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Abstract

At the German Aerospace Center, the parallel simulation system TRACE
(Turbo-machinery Research Aerodynamic Computational Environment) has
been developed for the calculation of internal turbo-machinery flows. The
finite volume approach with block-structured grids for solving the Navier-
Stokes equations results in large, sparse real or complex systems of linear
equations. For the parallel iterative solution of these equation systems, FGM-
Res with Distributed Schur Complement (DSC) preconditioning for real or
complex matrix problems has been integrated into TRACE. The DSC pre-
conditioner replaces the original block-local preconditioning methods in the
simulation system. Numerical and performance results of DSC methods are
presented for typical TRACE problems on many-core architectures together
with an analysis of the pros and cons of the complex problem formulation.
The DSC preconditioned iterative solvers for the complex problem formu-
lation distinctly outperform the solvers for the real formulation. Reasons
are that the complex formulation results in lower problem order, more ad-
vantageous matrix structure, has higher data locality and a better ratio of
computation to memory access.
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1. Introduction

At the Institute for Propulsion Technology of the German Aerospace
Center (DLR), the parallel simulation system TRACE (Turbo-machinery
Research Aerodynamic Computational Environment) has been developed
specifically for the calculation of internal turbo-machinery flows. The finite
volume approach with block-structured grids for solving the Navier-Stokes
equations results in large, sparse real or complex systems of linear equations.
For the parallel iterative solution of these equation systems, FGMRes [6]
with Distributed Schur Complement (DSC) preconditioning [8] for real or
complex matrix problems has been investigated. Fig. 1 shows simulation re-
sults generated with TRACE. Turbulent loss areas of a low pressure turbine
within a real aeroengine are illustrated.

Figure 1: Turbulent loss areas of a low pressure turbine within a real aeroengine computed
with TRACE.

The DSC method requires adaquate partitioning of the matrix problem
since the order of the approximate Schur complement system to be solved
depends on the number of couplings between the sub-domains. Graph parti-
tioning with ParMETIS [5] from the University of Minnesota is suitable since



a minimization of the number of edges cut in the adjacency graph of the ma-
trix corresponds to a minimization of the number of the coupling variables
between the subdomains. The latter determine the order of the approximate
Schur complement system used for preconditioning. Since even the matrix
pattern is non-symmetric for block-structured TRACE problems it has to
be symmetrized so that the corresponding matrix adjacency graph becomes
undirected und ParMETIS can be applied.

Matrix permutations like Reverse Cuthill-McKee (RCM), Minimum De-
gree (MD) or Nested Dissection are employed per sub-domain in order to
reduce fill-in in incomplete factorizations which are part of the DSC precon-
ditioner. These reordering methods together with a threshold strategy for
incomplete factorizations decrease the costs of local approximate LU decom-
positions within the DSC method.

We present a parallel iterative FGMRes algorithm with DSC precondi-
tioning [8] which achieves an accuracy of the solution similar to a direct
solver but usually is distinctly faster for large problems. In [1], Basermann
et al. demonstrated the superiority of the DSC preconditionier over (approx-
imate) block-Jacobi preconditioning. Block-local preconditioning methods
like block-Jacobi are the standard preconditioners in TRACE. In [2], Baser-
mann et al. described and demonstrated the effect of matrix (re-)partitioning
and reordering on the DSC algorithm in detail. Wubs and Thies investigated
a hybrid direct/iterative solver approach involving Schur Complement meth-
ods for real fluid flow problems [12]. Compared with this algorithm, our
method is fully iterative, and the software package is suitable for real and
complex CFD problems. Hybrid direct /iterative solver approaches were also
developed by Giraud and Haidar for real 3D convection-diffusion problems
3].

In this paper, we particularly discuss numerical and performance results
of DSC methods for typical complex TRACE CFD problems on many-core
architectures together with an analysis of the pros and cons of the complex
problem formulation, e.g. regarding the ratio of calculation operations to
memory accesses. In section 2, we describe the algorithmic background of the
DSC method. In section 3, we present MATLAB results regarding the effect
of reordering methods on preconditioner construction and iterative solution
in real and complex arithmetics as well as performance measurements on
a many-core cluster with the real and complex DSC software developed,
including scalability studies.



2. The Distributed Schur Complement Method

In the following, techniques for the iterative solution with DSC precondi-
tioning for CFD equation systems are sketched. More details, in particular
on the theory, can be found in [8].

2.1. Definitions

Fig. 2 schematically displays the row-wise distribution of a matrix A
to two processors. Each processor owns its local row block. The square
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Figure 2: DSC definitions: Matrix distributed to two processors.

matrices A; are the local diagonal blocks of A. We assume that the local
rows are arranged in such a way that the rows without couplings to the
other processor(s) come first and then the rows with couplings. The former
are called internal rows, have only entries in the A; part of the local rows
and are not coupled with rows of other processors. The latter additionally
have entries outside the A; part or are coupled with rows of other processors.
These local rows are named local interface rows. The part outside A; which
represents couplings between the processors is called local interface matrixz X;.
From the view of processor 2 in Fig. 2, the local interface rows of processor 1
with entries at column positions in the area of X5 are external interface rows.
Since the sparsity pattern of TRACE CFD matrices usually is non-symmetric
(due to special edge treatments in the block-structured grids) local interface
rows of processor i may have entries in A; only but are uni-directionally
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coupled with rows of other processors. These rows are external interface rows
from the view of the other processors. This can not be determined locally
on processor ¢, communication is necessary. Since each row of the matrix
corresponds to a specific unknown of the equation system (row 1 to solution
vector component 1 and to right hand side component 1, e.g.) internal
unknowns, local interface unknowns, and external interface unknowns can be
defined correspondingly.

2.2. Algorithm
Fig. 3 gives a schematic survey of the DSC algorithm per processor. On

BiCGstab or FGMRes iteration
for all local rows (unknowns)

BiCGstab iteration for the local
interface rows (unknowns)

Matrix-vector multiplication:
communication of external
interface unknowns

Matrix-vector multiplication:
communication of external
interface unknowns

Figure 3: Schematic view of the DSC algorithm on each processor.

each processor an outer BiCGstab [11] or FGMRes [6, 7, 8] iteration is per-
formed for all local rows (unknowns). The outer iteration contains a partial
matrix-vector multiplication which requires communication since each pro-
cessor only owns its local segment of the vector. It is necessary to exchange
components of non-local vector segments which correspond to external inter-
face unknowns (rows).



Within the outer BiCGstab of FGMRes iteration, an inner BiCGstab iter-
ation for the local interface rows (unknowns) only is performed. This includes
a partial matrix-vector multiplication of the interface system but the com-
munication scheme is the same as for the outer matrix-vector multiplication
and thus has to be implemented only once.

As basic outer iterative method, FGMRes [6, 7, 8], a flexible variant
of GMRES [7], is in principle better suited for the DSC algorithm than
BiCGstab since the preconditioner (the inner BiCGstab iteration) may change
in each iteration of flexible methods. The disadvantage of FGMRes is that
it has higher storage requirements since a subspace has to be stored while
BiCGstab applies recursions. On the other hand, the outer BiCGstab method
theoretically requires a very precise solution of the interface system to make
sure good convergence of the DSC algorithm. In case of outer FGMRes, only
a few iterations for the interface system are very often sufficient to achieve
good convergence of the DSC algorithm [8]. With new non-symmetric flexible
iterative methods [10], the disadvantage of FGMRes regarding the subspace
storage may be overcome while the advantages regarding flexible precondi-
tioner application are preserved.

From the mathematical point of view, each processer i solves the following

equation:
7 A 1 Ji,ext 19 7 Vi ) ) i .

x; are the local vector components, y; oxt the external interface vector compo-
nents, and b; is the local segment of the right hand side vector. x; is split into
the internal vector components u; and the local interface vector components
Yi, b; accordingly.

A; is then split (see [8] for details), and (1) is reformulated:

B; F;

( Ei Cz ) ( Yi ) + < ZNeighboursj Eij yj ) B < 9i ) ‘ (2)

The result of the sum over all neighbouring processors j with couplings to
processor ¢ in (2) is the same as that of X y;eq in (1). Ejjy; is the part
of X;yiext which reflects the contribution to the local equation from the
neighbouring processor j.



The matrix equation (2) represents two equations. From the first, we
derive an expression for u;, substitute u; in the second equation and get

u =B (fi— Fyi) — Siyi+ Z Ejyi=9—EB'fi. (3)

Ncighboursj

S; = C; — E; B'F; is the local Schur complement. Note that (3) is an
equation for the interface vector components only.

(3) can be rewritten as a block-Jacobi preconditioned Schur complement
system [8]:

yi+ S Z Eyy; =S (9 — Ei B ' fi) . (4)

Neighbours j

2.3. Preconditioning

Fig. 4 illustrates the principle of preconditioning within the DSC algo-
rithm per processor. The outer iteration from Fig. 3 is preconditioned per
processor by a block incomplete LU decomposition with threshold (ILUT)
[7] of the local diagonal block (L; U; in Fig. 4). For preconditioning the inner
iteration, a block ILUT for the local interface rows only is exploited. This
factorization need not be computed but can be used from the lower right
part of the decomposition for the outer iteration (L; s U; s in Fig. 4).

In case of an outer BiCGstab iteration, the solution for the interface un-
knowns has to be very precise. A possibility is to use a significantly smaller
limit in the stopping criterion of the inner iteration than in that of the outer
iteration. This solution works well in all our test cases. Alternatively for
FGMRes, a fixed small number of interface iterations is tested. In the FGM-
Res case, a flexible control of the interface iteration via the residual norm of
the interface system is also possible but is not performed here.

Mathematically speaking, we perform a block factorization of A; on pro-
cessor i using the splitting from (2):

B F,\ _( B 0 I B 'F
Ai_(Ei C’i)_<EZ- SZ-)<O I ) 5)
We then assume that we have the LU decomposition S; = L; s U; s of the
local Schur complement. With this, we formulate the LU factorization

- L; g 0 Ui s L;,%;Fi
L= ( BUZ Lus )( 0 Uis )
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Figure 4: Principle of preconditioning within the DSC algorithm.

with B; = L; g U; g the LU decomposition of B;. By transforming the right
hand side of (6) into

LU — Lig 0 Uwgr O I U jL;F;
T\ EUS Lis 0 Us 0 I

(B 0 I B;'F,

we find after comparison with (5) that L; U; is an LU factorization of A;.
The other way round, we also see the practical advantage from (6) that the
LU factorization S; = L; s U; s of the local Schur complement has not to
be computed explicitly if we already have an LU factorization of the local
diagonal block A;.

If we perform incomplete decompositions we get an approximate, precon-
ditioned Schur complement system with the approximation S; of the local
Schur complement S; (compare with (4) ):

yi + S;7! Z Ei;y;=S7"(g:i— E: B fi) . (7)

Neighbours j



2.4. Repartitioning and Reordering

The distributed sparsity pattern of the matrix can be represented as a
distributed graph with nodes and edges. Graph repartitioning can then be
used to reduce the number of couplings between the distributed matrix row
blocks. In graph theory formulation, the reduction is done by a minimization
of the number of edges cut in the graph. This goal of graph partitioning cor-
responds to a minimization of the number of interface unknowns in the DSC
algorithm, and thus problem (7) is made very small. For graph partitioning,
we use the ParMETIS software from the University of Minnesota [5]. Due
to special treatments of certain edges in the block-strutured grids within the
TRACE code, the sparsity pattern of the coefficient matrix of the emerging
sparse systems of linear equations is non-symmetric. Since ParMETIS re-
quires an undirected graph as input the non-symmetric pattern of the matrix
has to be symmetrized for the matrix graph construction. Fig. 5 illustrates

Figure 5: Sample graph partitioning (blue line) into two subdomains.

an advantageous partitioning (blue line) into two subdomains of a sample
graph. Only two local interface rows have to be considered within the DSC
algorithm per subdomain.

For local, incomplete decompositions, we tested Column Minimum Degree
(MD) and Reverse Cuthill-McKee (RCM) reordering for fill-in reduction with
MATLAB. Column MD had to be used because of the non-symmetric matrix
pattern. In the parallel DSC software developed, we use METIS nested
dissection reordering to reduce fill-in in the factors [5]. Nested dissection
reordering usually generates a similar sparsity pattern for the local diagonal
blocks A; on each processor ¢. This results in similar fill-in for each ILUT
and thus supports load balancing. Detailed experiments on load balance
improvements by nested dissection reordering are described in [1, 2.
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Tests with other reordering strategies like the matrix permutation meth-
ods from [9, 4] are devoted to future investigations.

2.5. Complex and Real Problem Formulation

In the parallel simulation system TRACE, many linear problems are
formulated in complex arithmetics. A complex system of linear equations
Ax = b can be easily split into its real and complex part:

Az =b < (CH+iD)(y+iz) =c+id . (8)

The corresponding real system Gw = e to solve is then

(5 @) (1)) = om0

Since most available software packages for solving sparse linear systems are
made for real arithmetics it may be useful to transform the complex TRACE
problems into real ones. The performance implications of the complex and
real problem formulation on many-core systems are examined in the following
section.

3. Results

The real and complex versions of the DSC solver were implemented in
Fortran and C. MPI (Message Passing Interface) was used for inter-process
communication. Beside performance examinations on many-core clusters
with this software, tests with MATLAB were performed in order to inves-
tigate the implications of different matrix permutations for fill-in reduction
for TRACE matrix problems as well as the effect of the real and complex
problem formulation on the execution times of the MATLARB solver routines.

3.1. Experiments with MATLAB

MATLAB experiments were performed with a small complex TRACE
matrix of order 28,120 with 1,246,200 non-zeros and estimated condition
number 6.7 - 10. MATLAB was executed on a quad-core Intel Xeon CPU
L5420 workstation.

Fig. 6, left, displays the sparsity pattern of this matrix. The structure of
the matrix is quite regular as it is the case for many block-structured CFD
problems. Fig. 6, right, shows the pattern of the corresponding small real
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Figure 6: Sparsity pattern of a small complex TRACE matrix of order 28,120 (left) and
of the corresponding small real TRACE matrix of order 56,240 (right).

TRACE matrix of order 56,240 generated according to (8) and (9). The
structure is more complicated than that of the complex matrix in Fig. 6, left.
The number of non-zeros is 2,572,040; the condition number estimation gives
8.4-10°. Note that the number of non-zeros is only a little higher than twice
the number of non-zeros of the associated complex matrix. This means that
most imaginary parts of the complex matrix are zero.

Fig. 7 illustrates the sparsity patterns of the complex matrix after Column
MD (left) and RCM (right) reodering for fill-reduction. Fig. 8 illustrates the
sparsity patterns of the associated real matrix after Column MD (left) and
RCM (right) reodering. Note that the small bandwidth for RCM reodering
in Figs. 7 and 8 also increases the locality for memory accesses to the matrix
data.

Fig. 9 illustrates the effect of reordering on the ILUT fill-in with threshold
1073 (left) and on the ILUT construction time (right) for the small complex
TRACE matrix. Both fill-in and ILUT construction time are significantly
reduced by Column MD and RCM reordering. While fill-in is a little higher
for RCM compared with MD reodering the ILUT construction time is slighty
smaller for RCM reodering due to higher locality of memory accesses.

Fig. 10 shows similar results as in Fig. 9. Fill-in and ILUT construction
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Figure 9: Effect of reordering on the ILUT fill-in with threshold 1072 (left) and on the
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Figure 11: MATLAB execution times for ILUT construction (left) and an ILUT precon-
ditioned GMRES iteration (right) for the real and the complex case with MD or RCM
reordering.
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time are distinctly reduced by Column MD and RCM reordering. Compared
with RCM, MD again results in less fill-in but in a little higher ILUT con-
struction time.

Fig. 11 compares the MATLAB execution times for ILUT construction
(left) and an ILUT preconditioned GMRES iteration (right) for the real and
the complex case with MD or RCM reordering. The GMRES iteration was
stopped when the current residual norm divided by the initial residual was
smaller than 107!°. For both ILUT construction and the preconditioned
GMRES iteration, the complex formulation results in distinctly shorter ex-
ecution times, i.e., significantly higher performance on the quad-core Intel
Xeon CPU. Reasons are that the complex formulation leads to lower prob-
lem order, a more advantageous matrix structure, has higher data locality
(storage of real and imaginary part in adjacent memory cells) and a bet-
ter ratio of computation to memory access due to complex arithmetics in
comparison with the real formulation.

3.2. Performance Tests on a Many-Core Cluster

The following experiments were performed on DLR’s AeroGrid many-core
cluster (45 Dual-processor nodes; Quad-Core Intel Harpertown; 2.83 GHz;
16 GB main memory per node; InfiniBand interconnection network between
the nodes).

Fig. 12 displays execution times of the real and complex DSC solver
software developed on 4 to 32 processor cores of the AeroGrid cluster for
the real and the complex small TRACE matrix problem (cf. Figs. 6, left,
or 6, right). METIS Nested Dissection was used for reordering of the local
diagonal blocks (cf. section 2.4). ILUT with threshold 1072 was applied
for factoring the local blocks. The FGMRes iteration was stopped when
the current residual norm divided by the initial residual was smaller than
1075, As for the MATLAB experiments (cf. Fig. 11), the complex DSC
solver version distinctly outperforms the real version both for preconditioner
preparation and for the total DSC solver. This is again caused by the lower
problem order and a more advantageous matrix structure in the complex
case opposite to the real case. In addition, the complex formulation results
in higher data locality (storage of real and imaginary part in adjacent memory
cells) and a better ratio of computation to memory access due to complex
arithmetics in comparison with the real formulation.

Fig. 12 also shows an advantageous strong scaling behavior of the DSC
method on the many-core cluster, even for this small matrix problem.
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Figure 12: Execution times for DSC preconditioner preparation (left) and the total DSC
solver (right) for the real and the complex small TRACE matrix problem on a many-core
cluster.

Fig. 13, left, illustrates the strong scaling behavior of the total complex
DSC method on 4 to 192 processor cores of the AeroGrid cluster for a medium
size complex TRACE matrix problem of order 378,400 and with 45,456,500
non-zeros. The FGMRes iteration was stopped when the current residual
norm divided by the initial residual was smaller than 107°.
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Figure 13: Execution times of the total complex DSC solver for a complex medium size
TRACE matrix problem of order 378,400 (left) and for a complex large TRACE matrix
problem of order 4,497,520 (right) on a many-core cluster.

Fig. 13, right, shows execution times of the total complex DSC method on
32 to 192 processor cores of the AeroGrid cluster for a large complex TRACE
matrix problem of order 4,497,520 and with 552,324,700 non-zeros. In order
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to achieve the required accuracy in each component of the solution vector the
FGMRes iteration was here stopped when the current residual norm divided
by the initial residual was smaller than 10710,

Figs. 12 and 13 demonstrate that the complex DSC algorithm scales very
well on many-core clusters for differnt CFD matrix problems of varying size.

4. Conclusions

We discussed numerical, performance and scalability results of DSC meth-
ods for typical TRACE CFD problems on many-core architectures together
with an analysis of the pros and cons of the complex problem formulation.

Matrix permutations were demonstrated to be crucial for incomplete fac-
torizations within the DSC preconditioner as well as for iterative solver per-
formance. The developed DSC preconditioned iterative solver software for
the complex problem formulation distinctly outperformed the solvers for the
real formulation on many-core clusters. Reasons are that the complex formu-
lation results in lower problem order, more advantageous matrix structure,
has higher data locality and a better ratio of computation to memory access.

Furthermore, the complex DSC algorithm implemented showed an advan-
tageous strong scaling behavior on many-core architectures for large equation
systems from Navier-Stokes CFD problems. This was achieved by communi-
cation-reducing partitioning of the symmetrized matrix graphs and by a load
balance improvement for local incomplete factorizations through reordering
of local matrix blocks.
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