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Abstract—This paper addresses the efficient evaluation of
Fourier-based kernels for synthetic aperture radar (SAR) image
formation. The goal is to evaluate the quality of the focused
impulse response function and the residual phase errors of
the kernel without having to implement the processor itself
nor perform a costly point-target simulation followed by the
processing. The proposed methodology is convenient for situa-
tions where the assumption of a hyperbolic range history does
not hold anymore, and hence a compact analytic expression
of the point target spectrum is not available. Examples where
the hyperbolic range history does not apply include very high-
resolution spaceborne SAR imaging or bistatic SAR imaging. The
approach first computes numerically the two-dimensional (2D)
spectrum of a point target and then uses the transfer function
of the focusing kernel to match it. The spectral support is then
computed to adapt the spectrum to the output imaging geometry,
so that the impulse response function (IRF) is finally obtained.
The proposed approach is valid under the assumption of a large
time-bandwidth product, as is usually the case for current air-
and spaceborne SAR sensors. The methodology is validated by
comparing the matched IRFs with the ones obtained using point-
target simulations.

Index Terms—Synthetic aperture radar (SAR), Spotlight SAR,
SAR processing, SAR spectrum, SAR Simulation.

I. INTRODUCTION

Future spaceborne synthetic aperture radar (SAR) systems
are being developed in order to deliver a better performance,
e.g., in terms of spatial resolution and coverage. The use
of satellite constellations is also an intense research topic,
where bistatic imaging can help to further improve the afore-
mentioned aspects. In terms of the SAR raw data focusing,
high resolution and bistatic imaging are demanding, especially
when the range history can no longer be expressed analytically
in a compact form. In such cases, the evaluation of the focusing
algorithm is usually performed via time-domain simulation
of point targets followed by the processing of the raw data
using the implemented focusing kernel. This is expensive in
computational terms, which also limits the number of scenarios
that can be simulated. However, during the assessment of a
spaceborne SAR mission, it is desirable to efficiently validate
the performance of the focusing kernel for all possible scenar-
ios, e.g., different incidence angles or scene sizes.

This paper presents a methodology to quantify the perfor-
mance of a focusing kernel without having to implement the
processor itself nor perform a costly point-target simulation.
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The methodology is based on the computation of the transfer
function of the focusing kernel, and hence convenient for
Fourier-based processing algorithms. This transfer function
is compared to the frequency responses of the point targets,
which are computed numerically using their range histories.
The difference can be directly evaluated to assess the per-
formance of the focusing kernel. The methodology is valid
as long as a large time-bandwidth product applies, which is
the usual case in current air- and spaceborne SAR systems.
The same rationale was presented in [1] by deriving the
transfer function of several kernels analytically. Such analytic
evaluation assumes a single-platform linear-track geometry,
which is not a valid model for many future SAR missions, e.g.,
bistatic or very high resolution. For this reason the numerical
evaluation of the kernel is introduced in this letter. The
proposed approach evaluates also inherently the capability of
the kernel to accommodate particular aspects of the geometry,
like the azimuth variance or the topography dependence.

For the presented methodology it is not relevant how some
steps within the processing are performed. For example, the
fact that the chirp scaling algorithm equalizes the range
curvatures using the chirp scaling principle [2], or that an
interpolation is implemented via chirp-Z transform [3], will
not affect the transfer function itself, since it is assumed that
these steps are performed with arbitrary accuracy. Similarly,
pre- and post-processing steps in order to handle spectral or
time aliasing, as it happens in the spotlight [3]-[5], ScanSAR
[2] or TOPS [5] modes, are not meant to be evaluated with
the proposed approach, as again there is no reason not to
perform these steps accurately. It is important to remark
that the proposed methodology is not intended to replace
the conventional evaluation of a processor via time-domain
simulation of point targets, but rather to complement it.

Section II expounds the main aspects of the proposed
approach, namely, the computation of the point target’s spec-
trum, the evaluation of the transfer function of the focusing
kernel, and the spectral support. Section III summarizes the
methodology, and Section IV validates it using time-domain
point-target simulations.

II. EVALUATION OF THE FOCUSING KERNEL

A. Computation of the Point Target’s Spectrum

In order to compute analytically the two-dimensional (2D)
spectrum of a range-compressed point target, the first step is
a Fourier transform (FT) in the range dimension. This FT,
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neglecting the amplitude terms, is given by [6]—[8]

H(fot) =exp [~ 0 (fo+ £) -R()|, ()
where f, is the range frequency, ¢, is the azimuth time, c is
the speed of light, fj is the central frequency, and R(¢,) is the
two-way range history. The azimuth FT can then be computed
asymptotically using the principle of stationary phase [9],
which requires the computation of the stationary time, ¢,
being the one satisfying [6]
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where f, is the azimuth frequency. After evaluating (2) for
each point of the 2D spectrum, the phase of the FT of (1) can
be approximated by

rllo f) % =22 (fo+ ) RUD) =20 fotl, ()

where the range history needs to be evaluated at each ¢7.

In some special cases t* can be solved analytically, e.g.,
when the range history is hyperbolic, which results in the well-
known compact expression of the 2D phase spectrum [1], [6],
[10]. However, for the cases under consideration in this letter,
(2) needs to be solved numerically using, e.g., the Newton-
Rapshon method, or series reversion by first expressing R(¢,)
as a power series of ¢, [7]. Indeed, series reversion has been
used in the literature to compute the focusing kernel for bistatic
imaging [7] and high-resolution SAR imaging [8].

Under the assumption that ¢ (f,, f.) is an accurate repre-
sentation of the target’s 2D spectrum phase, any processing
kernel can be evaluated by comparing its transfer function to
that of the point target, as shown in the following section.

2)

ta=t:

B. Computation of the Transfer Function of the Kernel

The transfer function can be obtained either from the
expressions of the processor found in the literature, or by
computing it in case of numerical kernels. Note that Fourier-
based SAR image formation is based on phasor multiplications
and interpolations, so that a generic transfer function of a
Fourier-based focusing kernel can be expressed as follows

He(foof.) = W £)-exp [i-oe(for £)]
- explj-2m-At.(f.) - f.]
cexplj - @ac(fa)l “4)

where W (-) represents the weighting function for sidelobe
suppression, and g ( - ) is the matched filter at the given range
including the range cell migration correction (RCMC) and
higher order terms. The phase ramp of the second exponential
term with At, represents an interpolation in the range-time,
azimuth-frequency domain to correct for any residual term
of the range cell migration (RCM). The last exponential
term with (,. represents a residual azimuth compression. The
last two might be needed depending on the geometry and
the selected processing approach, as for example occurs in
the spaceborne case due to the dependence on the effective
velocixty with range [6], [8], [11]. The complete phase of the

transfer function is defined as px = arg{Hx}. Note that in
(4) the dependence on the target’s position, (g, tp), has been
omitted for simplicity, being r( the closest approach distance
and ¢, the zero-Doppler time at closest approach.

Operations not performed in the 2D frequency domain need
to be considered differently. It has already been shown how
to handle interpolations in the fast-time domain. Azimuth-
independent phase corrections are also trivial to map, while
azimuth-variant phase corrections need to be specially treated.
Consider a correction in the slow-time domain given by
a(t,; f.), which might depend on the range frequency. If
the correction is very slow variant, one can assume that the
stationary phase point computed with (2) will not change
significantly. In this case, the correction in the 2D frequency
domain is directly given by «(t*; f.). However, a more precise
approach is to compute a new stationary phase point, ¥, so
that (2) is substituted by

0 2m
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and the correction in the 2D frequency domain is then given
by «(t*; f.) and the target’s spectrum in (3) shall be also
evaluated at ¢*.

Finally, the phase error, @.,...(f., f.), is obtained by sub-
tracting the kernel’s phase, (4), to the computed target’s phase,
(3). In the presence of an azimuth-variant phase correction the
stationary phase point given by (5) shall be used instead of (2).
Two transfer functions of state-of-the-art kernels are shown
later in Section II-E.

C. Shaping the Spectral Support

The impulse response function (IRF) is given by the phase
error and the selected weighting. However, the transfer func-
tion in (4) does not consider the range-variant property of the
geometry. Indeed, such a matched filter will focus a target
at the given range, but other targets will be more defocused,
the larger their distance to the reference one. Accurate SAR
processors accommodate the range-variant geometry, a step
that warps the spectrum and, consequently, defines the spectral
support of the focused image. Taking as example the range-
Doppler algorithm, its azimuth compression filter changes with
range, which introduces a Doppler-dependent phase ramp in
the fast time, and hence a Doppler-dependent shift in the
range-frequency domain [12], which curves the spectrum of
the target. It is even clearer to visualize this effect through the
w-k algorithm, since the Stolt interpolation performs this warp
directly. Note though, that the main contribution in the shift
of the range spectrum comes from the range-variant azimuth
compression filter, resulting in a range spectral shift given by

a ac 7 a
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where r is the range vector. In the hyperbolic monostatic case,
(6) is given by [12]
RN
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Fig. 1. Spectral support at (top row) raw data level and (bottom row) image
level for (left column) non-squinted stripmap, (middle column) non-squinted
spotlight and (right column) squinted stripmap.

frb

fa

where v, is the effective velocity and ~(f,,v,.) is the azimuth
modulation term. A low-order interpolator can be used to
interpolate the phase values and the envelope separately.

An aspect affecting only the spectrum envelope is the
wavelength dependence and the truncation of the raw data
in time-domain. Considering an equivalent antenna pattern
that falls to zero at half of the beamwidth, the raw data
spectrum of a stripmap acquisition is square, but that of a
spotlight acquisition is a trapezoid. This can be shown by
recalling the well-known relation of the antenna beamwidth
with the wavelength and the azimuth antenna length, L.,
given by 6, o< A/L,, where a linear dependence on the
wavelength is assumed to be valid. This relation implies that,
since the antenna length is fixed, it “sees” the target first
at lower frequencies than at higher ones. Precisely due to
this wavelength dependence, it can be stated that the nominal
azimuth resolution of a stripmap SAR is half of the antenna
length. This fact implies automatically that the raw data
spectrum must be square for a stripmap acquisition. However,
as soon as the data are truncated in the slow-time domain, as
it happens for example in a spotlight acquisition, the azimuth
instantaneous bandwidth is wavelength dependent, resulting in
the trapezoidal form of the spectrum. Indeed, a time-domain
simulation of a point target usually neglects the wavelength
dependence of the antenna beam, yielding the trapezoidal form
that can often be seen in the literature, which is only strictly
correct for the spotlight mode. The first two columns of Fig. 1
show the shape of the spectrum at raw- and image-data levels
for the stripmap and spotlight modes, where in the latter case
the trapezoidal form due to time truncation can be appreciated.

A final aspect that only affects the envelope of the spectrum
results from the relation between Doppler frequency and time
given by

1 OR(t,)

ch = B\ ata
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where ¢, is the beam-center time. In the monostatic case, eq.
(8) takes the well-known expression of frc = 2-v, - sin 3/,
where 3 is the squint angle and v, is the platform velocity.
Due to the wavelength dependence, the raw data spectrum is
skewed [13]. This is shown in the third column of Fig. 1,
where the spectral support of a squinted stripmap acquisition
is sketched before and after image formation.

D. Evaluation of the Results

In general, the phase error ..., has a low-pass character
(i.e, Af|0Porror/Of.| < T, being Af the frequency bin in
Hertz), so that the computation of 1 and ¢k can be done
using few samples, further allowing one to put the phase error
into an exponential term and perform an inverse FT in order
to obtain the IRF for the point being evaluated, i.e.,

ht.,t.) = FT, T {W (£, £.) - exp [+ Poner (£ L)1} ]
)
where the T'{ - } operator represents the shaping of the spec-
trum expounded in the previous section. The usual parameters
of interest can now be measured, namely, resolution, peak-
to-sidelobe ratio, integrated-sidelobe ratio, pixel-shift error,
etc. The phase value at the maximum of the IRF gives the
(interferometric) phase error, which should be ideally 0°.

E. Kernel Examples

In order to give some more insight into the methodology, an
example of the transfer function is shown next for the mono-
static range-Doppler (RD) and the w-k algorithms. Starting
with RD, the transfer function is given by [6]

_ 47T fr 2 )\fa 2
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DY
where .. is the closest approach distance for the reference
target, v, ..; 1 the effective velocity of the reference range,
and the residual RCM is given by

2 70 Tret
At, wp(fo) = —=- B .
born(fa) = = <v(fa,ve) v(fmve,ref)>

The first term in (10) is the matched filter performed in
the 2D frequency domain at the beginning of the processing
tuned at .., the second term performs the residual range cell
migration, while the last one performs the residual azimuth
compression. After computing ¢.,..., the warp of the spec-
trum as given by (7) shall be introduced using a low-order
interpolator.
For the w-k case, the transfer function is [6], [10]
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where the residual RCM is given by

Y
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The warp can be performed using the Stolt mapping with a
low-order interpolator.

In the case of numerical kernels, be it monostatic [8] or
bistatic [14], the transfer function can be evaluated numer-
ically, but a similar structure as the examples before will
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Fig. 2. Flow of the proposed methodology. The dependence of R(-),
wr (), pr(-) and h(-) with the target position (rg,to) has been omitted
for simplicity, as well as the dependence of W (-) and @error(-) with

(fr7 fasro, tO)-

remain, namely, a matched filter, a residual RCMC, and a
residual azimuth compression, where the last two are optional
depending on the algorithm.

III. PROPOSED METHODOLOGY

Fig. 2 shows the flow of the proposed methodology to
evaluate a given Fourier-based SAR focusing kernel. A pre-
liminary step is the definition of the geometry, e.g., sensor(s)
trajectory(ies), azimuth and range scene extensions, number of
targets and their positions within the imaged scene; and of the
system parameters, e.g., central frequency, bandwidths, mode.
The next step is the computation of the range history R(t.)
for each target, which is obtained using the sensor(s) trajec-
tory(ies) and the target’s position. Then, the target’s phase in
the 2D frequency domain, o+ (f,, f.), is computed as described
in Section II-A. In parallel, the kernel’s transfer function phase
for the given target, @x(f., f.), is also obtained, a step that
besides the system parameters needs also the range history or
associated values, e.g., closest approach distances and effective
velocities. For numerical kernels, the range history(ies) of the
reference target(s) might be also needed. The efficiency of
the proposed approach lies in the fact that both ¢, and @y
are smooth functions, while ..., is assumed to be low pass,
and therefore they all can be modeled accurately with few
samples. Once ¢...., 1S computed, the shaping (warping) of
the spectral support is performed as described in Section II-C.
After combining the amplitude and the phase, an inverse FT
yields the IRF, which can be evaluated as usual.

IV. EXPERIMENTAL VALIDATION

This section demonstrates the methodology by comparing
its output with time-domain point-target simulations followed
by the true processing. Two different examples are shown:
a monostatic spotlight geometry, and an airborne-spaceborne
bistatic geometry (see Table I). The selected size of the target’s
spectra and the corresponding matched filters computed with
the proposed methodology has been of just 64 x 64 samples,
while the target’s range history has been fitted with a sixth
order polynomial before performing series reversion.

For the spotlight example, the range-Doppler and the ex-
tended w-k (EOK) [15] approaches are evaluated, where the
latter has been adapted to the spaceborne scenario [11].
The matched filters are the ones shown in (10) and (12),
respectively. Due to the very high resolution, conventional
kernels assuming a hyperbolic range history do not achieve

TABLE I

SPOTLIGHT AND BISTATIC SIMULATION PARAMETERS
Parameter Spotlight Bistatic
Central frequency 9.65GHz  9.65GHz
Integration time ~ 8 sec ~ 3 sec
Total az. proc. bandwidth 33 kHz 7 kHz
Azimuth resolution 19 cm 23 cm
Chirp bandwidth 1.2 GHz 150 MHz
Ground range scene size 5 km 2.5 km
Azimuth scene size 5 km 500 m
Spacecraft incidence angle 55° 51°
Aircraft incidence angle - 45°
Aircraft velocity — 90 m/s
Aircraft altitude — 2180 m

a satisfactory focusing performance. For this reason, the orbit
compensation suggested in [11] is used, which corrects the
signal in terms of phase and envelope. Since this correction is
performed in the azimuth-time, range-frequency domain, the
stationary point is computed using (5) in order to obtain the
orbit compensation correction and the target’s phase history
in the 2D frequency domain. The true processing was per-
formed using subapertures and a spectral analysis (SPECAN)
approach was used for the azimuth processing [4], [11]. Fig. 3
shows the obtained IRFs and phase errors of the target located
at far range at the edge of the scene. The difference in the
phase error in the 2D frequency domain between the proposed
methodology and the true processing is practically zero, but for
the Gibbs phenomenon at spectrum edges. The computation of
the IRFs for the nine targets located in the scene took less than
a minute with the proposed approach, while the true processing
lasted more than four hours in a sixteen-core computer.
Concerning the bistatic example, its geometry corresponds
to the experiment that took place on November 2007 between
the TerraSAR-X satellite and DLR’s F-SAR airborne system
[16]. The selected kernel is a numerical range-Doppler algo-
rithm, where the point of stationary phase has been computed
using series reversion [7]. Despite being a monochromatic
algorithm, it performs well due to the small swath and relative
small bandwidth. However, the azimuth-variant characteristic
is not accommodated. Fig. 4 shows the result for a target
located at the same range as the reference target but 125 m
away from it in the azimuth dimension. Again, the obtained
result compared to the true processing is practically identical.

V. CONCLUSION

This paper has presented a methodology to efficiently
evaluate the performance of Fourier-based SAR focusing ker-
nels. Such methodology is convenient for imaging geometries
where a close-form analytic expression of the signal in the
two-dimensional frequency domain is not possible, as for
example occurs in bistatic or very high resolution spaceborne
geometries. Due to its high efficiency, it is straightforward to
evaluate different mission scenarios, e.g., different latitudes
and incidence angles, different spaceborne constellations, or
to quantify other aspects like the influence of the topography
or the azimuth variance. The outcome is a global performance
of the focusing kernel, hence becoming a powerful tool for
the final selection of the focusing kernel that best suits
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the mission requirements. Additionally, the concept can be
exploited to develop and efficiently test new focusing kernels,
hence becoming a valuable complement to the conventional
evaluation of a processor via time-domain simulation of point
targets. Furthermore, considering that here only the basic idea
has been presented, it is straightforward to extend the concept
in order to include further aspects like system effects (e.g.,
replica, antenna pattern), atmospheric effects, the platform
motion in the airborne case, etc.

A high resolution spotlight spaceborne geometry and a
hybrid bistatic geometry have been used to validate the
proposed approach. In both cases the computed responses
were practically identical to those obtained with time-domain
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Fig. 3.  Comparison between the proposed methodology and the time-

domain simulation followed by the true processing for the spotlight example
(see Table I). The target is located 2.5 km away from scene center in
the azimuth and ground range dimensions. The plots correspond to (left
column) spaceborne EOK [11] and (right column) range-Doppler processors,
respectively. (Top row) contour plot of the simulated IRF. (Middle row)
Computed phase error in the 2D frequency domain. (Bottom row) Phase
difference between the proposed methodology and the true processing.
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Fig. 4. Comparison between the proposed methodology and the time-domain
simulation followed by the true processing for the bistatic example (see
Table I). The target is located 125 m away from scene center in the azimuth
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2D frequency domain, and (bottom) phase difference between the proposed
methodology and the true processing.

simulations followed by the true processing.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

(14]

[15]

[16]

REFERENCES

R. Bamler, “A comparison of range-doppler and wavenumber domain
SAR focusing algorithms,” IEEE Trans. Geosci. Remote Sens., vol. 30,
no. 4, pp. 706-713, Jul. 1992.

A. Moreira, J. Mittermayer, and R. Scheiber, “Extended chirp scaling
algorithm for air- and spaceborne SAR data processing in stripmap and
ScanSAR imaging modes,” IEEE Trans. Geosci. Remote Sens., vol. 34,
no. 5, pp. 1123-1136, Sep. 1996.

R. Lanari, M. Tesauro, E. Sansosti, and G. Fornaro, “Spotlight SAR
data focusing based on a two-step processing approach,” IEEE Trans.
Geosci. Remote Sens., vol. 39, no. 9, pp. 1993-2004, Sep. 2001.

J. Mittermayer, A. Moreira, and O. Loffeld, “Spotlight SAR data
processing using the frequency scaling algorithm,” IEEE Trans. Geosci.
Remote Sens., vol. 37, no. 5, pp. 2198-2214, Sep. 1999.

P. Prats, R. Scheiber, J. Mittermayer, A. Meta, and A. Moreira, “Pro-
cessing of sliding spotlight and TOPS SAR data using baseband azimuth
scaling,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 2, pp. 770-780,
Feb. 2010.

I. G. Cumming and F. H. Wong, Digital Processing of Synthetic Aperture
Radar Data. Algorithms and Implementation. Boston, London: Artech
House, 2005.

Y. L. Neo, F. Wong, and I. G. Cumming, “A two-dimensional spectrum
for bistatic SAR processing using series reversion,” [EEE Geosci.
Remote Sens. Lett., vol. 4, no. 1, pp. 93-96, Jan. 2007.

D. D’Aria and A. Monti Guarnieri, “High-resolution spaceborne SAR
focusing by SVD-Stolt,” IEEE Geosci. Remote Sens. Lett., vol. 4, no. 4,
pp. 639-643, Oct. 2007.

M. Born and E. Wolf, Principles of Optics.
Edition, 1975.

C. Cafforio, C. Prati, and F. Rocca, “SAR data focusing using seismic
migration techniques,” IEEE Trans. Aerosp. Electron. Syst., vol. 27,
no. 2, pp. 194-207, Mar. 1991.

P. Prats, R. Scheiber, M. Rodriguez-Cassola, J. Mittermayer, S. Woll-
stadt, F. D. Zan, B. Brautigam, M. Schwerdt, A. Reigber, and A. Moreira,
“On the processing of very high-resolution spaceborne SAR data,” IEEE
Trans. Geosci. Remote Sens., 2014, to be published.

G. Fornaro, E. Sansosti, R. Lanari, and M. Tesauro, “Role of processing
geometry in SAR raw data focusing,” IEEE Trans. Aerosp. Electron.
Syst., vol. 38, no. 2, pp. 441454, Apr. 2002.

G. W. Davidson and I. Cumming, “Signal properties of spaceborne
squint-mode SAR,” IEEE Trans. Geosci. Remote Sens., vol. 35, no. 3,
pp. 611-617, May 1997.

R. Bamler, F. Meyer, and W. Liebhart, “Processing of bistatic SAR
data from quasi-stationary configurations,” IEEE Trans. Geosci. Remote
Sens., vol. 45, no. 11, pp. 3350-3358, Nov. 2007.

A. Reigber, E. Alivizatos, A. Potsis, and A. Moreira, “Extended
wavenumber domain SAR focusing with integrated motion compensa-
tion,” IEE Proc. Radar Sonar Navig., vol. 153, no. 3, pp. 301-310, Jun.
2006.

M. Rodriguez-Cassola, S. V. Baumgartner, G. Krieger, and A. Moreira,
“Bistatic TerraSAR-X/F-SAR spaceborne—airborne SAR experiment:
description, data processing, and results,” IEEE Trans. Geosci. Remote
Sens., vol. 48, no. 2, pp. 781-794, 2010.

Pergamon, Oxford, 5t®



