools, distributed data directories and un-
structured communication services, dynamic memory management tools. Two
classes of parallel partitioning algorithms are implemented. Geometric methods
cover recursive coordinate or inertial bisection, Hilbert space-filling curves and
refinement tree partitioning. Topology-based methods are applied in the graph
and hypergraph partitioning.

2.2. Visualisation and post-processing
A few leading research groups are dealing with data post-processing for

petascale and exascale simulations. A system study is presented by Childs [7]
which discussed possible challenges and solutions for petascale post-processing.
Ultra-scale visualisation has been the main research focus of the SciDAC insti-
tute [8], which aims at advancing visualisation techniques to enable knowledge
discovery at extreme-scale. Among visualisation and simulation community, in-
situ processing have raised great attention in the recent years. A new library
has been introduced to VisIt by Whitlock et. al [9], which allows full featured
in-situ visualisation.

2.3. Lattice-Boltzmann and HemeLB
The Centre for Computational Science at University College London devel-

ops, amongst other projects, scientific applications of HemeLB in the field of
blood simulation. The core of HemeLB provides a lattice-Boltzmann solver
for flood simulation with sparse geometries [10]. A prepartitioning library
ParMETIS is employed to decompose computational domains in order to al-
low parallelisation. Recent investigation of HemeLB performance has shown
that it can scale well to at least 32 thousand cores with more than 81 million
lattice sites. (cf. [10])

5

3. Major challenges of pre- and post-processing at exascale

3.1. Pre-processing
The main target of pre-processing certainly is an overall simulation load-

balance. All simulation costs must be included in the calculation of a load-
balanced partition to guarantee best-possible system performance. Computa-
tional work load and communication costs do not only arise in the simulation
core, i.e. the solver and its associated tasks, but also in other parts surrounding
a simulation. Input data preparation, post-processing and (remote) rendering
move closer to the simulation core and may be performed on the same computer
system as the simulation core, especially in the exascale regime.
This has to be addressed properly by a tighter coupling of pre-processing within
the simulation cycle. Pre-processing cannot be seen as an external pre-simulation
component any more. Simulation-intermediate interaction is necessary.
To facilitate this new role of pre-processing on a contemporary exascale system,
an exchange of information with the simulation core, post-processing and other
simulation parts is needed. For this, suitable interfaces must be designed and
installed. They take care of passing useful data between these components and
introduce options of steering. This enables direct performance gains of each
part because of better adaption to the input data.
As the simulation parts merge, new capabilities emerge. For example, the tran-
sition from a run-and-stop fashion to a repeating simulation loop provides im-
mediately the possibility of an optimised repartitioning. Timing measurements
of the old cycle can be used directly to improve the partition quality of the fol-
lowing cycle and additionally determine whether it is reasonable to redistribute
the data in this cycle in the first place. In contrast to a non-interactive simula-
tion, calculation costs may vary in between cycles and so has the partitioning.
For the pre-processing interface, a suitable data format has to be specified. Main
constraint is a minimal amount of data yet sufficiently large to retain all details
of the input data. This ensures both low communication times, when data is
transferred, as well as a minimal memory footprint.
Based on this simulation input data and its layout, pre-processing should pro-
vide an algorithm properly adjustable to the unique simulation data structure
and its needs. It may be necessary to compare different load-balancing methods
in terms of scalability and performance of the resulting partitioning.

3.2. Post-processing
A few issues pose challenges to post-processing at exascale:

• Data can not be stored on disk. post-processing will have to access the
data directly from the simulation nodes and assign memory for it. What
data to process and how to fit them into memory will be an issue at
exascale.

• What kind of data structure will be the most efficient? Shall we follow the
same data structure as used in simulation? On the one hand, using the

6

same data structure avoids copying or moving data around. On the other
hand, this data structure can be inefficient for visualisation computations.

• Parallelism in post-processing will be a major challenge in providing in-situ
post-processing. Whether we should use a load-on-demand approach or a
static one heavily depends on the choice of the visualisation algorithms.
How to optimise parallelisation and minimise communication latency will
be another major issue.

3.3. HemeLB
There is increasing evidence that the development of cardiovascular diseases,

such as aneurysms, is caused by certain blood flow patterns. As intracranial
aneurysms are quite common (1 - 5% of the entire population are affected), it
is desirable to understand their formation and which particular aneurysms are
at enhanced risk of rupture. HemeLB is an application for simulation of blood
flow in the larger arteries. Its ultimate goal is to contribute to patient-specific
treatment, e.g., real-time risk assessment of cerebral aneurysm rupture. To this
end, HemeLB has to produce reliable predictions on the time scale of one hour.
Additionally, due to the high resolution required in time and space, HemeLB
has been designed as a highly parallelised algorithm.

4. PPStee: introduction

PPStee is an interface for pre-processing steering. It ships as a library and is
implemented in the pre-processing phase of a simulation. Supplied with infor-
mation on simulation data, its main purpose is to optimise the overall simulation
load-balance starting with initial data distribution and not necessarily ending
after visualisation of the simulation results.

4.1. Properties
PPStee is built around various partitioning tools, namely ParMETIS [1],

PTScotch [5] and Zoltan [6]. These are established and widely used libraries.
They provide partitioning capabilities which are mostly congruent among each
other. Each of them can be used to retrieve a decent load-balance for a simula-
tion. Yet, they have been developed independently and use different approaches
to compute the partitioning. This leads to a partitioning of different quality de-
pending on the input data and therefore on the simulation. Now, PPStee offers
an easy-to-implement possibility to swap the used partitioning tool by only slight
changes in the code. Doing so, the obtained timings can lead to a better choice
of partitioner for the simulation at hand and therefore directly to an improved
load-balance.
The data format of PPStee orientates towards compatibility and a minimal foot-
print. The possibility of direct data access without additional copy operations
and a minor overhead for internally used data improves memory consumption.

7

The overhead is not entirely needed but can save cost-intensive collective com-
munications. These can occur if a conversion from one to another of the native
partitioner data format is calculated. Nevertheless, the PPStee data format is
designed to be capable of this conversion and to do it fast and cheap.
PPStee’s main task is to balance the simulation load. This is not a new ap-
proach; as a matter of fact all mentioned partitioners do so. Yet, PPStee pro-
vides a disruptive feature: it incorporates different simulation stages by default.
In this way, not only the computation costs of the simulation core are balanced.
Other parts, like visualisation, can provide their calculation and communica-
tion cost parameters for load balancing in addition. These parts are naturally
present in exascale simulations due to the unfeasibility of ex-situ processing of
the huge data amounts. A true simulation-covering load-balance is gained.
The modular architecture and the flexible data format make PPStee easily ad-
justable. New partitioning tools, whether they are developed directly in PPStee
or stand-alone, can be integrated with minor effort. Further kinds of stages can
be added if the need arises. PPStee offers several places to introduce fault tol-
erance techniques. E.g., an extension to PPStee could take care of a redundant
backup of the graph data which in turn is used to recover lost data if one pro-
cessor dies. In addition, PPStee could prevent the usage of this processor and
simulation can continue almost without delay. Furthermore, mesh refinement
routines are conceivable which can alter the submitted graph data automatically
or adjust it to the system’s structure.

4.2. Integration into simulation work flow
In general, PPStee does not allocate any memory (beside, of course, a tiny

amount of private data) and is not responsible for any data movement.1 The
simulation keeps track of the graph or mesh data and the accessibility of this
data throughout simulation lifetime. This way the integration of PPStee into
an existing code is kept simple and least disturbing for the simulation’s data
flow. The responsibility for the data belongs completely to the simulation.
The work and data flow is illustrated in 1. The simulation core reads the initial

data, i.e., usually some kind of geometry, from the file system and submits this
data in form of a graph to PPStee. Additionally, it provides computational
work load and communication costs it will use as (graph) weights where work
load matches weights for the vertices and communication is mapped onto the
edges. These weights can be estimated based on former simulation runs or pre-
cise prediction based on a proper investigation of the code. Also, a posteriori
measurements should be used to improve the reliability of these figures.
Furthermore, all other simulation components should submit their weights, too,
whenever possible. For example, this includes work load of any result data

1Obviously, more advanced features like mesh manipulation techniques break this general
rule.

8

Figure 1: PPStee flow chart

analysis done in the post-processing phase and especially cost-intensive calcula-
tion and communication of in-situ visualisation. So, basically, every task done
within the simulation code and executed on the cluster should provide its cost
to guarantee all-over load-balance throughout the full simulation loop.
Finally, the simulation core retrieves a partitioning either directly after the
initial submission of the graph and all corresponding weight estimates or, in
subsequent cycles, triggers a calculation of an updated partitioning. This repar-
titioning should be based on timing and costs measurements of previous cycles
and thus is better balanced than the initial partitioning. Due to the data respon-
sibility, the simulation core compares the re-partition to the current partition
and decides whether it is worth the effort to move the corresponding data.
In total, the result is a load-balance covering the complete simulation loop. For
a single-loop simulation, this result requires estimates from former runs; for
a simulation traversing multiple cycles, the result becomes even better using
adaption and repartitioning.
Apart from this main data flow, some insertions are possible in the future. Mesh
manipulation techniques could be applied after initial graph submission or be-
tween cycles. After initial graph submission, the mesh could be smoothed or
used to generate a finer mesh. Between the cycles, the result of a previous data
analysis in the post-processing component could trigger a refinement of spots
in the mesh where this modification leads to a more accurate or faster solution.

9

Additionally, a fault tolerance framework could interact with PPStee and steer
the distribution of data. If, for example, some nodes drop out graph and load
data could be adjusted to the new cluster status. Obviously, a decent data
backup and recovery mechanism would be required.

4.3. Basic usage example
In this section we describe how to use PPStee based on an example imple-

mentation. We assume an existing code that initialises its data and then does
a standard ParMETIS call,

1 // a ParMETIS call

ParMETIS_V3_PartKway(

vtxdist , xadj , adjncy ,

4 vwgt , adjwgt ,

wgtflag , numflag , ncon , nparts ,

tpwgts , ubvec , options , edgecut ,

7 part ,

comm);

to retrieve a partitioning named part. Other partitioners can be used analo-
gously.
We start by initialising a PPSteeGraph object with the graph data we have, i.e.
vtxdist for the global vertex distribution and xadj and adjncy for the thread-local
adjacency structure:
// get graph (as ParMETIS type)

PPSteeGraph pgraph = PPSteeGraphParmetis(MPI_COMM_WORLD , vtxdist ,

xadj , adjncy);

Next, we construct weights objects derived from the graph as these have to
be compatible. We fill in weights for the computation and visualisation part.
These weights denote the work load (vertex weights, vwgt) and communication
time (edge weights, adjwgt) each simulation part needs.
// construct and set weights for computation

PPSteeWeights wgtCmp (& pgraph);

3 wgtCmp.setWeightsData(vwgt_c , adjwgt_c);

// construct and set weights for visualisation

PPSteeWeights wgtVis (& pgraph);

6 wgtVis.setWeightsData(vwgt_v , adjwgt_v);

Now, we establish an instance of the interface’s main object and submit our
graph and weights data.
// get interface

PPStee ppstee;

3 // submit graph

ppstee.submitGraph(pgraph);

// submit weights

6 ppstee.submitNewStage(wgtCmp , PPSTEE_STAGE_COMPUTATION);

ppstee.submitNewStage(wgtVis , PPSTEE_STAGE_VISUALISATION);

Finally, we trigger the calculation of the partitioning and get the desired parti-
tioning.

10

// calculate partitioning

2 PPSteePart* ppart;

ppstee.getPartitioning (& ppart);

5. PPStee: analysis

5.1. Advantages
PPStee’s main advantage is the standardised partitioner access. Once PP-

Stee’s data structures are created and filled with the according graph data the
partitioner is chosen arbitrarily. This introduces the option to independently
change the partitioner used. Then, timing measurements and other tests can
be used to reveal the best-suited partitioner for the simulation.
PPStee relies mainly on established external partitioning tools. Their mature
and methodologically sound algorithms are used and provide partitioning at a
state-of-the-art level. Additionally, PPStee’s basic data containers can be used
to manufacture a partitioning routine particularly tailored for the user’s needs.
Later, a direct integration in PPStee is possible.
PPStee comes with little programming overhead. If a partitioner is already im-
plemented in a simulation the change to make use of PPStee is minimal. PPStee
provides function signatures very similar to those native to the partitioners. All
data structures can be kept and used as they are making data handover and
reception of the resulting partition quite easy.
PPStee requires only a small amount of additional memory. PPStee uses only
little auxiliary data for internal book keeping. The full graph data can be passed
by reference thus keeping memory obligations at the simulation side. Data ac-
cess is read-only; whether it can be freed afterwards depends on its usage: stage
weights, e.g., should be kept alive if the simulation will do more than one cycle
and thus needs a later repartitioning.

5.2. Disadvantages
PPStee accesses only basic routines of the partitioning libraries although

most of them provide more extended features which may improve the partition-
ing quality. This certainly is a side effect of the standardised access. On the
other hand, this very access helps to indicate whether a further investigation of
these extended features is reasonable and for which of the partitioners it should
be done. Also, if a specific extended routine becomes crucial in the future it can
be integrated in PPStee belatedly.
Another point to mention is the insertion of another software layer by PPStee.
Although this should not negatively affect the simulation, it does increase the
complexity and may lead to undesired or faulty behaviour which may get harder
to track.

11

0

20

40

60

80

100

120

140

160

4 6 8 12 16

runtime [s]

cores

R15-L45

ParMETIS

plain HemeLB

PTScotch

Figure 2: HemeLB runtimes for data set R15-L45 with plain HemeLB, HemeLB with PPStee
using ParMETIS and HemeLB with PPStee using PTScotch

6. HemeLB and PPStee

The specific integration of the pre-processing steering interface PPStee into a
mature code such as HemeLB is straight forward (cf. section 4). The integration
is devided into two steps, bare code changes and some additional changes in the
build system. In the first step, PPStee substitutes the partitioner call. HemeLB
already uses the library ParMETIS to evenly distribute computational domains
among all processes. Thus, we have all mesh data set up correctly and we save
the trouble to assemble the arrays needed. We simply replace the ParMETIS
call as shown in section 4.3 and make sure to include PPStee’s header file in-
stead of ParMETIS’ header.
Additionally, we adjust HemeLB’s build system according to the needs of PP-
Stee. Since ParMETIS is already included, we add PPStee and all other parti-
tioners we want to use to the dependencies of the build target HemeLB. For an
update of include and library directory settings, the very entries for ParMETIS
are well-used as guides. Put altogether, the code changes are small and it is
easy to find the right places, in spite of the size of a project like HemeLB.
For a proof of concept, we have integrated and built HemeLB with PPStee and
two partitioners, ParMETIS and PTScotch. Our first test system is a small one
and provides an Intel Xeon E5520 with 8 real and 16 virtual cores. We used
five different process counts between 4 and 16 and the minimal time of three
runs for each data set. Figures 2, 3 and 4 depict the runtime results of the three
different HemeLB data sets R15-L45, R15-450 and R30-L900, respectively.

In all three charts we find a close match of runtimes for all three methods, i.e.
plain HemeLB (using ParMETIS), HemeLB with PPStee using ParMETIS and
HemeLB with PPStee using PTScotch. There are slight performance gains and
losses here and there; however, a general tendency with respect to a method or

12

0

200

400

600

800

1000

1200

1400

1600

1800

4 6 8 12 16

runtime [s]

cores

R15-L450

ParMETIS

plain HemeLB

PTScotch

Figure 3: HemeLB runtimes for data set R15-L450 with plain HemeLB, HemeLB with PPStee
using ParMETIS and HemeLB with PPStee using PTScotch

0

10000

20000

30000

40000

50000

60000

4 6 8 12 16

runtime [s]

cores

R30-L900

ParMETIS

plain HemeLB

PTScotch

Figure 4: HemeLB runtimes for data set R30-L900 with plain HemeLB, HemeLB with PPStee
using ParMETIS and HemeLB with PPStee using PTScotch

13

process count cannot be identified.
Concluding for low process counts, we see no penalty in runtime when using
PPStee. On the one hand, this proofs that PPStee does not introduce any sig-
nificant overhead in computation time. On the other hand, PPSTee offers the
possibility for an improvement in runtime when using another partitioner or
other data sets, in particular in case of very large data sets and extremely high
process counts.

Post-processing in HemeLB aims at providing interactive flow visualisation
techniques which demonstrate flow properties resulting from blood simulations.
Common visual representations of fluids include: volume representation, where
flow density or other scalar fields are mapped to volumes, line representations
such as pathlines and streamlines which illustrate how flow is moving, and topol-
ogy representations which extracts the hidden information in the flow fields.
Depending on what the simulation experts want to see from their simulation
output, special visual representations of the data can be implemented.
The challenge with implementing these methods into HemeLB lies in the par-
allelisation. There are two reasons why parallelisation in visualisation compu-
tations is tricky. First, geometry data is already decomposed in HemeLB at
the pre-processing stage. Changing data structures or layout creates additional
effort in moving data around. Second, simulation results are not stored on disk.
When the simulation moves to the next time step, previous results are discarded
and therefore no longer available. This poses a challenge in time dependent vi-
sualisation computation where information from multiple time steps is needed.
Current HemeLB post-processing allows the user to inspect the flow field at
simulation run time. A steering client is implemented which assesses the sim-
ulation at the current time step, extracts the simulation output, and performs
visualisation computations with the data. Simple examples such as volume ren-
dering of the stress field and the cutting plane which demonstrate the flow field
in a cross section are provided. With the current steering client, the user is able
to interactively inspect the simulation at run time without writing out data or
waiting until the simulation is terminated.
Based on the visualisation output, simulation experts can determine whether
and how to modify their simulation process. However, how to steer and what
to steer are questions that domain experts in simulation have to answer.

7. Conclusion

We introduced the new pre-processing interface PPStee that offers the pos-
sibility of balancing the load of all parts of a simulation. PPStee implements
access to multiple partitioners and provides an easy way to switch the parti-
tioner used. It supports costs of various simulation parts through weights per
separate computation stage and still remains adaptable for future developments
in partitioning algorithms.
PPStee is easy to integrate even in large-sized codes like HemeLB. With HemeLB
data sets and test runs, we demonstrated that PPSTee introduces almost no

14

overhead in terms of simulation runtime.
Furthermore, we integrated an additional steering client into HemeLB for in-situ
post-processing that extracts the simulation output and performs visualisation
computations. It is compatible with PPStee and enables the user to interactively
inspect the simulation at run time.

8. Future work

We are currently working at HemeLB experiments with large data sets on
supercomputers in order to obtain runtime measurements of PPStee with thou-
sands of cores. This will help to emphasise the negligible overhead of PPStee
and the scalability of the data format used.
Meanwhile, the partitioning library Zoltan is being integrated into PPStee and
the next version of PPStee will support Zoltan in addition to ParMETIS and
PTScotch. This extension enables a comparison of three distinct partitioning
algorithms so that simulation developers can identify the best partitioner for
their specific data set.
Concerning post-processing, two important things are left on the agenda. First,
the proposed visualisation techniques must be tested at a larger scale with big
datasets, in order to answer the question if they are scalable or not. Second,
based on the visualisation output, parameters of the simulation which require
steering have to be identified and further steering functionality has to be imple-
mented.
Finally, we intend to apply the pre-processing interface as well as the steering
client to other simulation applications that make extensive use of pre-processing
large input data sets as well as analyse and visualise huge result data sets.

9. Acknowledgement

The authors would like to thank all our colleagues from the CRESTA project
for their support and for many lengthy and fruitful discussions without which
this work would not have been possible. The support of the European Commiss-
sion through the Seventh Framework Programme (ICT-2011.9.13) under Grant
Agreement no. 287703 is gratefully acknowledged.

References

[1] ParMETIS, parallel graph partitioning and fill-reducing matrix ordering.
URL http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

[2] G. Karypis, V. Kumar, A fast and highly quality multilevel scheme for
partitioning irregular graphs, SIAM Journal on Scientific Computing 20 (1)
(1999) 359–392.

[3] K. Schloegel, G. Karypis, V. Kumar, Parallel static and dynamic multi-
constraint graph partitioning, Concurrency and Computation: Practice
and Experience 14 (3) (2002) 219–240.

15

[4] F. Pellegrini, J. Roman, Scotch: A software package for static mapping by
dual recursive bipartitioning of process and architecture graphs, in: Pro-
ceedings of HPCN’96, Brussels, Belgium, LNCS 1067, Springer, 1996, pp.
493–498.

[5] C. Chevalier, F. Pellegrini, PTScotch: a tool for efficient parallel graph
ordering, Parallel Computing 34 (6–8) (2008) 318–331.
URL http://www.labri.fr/perso/pelegrin/scotch/

[6] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, C. Vaughan, Zoltan
data management services for parallel dynamic applications, Computing in
Science and Engineering 4 (2) (2002) 90–97.
URL http://www.cs.sandia.gov/Zoltan/Zoltan_phil.html

[7] H. Childs, Architectural challenges and solutions for petascale postprocess-
ing, Journal of Physics: Conference Series 78 (1) (2007) 012012.

[8] K.-L. Ma, In Situ Visualization at Extreme Scale: Challenges and Oppor-
tunities, Computer Graphics and Applications, IEEE 29 (6) (2009) 14 –19.
doi:10.1109/MCG.2009.120.

[9] B. Whitlock, J. M. Favre, J. S. Meredith, Parallel in situ coupling of sim-
ulation with a fully featured visualization system, in: Proceedings of the
11th Eurographics conference on Parallel Graphics and Visualization, EG
PGV’11, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland,
2011, pp. 101–109.

[10] D. Groen, J. Hetherington, H. B. Carver, R. W. Nash, M. O. Bernabeu,
P. V. Coveney, Analyzing and Modeling the Performance of the HemeLB
Lattice-Boltzmann Simulation Environment, CoRR arXiv:1209.3972.

16

