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Abstract

A linear parameter-varying (LPV) model-based synthesis, tuning and assessment methodology is developed and applied for
the design of a robust fault detection and diagnosis (FDD) system for several types of flight actuator faults such as jamming,
runaway, oscillatory failure, or loss of efficiency. The robust fault detection is achieved by using a synthesis approach based on
an accurate approximation of the nonlinear actuator–control surface dynamics via an LPV model and an optimal tuning of the
free parameters of the FDD system using multi-objective optimization techniques. Real-time signal processing is employed for
identification of different fault types. The assessment of the FDD system robustness has been performed using both standard Monte
Carlo methods as well as advanced worst-case search based optimization-driven robustness analysis. A supplementary industrial
validation performed on the AIRBUS actuator test bench for the monitoring of jamming, confirmed the satisfactory performance of
the FDD system in a true industrial setting.
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1. Introduction

There are several classes of flight actuator faults, such as jam-
ming, runaway, oscillatory failure or loss of efficiency, whose
early detection and timely handling contribute to the efficient
operation of aircraft, avoid excessive fuel consumption (with
all associated negative environmental effects) and increase the
aircraft operational autonomy. Therefore, the deployment of
fault detection and diagnosis (FDD) systems for monitoring
and identification of these type of faults is of paramount im-
portance for large civil transport aircraft. Once a certain type
of fault has been identified, appropriate reconfiguration actions
may take place in order to eliminate the effects of malfunc-
tioning and ensure acceptable performance. To fulfill standard
certification requirements, the flight control system augmented
with appropriate FDD systems must reliably operate over the
whole flight envelope, for a large variety of maneuvers, in the
presence of uncertainties as external wind disturbances or vari-
ations of aircraft parameters.

The synthesis methodologies of FDD systems for various
flight actuator failures must comply with these strong require-
ments, by providing designs which guarantee performance ro-
bustness (e.g., lack of false alarms, lack of missed detections,
fast detection times) in all operating conditions. In the current
industrial practice, threshold based signal monitoring schemes
are widely used in the aircraft industry (Goupil, 2011). The
use of first order linear time-invariant (LTI) actuator models for
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model-based fault detection purposes has been also considered.
However, because LTI models completely ignore the complex
dependency between the actuator dynamics and the aerodynam-
ics forces acting on the control surfaces, their use may raise
difficulties in guaranteeing the lack of false alarms over a wide
range of variation of flight parameters and in the presence of
large parameter variations. Recently proposed advanced tech-
niques based on the use of the so-called linear parameter vary-
ing (LPV) models are therefore potentially better suited for
guaranteeing robustness of fault detection performance, as il-
lustrated in several recent works (Varga et al., 2011b; Alwi and
Edwards, 2012; Henry et al., 2012; Vanek et al., 2012; Varga
and Ossmann, 2012). Fault identification aspects have been also
recently considered in several works, as for example the oscil-
latory failure case in (Goupil, 2010; Alcorta-Garcia et al., 2011;
Varga and Ossmann, 2012) as well as the actuator jamming and
runaway in (Varga et al., 2011b; Gheorghe et al., 2013).

In this paper an LPV model-based synthesis, tuning and as-
sessment methodology is described for the development of ro-
bust FDD systems for detection and identification of flight ac-
tuator faults. This methodology is illustrated in four actua-
tor/control surface failure cases: jamming, oscillatory failure,
runaway and loss of efficiency. The robustness of fault de-
tection is achieved by using a synthesis method based on an
accurate approximation of the nonlinear actuator–control sur-
face dynamics via a LPV model in conjunction with an optimal
tuning of the free parameters (e.g., thresholds) of the FDD sys-
tem components using multi-objective optimization techniques.
Signal processing algorithms are employed for on-line iden-
tification of specific faults. The assessment of the FDD sys-
tem robustness has been performed using both standard Monte
Carlo methods as well as advanced worst-case search based
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optimization-driven robustness analysis. A supplementary in-
dustrial validation of the FDD system for monitoring of jam-
ming has been performed on the AIRBUS actuator test bench
in the framework of the ADDSAFE project and confirmed the
satisfactory performance of the FDD system in a true industrial
setting (Varga et al., 2013).

The structure of the paper is explained in what follows. In
Section 2, a generic FDD system architecture is proposed for
the solution of the fault detection, isolation and identification
problems for the most important classes of actuator faults men-
tioned above. A model-based synthesis methodology of the
components of the FDD system is described in Section 3, ad-
dressing the development of a suitable LPV-model for the actu-
ator dynamics (Section 3.1), the synthesis of the residual gen-
erator (Section 3.2), the setup and tuning of residual evalua-
tion and decision making blocks (Section 3.3), the choice of
the fault identification algorithms (Section 3.4), and the assess-
ment of the FDD system robustness (Section 3.5). The applica-
tion of this methodology for the design of a robust FDD system
for monitoring four types of actuator faults is described in Sec-
tion 4.

2. FDD system architecture for monitoring flight actuator
faults

For the model-based monitoring of flight actuator faults two
approaches are in principle possible. The system-wide approach
employs a unique FDD system which relies on a fault detec-
tion filter (or residual generator) which processes the set of
known signals (output measurements, control inputs, schedul-
ing parameter values) and produces a structured residual vec-
tor, whose zero-nonzero components provide information on
the presence or absence of actuator faults (fault detection) as
well as on their localization (fault isolation). The fault detection
and isolation (FDI) is usually followed by fault identification,
to determine the nature of the occurred fault and its essential
characteristics, which can serve for control law reconfiguration
purposes. This approach has the potential advantage to han-
dle all actuator faults (possibly jointly with sensor faults) using
a single fault detection filter. Also, all categories of actuator
faults can be detected, independently of the availability of addi-
tional control surface sensors. However, the complexity of the
underlying nonlinear aircraft model and the presence of vari-
ous uncertainties (e.g., unknown wind disturbances, aircraft pa-
rameter variations, uncertain aerodynamical coefficients) make
the synthesis of a reliable FDD system very challenging (if not
impossible). The feasibility of this approach has been investi-
gated in (Varga, 2009b), where only the nominal case has been
considered. Even in this case, the presence of multiple control
surfaces as is typical for elevators, rudders or ailerons, make
the fault isolation task very challenging in presence of model
uncertainties.

In a component level FDD approach, each actuator is inde-
pendently monitored, using exclusively locally available signal
measurements, as the position of the actuator rod, the surface
angle deflection, and the generated control input representing
the commanded surface position. The main advantage of such

local approach is that fault isolation is implicitly provided by
fault detection. Simple to implement (first or second order)
fault detection filters can be employed to detect several types
of additive faults, as jamming, oscillatory failure, runaway and
a class of loss of efficiency failure. Robustness aspects can be
addressed by employing, for example, gain scheduling tech-
niques based on LPV-models. Fault identification can be also
easily performed applying signal processing techniques on the
available signals (also including the residual signals). The com-
ponent level approach has difficulties in detecting other fault
types (e.g., multiplicative), as for example, the loss of effective-
ness due to surface disconnection (e.g., broken actuator rod) or
control surface damage. In these cases, a combined fault de-
tection and identification approach based on model detection
techniques (see Varga, 2009a; Ossmann and Varga, 2013) can
be employed to estimate the level of the loss of efficiency, by re-
lying on suitable multiple fault models describing the actuator-
control surface aerodynamic interactions.

The block-diagram of the component level FDD approach is
depicted in Fig. 1, where we assume that the FDD system works
jointly with a stable closed-loop flight control system, whose
main components are the open-loop aircraft, the controller, the
actuator and sensor blocks. The controller processes the pi-
lot command vector up(t) used to perform various maneuvers
and the measured outputs vector y

m
(t) delivered by the sensors

using the aircraft output vector y(t), and produces the actua-
tor command vector uc(t). The actuator output signals form
the vector u(t) representing the corresponding surface deflec-
tions. The FDD system, whose detailed structure is presented in
Fig. 2, processes a single actuator output signal u(t) and the cor-
responding actuator command uc(t), which are selected via the
selector block from the components of the actuator output vec-
tor u(t) and actuator command vector uc(t), respectively. Addi-
tionally, the aircraft parameters p(t) are used for gain schedul-
ing purposes. The output of the FDD system is a vector η(t) of
confirmation signals, which indicate the presence or absence of
specific actuator faults.
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Figure 1: Fault monitoring setup for FDD of a single actuator

The FDD system used in this paper to detect and identify dif-
ferent types of actuator faults is depicted in Fig. 2 and is based
on the local approach already described in (Varga et al., 2011b).
The FDD system structure in Fig. 2 only includes a single resid-
ual generator for fault detection (or simply, a fault detector),
which processes the commanded actuator position uc and the
measured current actuator position u and generates the scalar
residual signal r. For the robust fault detection, a single LPV
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detector is sufficient, where ρ is a vector whose components are
the scheduling variables as described in Section 3.1.
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Figure 2: FDD system architecture for actuator fault identification

For the identification of different types of faults, individual
post-processing of the residual is performed, by taking into ac-
count the different possible shapes of fault signals as well as the
specific requirements on detection times. For n f different types
of fault signals to be detected, a multi-channel structure is used
for the residual evaluation, decision making and fault identifica-
tion. For each fault type to be identified, a residual evaluation
block and decision making block are present, whose parame-
ters are chosen to reflect the characteristics of the assumed fault
signal. Thus, for the j-th type of fault, a specific approximation
θr, j of the residual norm ||r||2 is computed in the corresponding
j-th residual evaluator block. Then, this value is used in the
threshold-based decision making block to generate the decision
signal ι j, which, if nonzero, triggers a signal based fault identi-
fication process. Each identification block provides qualitative
and quantitative information on the faults by processing the in-
put and output signals uc and u of the actuator, as well as the
residual signal r. The output of this block is the fault classifi-
cation signal η j, which can be used to trigger specific control
reconfiguration actions.

3. Model-based synthesis methodology

In this section we describe a model-based synthesis method-
ology of FDD systems having the generic architecture depicted
in Fig. 2 for the detection, isolation and identification of flight
actuator faults. This methodology involves several main steps,
which are described subsequently:

1. Development of a suitable LPV synthesis model of the un-
derlying actuator;

2. Synthesis of a LPV residual generator for robust fault de-
tection;

3. Setting up of the residual evaluation and decision making
blocks;

4. Development of signal processing based fault identifica-
tion schemes;

5. Assessment of the robustness of the FDD system.

This methodology is primarily intended for the robust fault
monitoring of hydraulic servo controlled actuators which are
widely used in today’s aircraft Goupil (2010). The key aspects

in this context are the use of LPV-residual generators based on
accurate LPV-models of the actuator, the optimization-based
tuning of the parameters of the residual evaluation blocks, and
the use of efficient signal processing based fault identification
techniques.

3.1. LPV model generation for the nonlinear actuator model
The development of an accurate approximation of the joint

actuator and control surface dynamics in the form of a quasi-
LPV-model is an important prerequisite for the synthesis of a
robust FDD system for monitoring actuator faults. For the de-
tails on the derivation of such quasi-LPV models see (Varga
et al., 2011b). The resulting actuator model has a first order
LPV-system representation of the form

u̇ = −k(ρ)u + k(ρ)uc, (1)

where u is the rod position (or equivalently the surface deflec-
tion angle) and uc is the commanded position (deflection angle).
The gain k(ρ) generally depends on several measurable param-
eters grouped into a vector ρ.

The underlying actuator model is a simplified nonlinear dy-
namic model of an hydraulic servo controlled actuator de-
scribed by a first order nonlinear state equation of the form
(Goupil, 2010; Márton and Ossmann, 2012)

u̇ = K(p, u, u̇)(uc − u), (2)

with the nonlinear gain

K(p, u, u̇) := KciKp

√√√√√
∆P(u) −

Faero(p, u, u̇) + Kdu̇2

S
∆Pre f

, (3)

where Kp is the servo control gain, Kci is a gain to convert an
estimated current to a corresponding rod speed, ∆P is the hy-
draulic pressure delivered to the actuator, ∆Pre f is a differential
pressure for a fully opened servo-valve (maximum rod speed),
Faero represents the aerodynamic forces at the control surface,
S is the actuator piston surface area and Kdu̇2 represents the es-
timated servo-control load of the adjacent actuator in damping
mode (only in the case of two actuators per control surface in
a dual active/passive scheme). The components of the vector p
are the relevant aircraft parameters and flight conditions.

To get a simple quasi-LPV model approximating (2) with
good accuracy, the nonlinear gain (3) is approximated by an
easily computable gain k(p, u, u̇), which is then used in the first
order actuator model as given in (1). The main variations of K
are caused by the aerodynamic force Faero that acts on the con-
trol surface, where Faero itself usually depends on the param-
eters in p, the actuator position u and the sign of the actuator
position rate u̇. The effect of these variations is a reduction or
increase of the gain, and thus variations of the response speed
of the actuator. More details on the physical interpretation of
Faero can be found in (Varga et al., 2011b).

Physical considerations as described in (Varga et al., 2011b)
led to choosing k(p, u, u̇) of the form

k(p, u, u̇) = C0(p) + C1(p)sign(u̇)(u + C2(p)), (4)
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where for fixed p, C0(p) can be interpreted as the nominal gain,
C1(p) describes the influence of the deflection angle u on k,
while the factor sign(u̇) allows to distinguish between upward
and downward movements of the control surface. C2(p) can
be interpreted as a position offset. The chosen functional de-
pendence on u and sign(u̇) reflects the actual physical behav-
ior of the actuator for different control surface positions and
signs of deflection rate. For Ci(p), i = 0, 1, 2, affine approxi-
mations have been used, where the intervening constant coeffi-
cients have been determined using parameter fitting techniques
based on comparing the output responses of the nonlinear ac-
tuator model (2) and LPV-model (1). The final form of k(ρ),
with ρ = (u, sign(u̇), p) is simple enough to be used in LPV-
model based fault diagnosis applications. The accuracy of this
model can be improved for large surface deflections, by taking
into account saturations occurring at its blowdown limit, which
is reached when the sum of the force from the air (or blow-
down) Faero and the damping force Kdu̇2 equals the maximum
available force due hydraulic pressure ∆P · S .

Alternative quasi-LPV actuator models have been derived in
(Henry et al., 2012) and (Vanek et al., 2012), where instead
of approximating K(p, u, u̇) directly, first an approximation of
Faero(p, u, u̇) has been constructed. The generation of the final
LPV models involves further rational/polynomial approxima-
tions in order to arrive to a form suitable for the applicability of
employed synthesis methodologies.

3.2. Synthesis of an LPV residual generator

Assume temporarily that the parameters in ρ are constant.
In this case an input–output representation of the actuator fault
model is used in the additive form

u(s) = G(s, ρ)uc(s) + G f (s, ρ)f(s), (5)

where u(s), uc(s), and f(s) are the Laplace-transformed quanti-
ties of u(t), uc(t), and additive fault signal f (t), respectively, and
G(s, ρ) and G f (s, ρ) are parameter dependent transfer functions.
G(s, ρ) corresponding to (1) is

G(s, ρ) =
k(ρ)

s + k(ρ)
, (6)

while G f (s, ρ) = G(s, ρ) for an input located fault (assumed in
this paper).

As residual generator a parameter dependent filter is used of
the form

r(s) = Q(s, ρ)
[

u(s)
uc(s)

]
, (7)

where Q(s, ρ) is the 1 × 2 transfer-function matrix of the filter,
which explicitly depends on the measurable parameter ρ (e.g.,
via an equivalent state-space realization of the filter). For a
physically realizable filter, Q(s, ρ) must be robustly stable with
respect to ρ. The robust fault detection synthesis problem ad-
dresses the robustness of the fault detection system with respect
to the measurable parameter ρ by attempting to achieve robust-
ness using an LPV gain scheduling approach.

To address the robust fault detection problem, the synthesis
method described in (Varga, 2011; Varga et al., 2011b) has been
employed. A first order detector is used having the form

Q(s, ρ) =

[
a
k0

s + k(ρ)
s + a

−
k(ρ)a

k0(s + a)

]
, (8)

where a is an arbitrary positive value specifying the dynamics
of the detector and k0 is a typical nominal value of the gain k(ρ).
By replacing in (7) u(s) by its expression in (5), the internal
form of the detector is obtained

r(s) = R(s, ρ)uc(s) + R f (s, ρ)f(s), (9)

where

[ R(s, ρ) |R f (s, ρ) ] := Q(s, ρ)
[

G(s, ρ) G f (s, ρ)
1 0

]
(10)

The choice (8) of Q(s, ρ) guarantees an exact decoupling of
control inputs in (10), thus R(s, ρ) = 0. The corresponding
fault-to-residual transfer function is

R f (s, ρ) =
k(ρ)
k0

a
s + a

Thus, the residual signal provides a filtered estimation of the
fault, allowing to easily reconstruct the actuator fault signal f
for further use in fault identification.

The LPV state-space realization of the residual generator (7)
can be always obtained in the form

ẋQ(t) = AQxQ(t) + BQ(ρ)
[

u(t)
uc(t)

]
r(t) = CQxQ(t) + DQ(ρ)

[
u(t)
uc(t)

] (11)

For the detector (8), the state-space matrices are

AQ = −a, BQ(ρ) = a
[

k(ρ)−a
k0

−
k(ρ)
k0

]
,

CQ = 1, DQ =
[

a
k0

0
]
.

(12)

The chosen form (8) of the detection filter leads to a state-space
realization (11) with a constant feed-through matrix DQ. This
has the major advantage to prevent all direct effects on r of the
discontinuities in the scheduling signal ρ (e.g., jumps due to
the presence of the signum-function in (4)). The realization
(11), with constant AQ, also guarantees the robust stability of
the filter. Moreover, it allows to obtain explicit discretization
formulas for the matrices of an equivalent sampled-data model
used for the on-board implementation of the filter (Varga et al.,
2013).

The determination of Q(s, ρ) is done using an approximated
model of the actuator. Thus a perfect decoupling of the control
input uc in the residual r(t) can not be achieved from a practi-
cal point of view. A direct consequence is that high dynamic
maneuvres may affect the residual r(t), such that larger thresh-
olds may be necessary to be used, and this also increases the
minimum magnitude of detectable faults. This is why the need
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for an accurate approximation of the nonlinear actuator dynam-
ics is instrumental for our approach. Furthermore, the determi-
nation of the least decision threshold guaranteeing the lack of
false alarms is an important aspect, which is addressed in the
next section.

Another related aspect is the presence in ρ of uncertain com-
ponents, say ρ1, which are not measurable and therefore cannot
be used as scheduling variables. Thus, instead Q(s, ρ), only
Q(s, ρ2) can be employed, where ρ2 is formed from the rest of
measurable components of ρ. Robust approximation methods
suitable to determine Q(s, ρ2) from a given Q(s, ρ) are discussed
in (Varga, 2011). Once again, to guarantee the lack of false
alarms in presence of the uncertainties ρ1, special optimization-
based search techniques described in the next section need to
be used to determine appropriate decision thresholds.

3.3. Setup of residual evaluation and decision making blocks

3.3.1. Residual evaluation
The evaluation of the residual signal often requires the com-

putation of a measure of the residual signal energy, for which
the 2-norm of the signal is usually an appropriate choice. For
this purpose, for each fault type j, j = 1, . . . , n f , a so-called
Narendra signal evaluation scheme can be used of the form
(Narendra and Balakrishnan, 1997)

θr, j(t) = αr, j|r(t)| + βr, j

∫ t

0
e−γr, j(t−τ)|r(τ)|dτ, (13)

where θr, j(t) can be generated by the first order differential
equation

ξ̇ j(t) = −γr, jξ j(t) + βr, j|r(t)|
θr, j(t) = ξ j(t) + αr, j|r(t)|, (14)

The filter parameters αr, j ≥ 0 and βr, j ≥ 0 determine the first-
order filter nature (e.g., low pass, high pass, etc.) and have clear
interpretations: αr, j and βr, j are weights for instantaneous and
long-term values, respectively, while γr, j > 0 is the forgetting
factor.

Choosing different filters for different types of fault is nec-
essary because of different detection time requirements. For
example, more critical faults as runaway or oscillatory failure
require short detection times and therefore the corresponding
residual evaluation schemes put more emphasis on current val-
ues than on time distant ones. On the contrary, the detection of
less critical faults such as jamming or loss of efficiency is not
time critical, and this is reflected in less stringent requirements
on the detection times.

3.3.2. Decision making
In the simplest setup, the evaluation signal θr, j(t) is com-

pared to a specific constant threshold τ j in the decision making
process to determine the decision signal ι(t) using the decision
logic

θr, j(t) < τ j ⇒ ι(t) = 0 ⇒ no fault
θr, j(t) ≥ τ j ⇒ ι(t) = 1 ⇒ fault (15)

The signal θr, j(t) is ideally equal to zero or sufficiently small
in fault free situations, whereas it shall exceed the threshold

τ j when a fault occurs in the system. Hence, the appropriate
selection of the values of the free parameters αr, j, βr, j or γr, j,
together with an appropriate threshold τ j essentially influences
the performance of the FDD system.

3.3.3. Optimal tuning of free parameters
The free parameters αr, j, βr, j and γr, j of the residual evalu-

ation blocks and the threshold τ j used in the decision blocks
must be chosen to ensure that the requirements regarding typ-
ical performance criteria used in the industry such as the false
alarm rate (FAR), the missed detection rate (MDR) or the de-
tection time performance (DTP) are fulfilled (Goupil and Mar-
cos, 2012). The simultaneous minimization of these quantities
(e.g., by using multi-objective optimization techniques) would
provide the best achievable detection performance. Unfortu-
nately, analytical expressions of FAR and MDR are not avail-
able, and only surrogates can be used which are suitable only
when FAR = 0 and MDR = 0 are imposed. The applicability of
such surrogates based tuning has been demonstrated in (Varga
et al., 2011b; Varga and Ossmann, 2012).

For an optimization based tuning setup, the requirements for
the lack of false alarms and missed detections can be formulated
as either optimization criteria or constraints. In the absence of
faults, the requirement for no false alarms leads to a constraint
on the false alarm bound

τ f , j := sup
f =0

θr, j(t) < τ j, (16)

where the supremum is taken for all admissible operation
points, all relevant aircraft maneuvers, all admissible variations
of uncertain parameters and for all relevant disturbances. The
false alarm bound determines implicitly the least size ‖ f ‖ of
detectable faults, which satisfy

τ f , j = inf
f,0

θr, j(t),

where the infimum involves additionally all fault signals of a
given type j.

The requirement for no missed detection can be also ex-
pressed as a constraint on the detection bound

τd, j := inf
t∈[t f , j,tdetec, j]

θr, j(t) ≥ τ j, (17)

which must be satisfied for all relevant fault situations for the
j-th type of fault. Here, tdetec, j is the maximum admissible
fault detection time and t f , j is the fault occurrence time. The
concepts of false alarm bound, detection bound, least size de-
tectable fault extends similar concepts introduced in (Emami-
Naeini et al., 1988) for linear systems.

To ensure simultaneously the lack of false alarms and of
missed detections, the condition τ f , j < τd, j must be fulfilled.
If this condition is not fulfilled, then either the requirement for
the lack of false alarms or the requirement for lack of missed
detections can not be fulfilled. In practical applications, often
the detection bound can be increased by relaxing the require-
ment on the least size of detectable faults. Alternatively, the
false alarm bound can be decreased by constraining the size of
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admissible control signals. In this case, alarms resulted during
maneuvers with large control inputs need further confirmation
(see fault identification) using, for example, signal processing
based signal classification techniques.

Finally, let td, j be the fault detection time defined as the least
value of time t for which θr, j(t) ≥ τ j. Then, the constraint on
detection times can be expressed as

td, j ≤ tdetec, j (18)

or equivalently in a normalized form

DT P :=
td, j − t f , j

tdetec, j − t f , j
< 1. (19)

The tuning approach assumes that the FDD system is run-
ning jointly with a robustly stable closed-loop system as shown
in Fig. 1. For each type of fault j, the value of the threshold
τ j > 0 can be chosen arbitrarily, while the free parameters
w j := (αr, j, βr, j, γr, j) can be determined by solving suitable op-
timization problems:

1. Feasibility problem: Determine w j such that

τ f , j < τ j, τd, j ≥ τ j, td, j ≤ tdetec, j

2. Optimal detection time performance: Determine w j

which minimizes td, j subject to

τ f , j < τ j, τd, j ≥ τ j,

3. Multi-objective minimization problem: Determine w j

which simultaneously minimizes τ f , j and −τd, j, subject to
td, j ≤ tdetec, j.

4. Optimal robustness margin: Determine w j which max-
imizes τd, j − τ f , j or minimize τ f , j/τd, j subject to td, j ≤
tdetec, j.

If any of the first two problems is solvable, then it is guaranteed
that no false alarms and no missed detection can occur.

The solution of each of above problems involves solving op-
timization problems with semi-infinite (parameter dependent)
constraints. Each evaluation of constraints involves solving
global optimization problems over function spaces, thus these
problems are computationally intractable. To compute subopti-
mal solutions, appropriate relaxation techniques can be used, as
the discretization of the uncertain parameter search space (e.g.,
via gridding or multi-models) and using predefined finite set
of relevant maneuvers, wind disturbances, sensor noise levels
and faults. Although the number of optimization parameters is
small, even with the above simplifications a substantial com-
putational effort is necessary, because all function evaluations
involve nonlinear system simulations and global optimizations
over the uncertain parameter space. Parallel computation tech-
niques for global optimizations can significantly reduce com-
putational times.

3.4. Fault identification
In this section the fault identification aspects related to sev-

eral types of actuator faults are considered. The fault identifi-
cation block for the j-th fault type generates the confirmation
signal η j(t) = 1, if the fault is confirmed or η j(t) = 0, otherwise.
The fault identification is only triggered, at a time instant say
td, j, when the presence of a fault has been detected (i.e., the
output of the decision block in Fig. 2 is ι j(t) = 1 for t ≥ td, j).
This separation between fault detection and fault identification
is a distinctive feature of our FDD approach, when compared
with other techniques as those used in (Goupil, 2010; Gheorghe
et al., 2013), where the fault identification algorithms must run
permanently on the on-board flight control computers.

To address the fault identification aspects, signal processing
based techniques can be used, where for each type of fault spe-
cific methods are devised. Suitable methods for identification of
several classes of additive faults (jamming, oscillatory failure,
runaway and loss of efficiency) are described in this section.
These techniques are employed to design a complete FDD sys-
tem for monitoring actuator faults as described in Section 4. To
simplify the notation in the rest of the paper, the fault evaluation
and decision related variables (e.g., θ(t), η(t), td, ι(t) ) are used
without the index j when discussing particular types of faults.

3.4.1. Identification of jamming
The jamming (or lock-in-place failure) of an aircraft con-

trol surface creates a dissymmetry in the aircraft configuration,
which must be compensated by appropriate deflections of other
control surfaces. Therefore, the jamming leads to the degra-
dation of the aircraft performance due to the increased drag,
which depends on the amplitude and localization of the fail-
ure. For example, during a long time aircraft operation, a sur-
face jamming may produce substantial drag which can lead to
excessive fuel consumptions (with all associated negative envi-
ronmental effects) and can even impede the fulfillment of the
flight mission (i.e., the need for landing on a diverting airport
for refueling). Therefore, the timely detection and identification
of jamming, especially of the primary control surfaces (e.g., el-
evator, ruder, ailerons), is important for both an economical and
easy-to-handle operation of an aircraft.

To confirm jamming at a constant deflection u jam, the follow-
ing computations are needed:

1. Collect n samples of the output variable u(t):
u1 = u(td + T ), . . . , un = u(td + nT ).

2. Compute the mean: u := 1
n
∑n

i=1 ui.
3. Compute the variance: σu := 1

n−1
∑n

i=1(ui − u)2.
4. If σu ≤ τu, then set η(t) = 1; else, set η(t) = 0.

Here, T is the sampling period used to collect the n samples
and τu is a threshold for zero (or negligible) variance. Typical
values of the main parameters of the identification procedure
are T = 0.01, n = 50 ÷ 300 and τu = 0.01 ÷ 0.1.

This computational approach requires the storage of n sam-
ples, which is not desirable for on-board computations. For-
tunately, it is possible to use recursive evaluation formulas of
the mean and sample variance which avoid any additional stor-
age needs and are based on a numerically stable computational
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method (Welford, 1962). The implementation of this algorithm
starts with the initializations m1 = u1 and s1 = 0, and recur-
sively computes

mk = mk−1 + (uk − mk−1)/k
sk = sk−1 + (uk − mk−1)(uk − mk) (20)

for k = 2, . . . , n. Then, u jam = u = mn and σu = sn/(n−1). With
this approach, the confirmation time tc of a surface jamming is
roughly equal to tc = td + nT .

Surface sensor bias (called also liquid jamming) can be easily
identified, by applying the same signal processing algorithm to
the residual signal r(t) as that applied to u(t). The resulting bias
is the nonzero mean value r jam = r, while the covariance σr

serves for the confirmation of the presence of the bias.
The special case of jamming of a control surface at null de-

flection can alternatively be handled by computing the evalua-
tion signals θuc and θu

θuc (t) =
∫ t

0 e−γuc (t−τ)|uc(τ)|dτ

θu(t) =
∫ t

0 e−γu(t−τ)|u(τ)|dτ
(21)

where θuc (t) and θu(t) can be generated by first order differen-
tial equations similar to that in (14). The jamming at null de-
flection can be confirmed if the conditions for non-zero input
θuc ≥ τuc and zero output θu < τu are simultaneously fulfilled,
where τuc and τu are appropriate thresholds for nonzero and
zero energy signals, respectively. A typical setting of the corre-
sponding forgetting factors γuc and γu must fulfill the condition
γu < γuc imposed by the signal transmission causality require-
ments. This fault identification scheme significantly enhances
the overall robustness of the FDD system.

The alternative approach for the identification of jamming
(and also of runaway) used in (Gheorghe et al., 2013) repre-
sents an enhancement of the current industrial practice by fil-
tering (with a low pass filter) of a particular residual evaluation
signal to attenuate the influence of measurement noises. The
goal of this approach is to allow the choice of smaller deci-
sion thresholds, which permit the identification of jamming at
smaller surface deflections.

3.4.2. Identification of oscillatory failure cases
Two types of oscillatory failure cases (OFCs) are usually

considered. The so-called liquid failure is an additive oscil-
latory fault signal inside the actuator positioning control loop.
The solid failure involves an oscillatory signal which com-
pletely replaces a normal signal in the actuator positioning loop.
According to Goupil (2010), the relevant frequency range for
the OFC is 0.1-10 Hz. The fault identification challenge for
OFC is the need of an early detection, which imposes short de-
tection times corresponding to a few oscillation periods. An-
other challenge is the detection of small amplitude oscillations
of the control surfaces in the presence of measurement noise.
Finally, the fault detection and identification performance must
be robustly achieved over the whole flight envelope, for vari-
ous pilot maneuvers and wind conditions, and over the whole
range of uncertain parameter variations. The early detection of

an OFC is important to prevent high loads and for taking into
account stringent structural design objectives (Goupil, 2010;
Alcorta-Garcia et al., 2011).

By using a sufficiently accurate LPV approximation (1) of
the actuator nonlinear model (2) as basis for residual gener-
ator synthesis, the resulting residual signal r will contain the
same oscillatory components as the fault signal. Once the oc-
currence of a fault has been detected using the decision logic
(15), the fault identification stage follows aiming to detect the
presence of oscillations in r in the relevant frequency band. For
the identification of OFC, a signal processing based technique
has been proposed by Goupil (2010), which involves sub-band
filtering of the residual signal followed by an oscillation count-
ing. Separate schemes are used to identify liquid and solid type
OFCs. In this section, an alternative approach is described,
which is based on recursive Fourier analysis techniques, and
thus is easily implementable on-board. Furthermore, the pro-
posed approach needs no special treatment of different types of
OFCs.

A rigorous approach to identify oscillations in noise cor-
rupted signals is the periodogram method (Stoica and Moses,
1997), which is based on determining the power spectrum of
a signal using the discrete Fourier transform (DFT). The DFT
is easily computable using the fast Fourier transform (FFT) al-
gorithm and allows a satisfactory accurate evaluation of the os-
cillation frequency together with strong statistical guarantee of
the presence of the oscillatory signal. Still, the on-board imple-
mentation of FFT-based frequency analysis is questionable, due
to the strict code certification requirements.

To overcome these limitations, a recursive version of the
DFT, as described in (Morelli, 2000), can be used to detect os-
cillations in real-time. Let T be the sampling period, td the fault
detection time and let n be the expected length of the time series
r(ti), for ti = td + iT , for i = 0, 1, . . . , n− 1. The DFT computes

X(ω) :=
n−1∑
i=0

r(ti)e− jωti

for a given frequency ω. The computation of X(ω) can be done
recursively by defining the partial sum

Yk(ω) =

k∑
i=0

r(ti)e− jωti

and observing that

Yk(ω) = Yk−1(ω) + r(tk)e− jωtk (22)

for k = 1, . . . , n. Evidently, X(ω) = Yn−1(ω), where the iteration
(22) is initialized with Y0(ω) = 0. An oscillation of frequency
nearby to ω is detected at iteration k = kdetec if |Ykdetec (ω)| >
τ f req, where τ f req is a suitable threshold. The main appeal of
this approach is that usually kdetec � n, thus fast detection of
the presence of oscillations nearby a frequency ω is possible.

For the choice of the threshold τ f req, the expression τ f req =
n
2τ0 can be employed, where τ0 < 1 is a normalized threshold
for unit amplitude sinusoidal signals of frequency ω. The value
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of τ0 generally accounts for the need to avoid undetected os-
cillations of frequency ωx nearby ω. Recall that the frequency
resolution of the DFT for n samples and a sampling period T is
2π
Tn , and therefore the frequency bin around ω contains all fre-
quencies ωx such that |ωx − ω| ≤

π
Tn . The magnitude of the

resulting Fourier coefficient for a unit amplitude sinusoidal sig-
nal of frequency ωx is

|X(ω)| =
1
2

∣∣∣∣∣ sin[(ωx − ω)nT/2]
sin[(ωx − ω)T/2]

∣∣∣∣∣ ≤ n
2

The maximum magnitude drop within a frequency bin results
for ωx = ω ± π

Tn as

|X(ω)| =
1
2

1∣∣∣sin π
2n

∣∣∣
Since |X(ω)|/(n/2) > 2/π for all n, τ0 = 2/π can be taken as a
safe threshold for each frequency bin.

Using the above choice for τ0, the minimum number of fre-
quency values such that the union of the associated frequency
bins covers the relevant frequency domain can be easily deter-
mined. Let Ω = {ω1, ω2, . . . , ωm} be the frequency grid to be
chosen with ω1 > ω2 > . . . > ωm. Each ω` is the midpoint
of an interval I(ω`) := [ω`, ω`], which defines a frequency bin
with a resolution of 2π

n(ω`)T
, where n(ω`) is the corresponding

number of samples (to be chosen). The choice of these intervals
must ensure that their union ∪m

i=1I(ω`) fully covers the relevant
frequency domain for the OFC. A non-overlapping choice is al-
ways possible by imposing ω` = ω`−1, and results by choosing
ω` for ` = 1, 2, . . . ,m according to

ω` =
ω`−1

2
, (23)

where ω0 is the maximum frequency in the relevant frequency
domain. n(ω`) can be chosen to satisfy the worst-case detec-
tion time requirement of two periods for the maximum fre-
quency in the `-th bin ω` = ω`−1, that is, n(ω`)T = 4π/ω`−1.
For this choice, taking into account (23), the simple relations
n(ω`) = 2n(ω`−1) between two successive numbers of samples
hold. For example, using the above approach, the frequency
domain [0.15, 10]Hz can be covered using a grid of m = 6 fre-
quencies

Ω = 2π × {7.5, 3.75, 1.875, 0.9375, 0.4687, 0.2343}

and the corresponding values {20, 40, 80, 160, 320, 640} of
n(ω`) for a typical sampling period of T = 0.01s.

The recursive algorithm (22) can be implemented efficiently
and thus is appealing for real-time applications. Since usually
m � n, the computations for n − m frequency values of no
interest can be discarded (which would be automatically pro-
duced when employing the FFT). For increased efficiency, the
precomputed quantities W(ω) := e− jωT for each ω ∈ Ω can be
used and the relations

sk := e− jωtk = W(ω)e− jωtk−1 = W(ω)sk−1 (24)

can be exploited. Thus, at each step k > 2 the quantities

sk = W(ω)sk−1
Yk(ω) = Yk−1(ω) + r(tk)sk

have to be computed for each ω ∈ Ω. These iterations are ini-
tialized with Y1(ω) = r(t0) and s1 = 1. Taking into account that
the intervening r(tk) in (22) is a real quantity, the number of
floating point operations (flops) to compute Yk(ω) and update
sk is 1 complex and 2 real multiplications and 1 complex addi-
tion (equivalent to 6 real multiplications and 2 real additions).
Thus, the operations at each step involve 8m flops. Finally, the
iteration is stopped if an oscillation has been detected at a cer-
tain iteration kdetec. The total number of operations is about
8m(kdetec − 1) flops.

3.4.3. Identification of runaway
An actuator runaway (or hardover) takes place when a large,

uncommanded surface deflection occurs and the surface tends
to lock in its extreme position. The transition to this posi-
tion may occur with arbitrary variation rates (constant or time-
varying). In the case of a runaway, excessive structural loads
can be expected, and therefore it must be very quickly detected
and identified by the FDD system, before its full development.
For example, the fault detection and identification times can be
related to a certain allowed maximum variation of the surface
deflection angle.

The early detection and identification of runaway can be done
by checking that the surface deflection variation rate u̇ is above
or below a certain allowed slew rate u̇max or −u̇max, respectively,∣∣∣u̇∣∣∣ ≥ u̇max,

where u̇ is the mean value of the derivative over a given time
period. The computation of an approximation of this mean can
be done recursively as

u̇ ≈
u(ti) − u(td)

ti − td
,

where td is the detection time and ti = td + iT , i = 1, 2, . . ., with
T a suitable sampling period.

Using this approach, large surface deflections in relatively
short times will be always recognized as runaways, as for exam-
ple, an oscillatory failure with a large oscillation amplitude. For
practical purposes this is perfectly acceptable, since the only
meaningful handling in such cases is the disconnection of the
faulty actuator. However, to ensure the identifiability of oscil-
latory failures with small amplitudes, the confirmation of run-
away should be done only if the amplitude of the residual signal
is above a certain maximum value τrmax

|r(t)| ≥ τrmax

While this works satisfactorily for liquid type OFCs, still solid
type OFCs can be occasionally diagnosed as runaways.
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3.4.4. Identification of loss of efficiency
Several types of fault can be categorized as loss of efficiency

faults, as for example, speeding-up of the actuator dynamics
due to a disconnection (e.g., broken rod), slowing-down of the
actuator dynamics due to a reduction of the actuator gain, or the
inability to reach a commanded deflection (e.g., due to loss of
power or a sensor calibration error). Since the first two types of
faults are parametric faults (i.e., changes in the actuator gains),
they can not be easily detected using the additive faults based
approach. This is why, only the third category of fault is con-
sidered which, for simplicity, will be called loss of efficiency
fault. This fault can be easily detected as additive fault us-
ing the proposed fault detection approach. In what follows the
identification of this type of fault using signal processing based
techniques is discussed.

Starting from the detailed actuator description (2), the as-
sumed behavior during the fault is described by

˙̃u = K(p, ũ, ˙̃u)(νuc − ũ), (25)

where 0 < ν < 1 is a constant parameter which describes the
loss of efficiency of the actuator. See (Bošković et al., 2005)
for a similar fault modelling approach. An accurate estimate of
the fault free output u of the actuator can be generated using
the LPV model (1). It follows that the outputs of the faulty
actuator ũ(t) and of the fault free actuator model u(t) are related
at all time moments simply as ũ(t) = νu(t). The validity of this
relation can be easily checked in real-time as follows.

First n samples of the time-varying signal ν(t) := u(t)/ũ(t)
are computed as

νi :=
u(ti)
ũ(ti)

. (26)

where ti = td +iT , for i = 0, . . . , n−1 with T a suitable sampling
period. The confirmation of the efficiency loss failure requires
a constant value of ν(t). Therefore, the mean ν̄ and sample vari-
ance σν of ν are computed using the recursive algorithm in (20),
with uk replaced by νk. Then, the efficiency loss failure is con-
firmed if σν ≤ τσν , where τσν is a suitable threshold for zero
variance.

3.5. Robustness assessment
The assessment of the robustness of the FDD system serves

primarily to check the performance of the FDD system in pres-
ence of all relevant uncertainties (parameters, operation points,
maneuvers, disturbances, noise). It is also part of the verifica-
tion and validation (V&V) of the aircraft design and of the air-
craft certification (clearance). By discovering possible hidden
design weaknesses and by finding worst-case parameter combi-
nations, robustness assessment is also a valuable design aid.

The robustness assessment, due to the multitude of per-
formed tests, is computationally expensive. Significant cost
reduction can be achieved by using efficient assessment tech-
niques, which may contribute to significantly reduce the de-
velopment costs of aircraft monitoring systems. The industrial
standard is the use of Monte Carlo (MC) simulation and param-
eter gridding-based techniques for this purpose. However, sev-
eral recent European projects (Fielding et al., 2002; Varga et al.,

2011a) demonstrated the usefulness of clearance methods us-
ing advanced robustness analysis methods based on worst-case
(WC) search with global optimization techniques. The useful-
ness of these methods for the V&V of FDD systems is shown
in what follows.

The Monte Carlo simulation and parameter gridding based
methods have the main advantage of being simultaneously ap-
plicable to several performance criteria. Also the computed re-
sults are widely accepted for industrial V&V. However, these
methods only single out parameter combinations which violate
some design requirements, and thus produce only a rough es-
timation of worst-case parameter combinations. Also, because
of the discrete character of the search, both methods can fail in
finding violation even if they exist, if these parameter combina-
tions lie in intermediary points (which are not tested).

Within the ADDSAFE Project, the Functional Engineering
Simulator (FES) environment described in (Goupil and Marcos,
2012) has been used for the verification of the FDD designs.
The FES is based on MATLAB-Simulink and built around
the aircraft closed-loop nonlinear simulation benchmark model
augmented with the designed FDD system as shown in Fig. 1.
For randomly generated combinations of the uncertain param-
eters, the analysis tools implemented in FES evaluate several
indicators which allow to assess the performance characteris-
tics of the FDD system.

While Monte Carlo simulation can be seen as a useful veri-
fication technique (e.g., well suited for rapid prototyping), for
validation purposes it is necessary to use alternative approaches
which are able to cover continuous uncertain parameter ranges,
provide guarantees for lack of hidden weaknesses and deter-
mine worst-case parameter combinations to serve for design
enhancements. Therefore, for the validation of the FDD de-
sign, a global optimization-based worst-case search is a suitable
approach which fulfils all the above requirements and delivers
(usually in shorter times than with Monte Carlo simulation) ac-
curate estimations of worst-case parameter combinations, for
example, by maximizing the fault detection and identification
time. The optimization environment MOPS (Multi-Objective
Parameter Search) of DLR (Joos, 1999) provides an easy ac-
cess to different global optimization algorithms together with
visualization tools of the computed results and even of the inter-
mediary iterations. For the maximization of the fault detection
and identification time, the differential evolution (DE) global
search method has been employed (Storn and Price, 1997). This
method allows to perform many function evaluations in paral-
lel, which significantly contributes to alleviate the associated
computational burden due to expensive simulation runs.

The FDD system synthesis procedure relies on extensive tun-
ing, which usually allows to avoid false alarms and missed de-
tection. Therefore, only the application of the worst-case search
based approach to determine the parameter combinations lead-
ing to the worst detection time performance is necessary. Thus
the robustness analysis tries to find worst case combinations of
uncertain parameters, aircraft maneuvers, wind and noise inputs
which maximizes the DTP defined in (19), where td is the total
time necessary for fault detection and identification. It is to be
expected that the largest DTP provided by the worst-case search
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is larger than the one produced by Monte Carlo or griding based
techniques.

4. Synthesis of a robust FDD system

In this section we apply the proposed synthesis methodology
for the design of a robust FDD system for monitoring n f = 4
categories of additive flight actuator faults, namely the jam-
ming, oscillatory failure, runaway and loss of efficiency, in the
case of a civil aircraft elevator. The employed FDD system ar-
chitecture is depicted in Fig. 2.

The scheduling variable has been defined as ρ =

(u, sign(u̇), p), where the components of the vector p are the
calibrated airspeed Vcas, the aircraft altitude h, the aircraft mass
m and the position of the center of gravity Xcg along the x-axis.
The common LPV residual generator has the input–output form
(8) with the state space realization (11) and the state space ma-
trices given in (12). The typical values for the filter pole a = 14
and actuator gain k0 = 14 have been employed. The implicit
assumption in this paper is that no (sensor) faults occur when
measuring the scheduling variables. In the case of detected
faulty measurements, simpler approximations of the gain k(ρ)
can be employed (e.g., even a constant gain), which however
may lead to performance diminutions.

In what follows we describe the application of the specific
methodological steps for the monitoring of each individual
fault. In all cases simulation-based robustness assessment re-
sults are presented, which illustrate the robust performance of
the resulting FDD system. The main uncertainties considered in
the robustness analysis are the flight conditions (altitude, speed)
over the whole flight envelope and the full range of variations
of the aircraft mass and center of gravity position. While the
limits of the altitude h and the mass m are fixed, the limits of
the center of gravity Xcg depend on the actual mass, while the
limits of the calibrated airspeed Vcas depend on the actual mass
and altitude. This leads to somewhat reduced bounds for these
parameters depending on the concrete flight condition (Varga
et al., 2011b). Additionally, uncertainties up to 5% in the aero-
dynamic database, up to 10% in the measurements of altitude
and velocity, and up to 10% in the accuracy of the estimations
of the mass and center of gravity have been considered.

4.1. Monitoring control surface jamming

4.1.1. Parameter tuning
The free parameters of the fault evaluation and decision block

can be determined in an optimal way, such that typical require-
ments as lack of false alarms and missed detections, as well
as constraints on detection times are fulfilled. Multi-objective
optimization based tuning strategies have been described, for
example, in (Varga and Ossmann, 2012), where the term inte-
grated tuning has been employed to emphasize that the FDD
system runs with a robustly stable closed-loop system as shown
in Fig. 1.

For the tuning of the FDD system, the values of the param-
eters αr, βr and γr of the residual evaluation block have been
determined by maximizing the gap τd − τ f , where τ f is the

false alarm bound in (16) and τd is the detection bound in (17).
The maximization of τd − τ f has been done such that the fault
detection time satisfies td ≤ tdetec in (18).

The optimal setting of the parameter of the residual evalua-
tion filter (13) is αr = 0.3, βr = 1 and γr = 0.2, while the choice
τ = 0.1 of the detection threshold satisfies τ f < τ ≤ τd. This
leads to a completely satisfactory fault detection performance.

4.1.2. Verification and validation results
The determination of the threshold τ relies on worst-case

search-based evaluations of the false alarm and detection
bounds, and therefore its choice above guarantees the fulfill-
ment of all basic performance requirements. To provide sup-
plementary information on the robustness of the overall detec-
tion time performance of the FDD system, optimization-based
search techniques have been used to determine the global worst-
case detection time. The analysis itself relies on repeated sim-
ulations of the nonlinear model of the closed-loop aircraft in-
cluding a nonlinear control law ensuring robust stability over
the whole flight envelope (see Fig. 1).

A Monte Carlo simulations based validation campaign with
FES covered a total of 1200 points in the flight envelope, which
have been used to test the robustness of the designed FDD sys-
tem in fault free cases during six demanding maneuvers (e.g.,
pitch protection and angle of attack protection maneuvers).
None of these test points/maneuvers triggered any false alarms.
To test the detection performance, the jamming at small deflec-
tions of the elevator during cruise and smooth turn maneuvers
has been tested in 1000 different flight points. In particular,
jamming at null deflection occurring in cruise has been detected
during turn maneuvers. Note that jamming at small deflections
during smooth maneuvers poses challenges for the fault detec-
tion due to the small amplitudes of the residual signals. The
Monte Carlo analysis provided a mean detection and identifica-
tion time of 3.57sec with a standard deviation of 0.92sec and a
maximum detection time of 10.65sec. In Fig. 3 the histogram
of the identification times determined by the Monte Carlo sim-
ulations are depicted. It can be observed that most of the 1200
fault cases are detected and identified nearly in minimum time
of 3.01sec, and only a few ones are delayed. These delays are
caused by the presence of very small control inputs and hence,
small residuals, especially at high velocities in the flight enve-
lope.

The optimization-based worst-case search has been per-
formed on a Linux cluster with 16 CPUs running at 2.6 GHz
the MATLAB Parallel Toolbox. An optimization run, involv-
ing about 1500 function evaluations, took around 15 minutes.
The resulting worst case detection and identification time of the
jamming for the designed FDD system was 18.09sec, which is
still completely satisfactory for an industrial usage. Note that
this time is about 40% higher than 10.65sec, the time found
by Monte Carlo simulations. Fig. 4 depicts the search points
in the normalized flight envelope and normalized weight-and-
balance diagram, which have been generated by the DE method
during the worst case optimization. Values of the identification
time larger than 10sec are marked with red crosses, while val-
ues lower than 10sec are marked with blue circles. As it can
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Figure 3: Histogram of the fault identification times

be seen, the more critical region of the flight envelope from the
point of view of a fast identification of the jamming corresponds
to high velocities in combination with a more forward center of
gravity position. This parameter combination makes the control
task easier by needing smaller size inputs to steer the aircraft,
but adversely affects the detection and identification times of
the faults.
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Figure 4: Search points generated by the DE method

4.1.3. Industrial evaluation
The industrial evaluation has been performed using

hardware-in-the-loop simulations with a flight actuator test
bench built around a real elevator actuator with simulated com-
mand inputs, aerodynamic forces and hydraulic pressures, pro-
viding continuous monitoring of computer internal variables.
This bench offers the possibility to validate the FDD system in

degraded configurations, as in the case of low hydraulic pres-
sure and high loads on the control surface. The industrial val-
idation campaign consisted of the assessment of the robust-
ness (i.e., the lack of false alarms) and of the detection per-
formance (i.e., the lack of missed detections and satisfactory
detection time). The robustness of the FDD designs has been
assessed during pure lateral maneuvres, pure longitudinal ma-
neuvres and during mixed maneuvres (combining lateral and
longitudinal movement in the same maneuvres). Both smooth
and dynamic maneuvres have been performed, as for example,
auto-pilot maneuvres, flight control checks, take-off and land-
ing, certification maneuvres, etc. The detection performances
have been assessed by simulating the jamming failure scenario,
during a classical flight and during specific maneuvres. The re-
sults have shown a high degree of robustness of the designed
FDD system for the whole range of tests and a highly satis-
factory detection performance. Further details on the industrial
setup can be found in (Varga et al., 2013).

A typical detection result of a jamming occurring at t f = 6 s
at a surface deflection of −2◦ is presented in Fig. 5.
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Figure 5: Detection and identification of a jamming at −2◦

In Fig. 6 an example is presented for the detection of a jam-
ming at a null surface deflection at t f = 0 s. As it can be ob-
served, the dedicated identification scheme based on Narendra-
type filters (21) has a significantly shorter identification time tid0
than the identification time tid resulting when employing a gen-
eral purpose fault identification method of jamming at arbitrary
deflections.

4.2. Monitoring of OFC
4.2.1. Parameter tuning

For the tuning of the FDD system, the values of the parame-
ters (αr, βr, γr) of the residual evaluation block and the thresh-
old τ of the decision making block have been determined by
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Figure 6: Detection and identification of a jamming at 0◦

maximizing the detection gap τd − τ f . The optimal setting with
αr = 0.85, βr = 0.8, γr = 0.08 and the choice τ = 0.7 led to
a completely satisfactory fault detection performance. Recall
that the signal processing based identification of the OFC fre-
quency presented in the subsection 3.4.2 is only triggered if the
evaluation signal θr(t) crosses the corresponding threshold τ.

4.2.2. Verification and validation results
The robustness of the designed FDD system has been thor-

oughly tested for both fault free and faulty situations in the
whole flight envelope and full range of aircraft parameter vari-
ations. To check for the lack of false alarms, typical maneuvers
as for example, piloted flights with various pilot inputs (longi-
tudinal/lateral stick doublets, pedal input demand, nose up/nose
down demands) or typical navigation maneuvers (level flight,
flight path angle target mode, yaw angle target mode, speed
change, steady sideslip, coordinated turn, etc.) have been used.

Using optimization-based worst-case search, the normalized
detection time DTP defined in (19) has been used as clearance
criterion, where t f is the time of occurrence of the fault, td is
replaced by tid which denotes the time of the identification of
OFC and tdetec is the maximum admissible value for tid. A max-
imum value above 1 of this criterion indicates a violation of the
required detection time performance.

A typical fault-free maneuver is depicted in Fig. 7, where
the actuator output u follows almost instantly the demanded
signal uc. The generated residual r is corrupted only by the
measurement noise in u, which is also present in the evaluation
signal θr. This however remains below the threshold τ,
indicating no fault.

Fig. 8 illustrates the occurrence of a liquid OFC with a fre-
quency of 0.5Hz (i.e., ω = π) in the actuator output u at t f . The
visible difference between uc and u indicates that the residual
signal has likely an oscillatory behavior. Indeed, the evalua-
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Figure 7: Example for fault free maneuvering

tion signal θr increases rapidly and crosses the threshold τ at td,
when the fault is detected. The signal based fault identification
indicates at tid that the value |Yk(π)| of the power spectral density
of the residual becomes larger than the threshold τ f req. In this
example the total detection time of the OFC is tid − t f = 2.6 sec,
of which td − t f = 0.4sec are required to detect the occurrence
of a fault and tid − td = 2.2sec to identify it.
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Figure 8: Detection and identification of an OFC

To assess the global performance of the FDD system for the
detection of the OFC, the worst-case normalized fault detec-
tion and identification time DTP defined in (19) has been deter-
mined for several OFC situations in a cruise flight. Recall that
the specific choice of the threshold τ described in subsection
3.3.3 already guarantees the fulfillment of all requirements re-
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garding the lack of false alarms and missed detections, as well
as satisfactory detection times. Thus, the performed worst-case
analysis only provides supplementary information on the over-
all robustness of the detection time performance of the FDD
system. The worst-case analysis results for three liquid and
three solid OFCs for three typical frequencies (small, medium,
large) in the range [0.15,10]Hz are listed in Table 1. As it can be
observed, the DTP tends to increase with the frequency, which
indicates that the detection and identification of OFC at higher
frequencies appears to be more challenging for the proposed
method. Further details can be found in (Varga and Ossmann,
2012).

Table 1: Worst-case analysis results
OFC Type Frequency DTP
Liquid small 0.62
Solid small 0.59
Liquid medium 0.68
Solid medium 0.63
Liquid large 0.82
Solid large 0.75

4.3. Monitoring of runaway

4.3.1. Parameter tuning
For the tuning of the FDD system, the values of the parame-

ters (αr, βr, γr) of the residual evaluation block and the thresh-
old τ of the decision making block have been determined by
minimizing the detection time td, under the constraints that no
false alarms and no missed detection occur. The optimal setting
with αr = 0.6, βr = 1, γr = 0.2 and the choice τ = 1 led to a
completely satisfactory fault detection performance.

4.3.2. Verification and validation results
The FDD system to detect runaways of the elevator has been

tested with the FES. The analysis focus was the determination
of the largest DTP over a grid of 316 operating points and pa-
rameter combinations, for different runaway rates. The required
detection times tdetec can be chosen to correspond to a certain
variation of the deflection angle.The analysis in 1530 points de-
termined 0.80 as the worst-case DTP, thus indicating a fast and
reliable detection of this type of faults. However, most of DTP
values were ranging between 0.1÷ 0.5, thus providing very sat-
isfactory detection performance. Thus the detection of a run-
away fault is very fast as depicted in Fig. 9, which shows the
input signal uc, the output signal u, the evaluation signal θr and
the corresponding threshold τ, with the fault occurring at t f , the
fault detection happening at td and fault identification achieved
at tid.

The worst-case search found a value of exactly 1 for the DTP,
which results at high absolute values of the runaway speed. The
absolute allowed detection time in this case is 0.05sec. For a
sampling time T = 0.01sec this leads to only n = 5 time steps
allowed to accomplish the detection as well as the identifica-
tion. However, the fault identification can be accomplished for
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Figure 9: Typical detection of a runaway during cruise
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Figure 10: Search point generated by the DE method

high rates in one single time step, as the variation rate of the
actuator dominates the measurement noise and the value of | ¯̇u|
exceeds u̇max its threshold after one single time step. The worst
case search yields to a DTP including the fault identification
time of exactly 1. Fig. 10 depicts search points for different
faults rates, which have been generated by the DE method dur-
ing the worst-case search. Clearly visible is the increase of the
DTP with the absolute value of the fault rate, while for low ve-
locities the DTP lies below one.

4.4. Monitoring of loss of efficiency

4.4.1. Parameter tuning
The free parameters of the fault evaluation and decision block

in case of the loss of efficiency have been determined by min-
imizing the detection time td again under the constraints that
no false alarms and no missed detections occur. The opti-
mal setting for the free parameters was found at αr = 0.05,
βr = 1, γr = 0.8. The choice of τ = 0.1 satisfies the condition
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τ f < τ ≤ τd and led to a completely satisfactory fault detection
performance.

4.4.2. Verification and validation results
The robustness of the designed FDD system has been tested

for both fault free and faulty situations in the whole flight en-
velope and full range of aircraft parameter variations. To check
for the lack of false alarms, typical maneuvers have been used.
The worst-case analysis was conducted to find the largest DTP
for a minimum efficiency loss between 30% and 90%. The re-
quirement was defined to detect the fault before the end of a
turn maneuver with very small actuator inputs, thus making the
detection difficult. The resulting worst case for the total de-
tection time of the fault was found at tid − t f = 4.8 sec, thus
providing satisfactory detection performance. Fig. 11 depicts a
typical situation of the loss of efficiency during a turn manoeu-
ver, which shows the input signal uc, the output signal u, the
evaluation signal θr and the corresponding threshold τ, with the
fault occurring at t f , the fault detection happening at td and fault
identification at tid.
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Figure 11: Typical detection and identification of a efficiency loss of 50% dur-
ing a smooth turn

5. Conclusions

We described and applied a practical model-based method-
ology for the synthesis of a FDD system for monitoring con-
trol surface faults using a component level approach. Several
advantages of the proposed methodology are important to be
recalled. These are: (1) the employed accurate LPV approx-
imation of the nonlinear actuator model guarantees a robust
fault detection performance using a low complexity (first or-
der) LPV fault detection filter; (2) the integrated optimal tuning

of the parameters of the fault evaluation and diagnosis blocks in
a system-wide closed-loop environment guarantees the overall
performance robustness of the FDD system (i.e., lack of false
alarms, lack of missed detections, satisfactory detection times);
(3) the use of suitable fault identification techniques addition-
ally enhances the robustness of the fault detection and provides
useful information for control reconfiguration in a fault toler-
ant control setting; (4) the low real-time computational burden
associated with the designed FDD system is guaranteed by the
low complexity (first order) fault detection filter and the trig-
gering of execution of identification algorithms only after the
detection of a fault. The proposed FDD system architecture
in Fig. 2 can be seen as generic in addressing all kind of ad-
ditive actuator-control surface faults using a component level
approach. A similar architecture for a local monitoring of dif-
ferent categories of parametric (i.e., multiplicative) faults (e.g.,
actuator rod disconnection or floating, loss of efficiency due to
changes in actuator gain) can be devised using model-detection
techniques based on a multi-model approach as described in
(Varga, 2009a; Ossmann and Varga, 2013).
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