
	

Conception and Implementation of a
Usability Problem Analysis Tool

and its Comparison with
another Usability Technique on the Example of a

Workflow-driven Integration Environment

Oliver Seebach | UnterstraSSe 19 | 56814 Faid | Oliver.Seebach@dlr.de

Master‘s Thesis

Rheinische Friedrich-Wilhelms-Universität Bonn
Institut für Informatik III

Professor Dr. Armin B. Cremers

Bonn, den 17. Juli 2013

in cooperation with:

Master’s Thesis
"Conception and Implementation of a Usability Prob-
lem Analysis Tool and its Comparison with another Us-
ability Technique on the Example of a Workflow-driven
Integration Environment"
By Oliver Seebach
Rheinische Friedrich-Wilhelms-Universität Bonn
Submission: 17.07.2013

First Supervisor
Prof. Dr. Armin B. Cremers
Rheinische Friedrich-Wilhelms-Universität Bonn
Institute of Computer Science III

Second Supervisor
Prof. Dr. Claudia Müller-Birn
Freie Universität Berlin
Institute of Computer Science

In Cooperation with
German Aerospace Center (DLR)
Simulation and Software Technology
Distributed Systems and Component Software

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig und nur mit den
angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen, die dem Wortlaut oder dem
Sinne nach anderen Werken entnommen sind, durch Angaben von Quellen als Entlehnung
kenntlich gemacht worden sind.

Bonn, den 17.07.2013

Abstract

The demand for good usability has become indisputable as usable products are more prof-
itable, secure and enhance the reputation of its producing company.

For many applications abstract usability problems like "Users have problems using the on-
line shop" are known, but bringing in concrete design improvements is hard. Thus, it would
be desirable to transfer it to concrete problems like "The meaning of text field ’ID’ in form
’Payment’ is unclear". Deriving concrete redesign ideas from such a concrete problem is not
that hard anymore.

The thesis provides a concept and a prototypical implementation of a tool to analyze an ex-
isting abstract usability problem to enable an analyst to submit substantiated improvement
suggestions. The tool is automatically and remotely applicable. This reduces travel expenses
and accelerates data collection. To evaluate the results the proven Think Aloud method is
taken as reference usability technique. The Track-Analysis-Tool is applied on the example
of the workflow-driven integration environment RCE. A user task representing the abstract
usability problem "Users have problems getting started with RCE" is defined. A study with
13 participants divided into two iterations is conducted.

The investigation of the results shows that the Track-Analysis-Tool reveals the same cru-
cial usability problems as the Think Aloud method does and is particularly useful when it
comes to quantifications like task completion times. The Track-Analysis-Tool lacks to gather
subtle usability problems which can be detected with other techniques like the Think Aloud
method.

Überblick

Der Bedarf nach Benutzerfreundlichkeit ist nicht von der Hand zu weisen, da benutzer-
freundliche Produkte ertragreicher und sicherer sind und das Ansehen des Herstellers er-
höhen.

In vielen Anwendungen sind abstrakte Probleme wie "Benutzer haben Probleme mit dem
Onlineshop" bekannt, jedoch ist es schwierig konkrete Designverbesserungen einzubringen.
Daher ist es wünschenswert, daraus konkrete Probleme abzuleiten, z.B. "Die Bedeutung
des Textfeldes ’ID’ im Formular ’Zahlungsweise’ ist unklar". Von solch einem konkreten
Problem lassen sich Designänderungen leicht ableiten.

In dieser Arbeit wird ein Konzept und eine prototypische Implementierung eines Tools
zur Analyse von existierenden abstrakten Problemen vorgestellt. Somit kann ein Analyst
fundierte Verbesserungsvorschläge einbringen. Das Tool ist automatisiert und per Fernzu-
griff einsetzbar. Dadurch werden Reisekosten gespart und die Datenerfassung beschle-
unigt. Zur Evaluation wird die bewährte Think Aloud Methode als Referenztechnik zu
Rate gezogen. Am Beispiel der Integrationsumgebung RCE wird das Track-Analyse-Tool
erprobt. Dazu wird eine Aufgabenstellung definiert, die das abstrakte Problem "Benutzer
haben Probleme mit den ersten Schritten in RCE" abdeckt. Eine Studie mit 13 Teilnehmern -
aufgeteilt in zwei Iterationen - wird durchgeführt.

Die Untersuchung der Ergebnisse zeigt, dass das Track-Analyse-Tool die gleichen kritischen
Probleme wie die Think Aloud Methode erkennt und sich als besonderes sinnvoll erweist,
wenn Quantifizierungen erwünscht sind, z.B. in Form von Bearbeitungszeiten. Allerdings
scheitert das Track-Analyse-Tool darin, subtile Probleme zu entdecken. Diese können mit
anderen Techniken wie der Think Aloud Methode erkannt werden.

ix

Acknowledgements

First of all I would like to express my gratitude to Prof. Dr. Armin B. Cremers from
Rheinische Friedrich-Wilhelms-Universität Bonn and Prof. Dr. Claudia Müller-Birn from
Freie Universität Berlin for supervising my thesis.

I would also like to thank my tutors who helped me to keep on track and provided
excellent guidance. My appreciations go to Doreen Seider and Robert Mischke from
Simulation and Software Technology of the German Aerospace Center, to Mark von
Zeschau from Rheinische Friedrich-Wilhelms-Universität Bonn and to Julia Schenk from
Freie Universität Berlin. Moreover I would like to thank the entire RCE development team.

My sincere thanks also goes to the probands of the study I conducted in the context
of the thesis. Thanks to the employees of Simulation and Software Technology and the
Institute of Air Transport and Airport Research of the German Aerospace Center for
spending their valuable time.

Last but not least I would like to thank my beloved ones for supporting me through-
out the entire time.

xi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Setting . 2
1.3 Problem Definition . 3
1.4 Research Question . 4
1.5 Challenges . 4
1.6 Limitations of the Thesis 5
1.7 Outline . 6

2 Foundations 7
2.1 Usability . 7

2.1.1 Definitions of Usability 7
2.1.2 Relation and Distinction to User Experience . . . 8
2.1.3 Further Considerations 9

2.2 The Think Aloud Method 11
2.2.1 Origin and Approach 12
2.2.2 Advantages . 12
2.2.3 Disadvantages . 13
2.2.4 Variations of the Approach 13
2.2.5 Guidelines for Conducting a Study 14

2.3 RCE - The Remote Component Environment 15
2.3.1 Origin and Current Application 15
2.3.2 System Architecture 16
2.3.3 GUI Parts . 17

2.4 RCP, JFace and SWT . 18
2.4.1 Benefits of the Eclipse Rich Client Platform 18
2.4.2 UI Toolkits JFace and SWT 18

2.5 Creativity Method Six Thinking Hats 19
2.5.1 Six Colors - Six Attitudes 20
2.5.2 Benefits of the Method 21

3 Conception 23
3.1 Strategy . 23
3.2 Track-Analysis-Tool . 24

3.2.1 Definition of a Subtask 24
3.2.2 Subtask Segmentation 25
3.2.3 Interaction Patterns 26
3.2.4 Mouse Track . 27
3.2.5 Analysis Algorithms 28

3.3 Reference Usability Technique 33

xii Contents

3.3.1 Requirements for the Reference Technique 34
3.3.2 Comparison of Existing Techniques 34
3.3.3 Reasons for the Think Aloud Method 36

3.4 Usability Metrics . 37
3.4.1 Between vs. Within Comparisons 37
3.4.2 Standardized Metrics 37
3.4.3 Application Specific Metrics 39

4 Implementation of the Track-Analysis-Tool 43
4.1 Technical Infrastructure 43
4.2 Data Exchange Format . 44
4.3 Capture Tool . 45

4.3.1 Enable Tracking only when needed 45
4.3.2 Implementation-specific Challenges 46
4.3.3 SWT Components and Events 50
4.3.4 GEF Components and Events 50
4.3.5 RCE-specific Patterns 51
4.3.6 Mouse Track Events 51
4.3.7 Missing Events . 52

4.4 Analysis Tool . 52
4.4.1 Subtask Detection 54
4.4.2 Subtask Rating . 54
4.4.3 Result Presentation 54
4.4.4 Mouse Track . 56

5 Usability Study 59
5.1 Application of the Track-Analysis-Tool and the Think

Aloud Method . 59
5.1.1 Distinction between User and Proband 60

5.2 Setup . 60
5.2.1 Infrastructure . 60
5.2.2 Users . 61

5.3 User Task . 62
5.4 Questionnaires . 63
5.5 Iterative Approach . 64
5.6 Problem Detection Procedure 65
5.7 Design Improvements . 65
5.8 Open Design Improvements 66

6 Discussion of the Results 67
6.1 Identified Usability Problems in the First Round 67
6.2 Realized Design Improvements 68
6.3 Evaluation . 70

6.3.1 Comparison between Track-Analysis-Tool and
Think Aloud Method 71

6.3.2 Comparison of Identified Usability Problems . . . 76
6.3.3 Comparison of Metrics 78

6.4 Influences of the Previous Knowledge 82
6.5 Limitations of the Results and Possible Bias 82

Contents xiii

7 Related Work 85
7.1 Interaction Capturing Approaches 85
7.2 Mouse Tracking . 87
7.3 Eye Tracking . 88
7.4 Subtask Recognition . 90
7.5 From Problems to Solutions 90
7.6 Relation of Eye Movement to Mouse Movement 91

8 Conclusion and Future Work 93
8.1 What has been done? . 93
8.2 What are the Discoveries? 94
8.3 What remains open for Future Work? 95

Bibliography 97

Glossary 105

Appendix 111
A Beginning and End Conditions of the Subtasks 111
B List of Typical GUI Elements and Interaction Patterns . . 113
C Excerpt from Example Results Of the Analysis 115
D User Task Sheet . 119
E Questionnaire about Satisfaction 123
F Questionnaire about Foreknowledge 127
G General Information About User Task 131
H List of Frequent and Severe Usability Problems 135

xiv Contents

xv

List of Figures

2.1 Relation between usability and user experience [Pro10] . 9
2.2 RCE software components and its dependencies 16
2.3 Screenshot of the graphical user interface of RCE 17
2.4 Overview of the Eclipse Development Environment

[Rub06] . 19
2.5 Colors and attitudes of the Six Thinking Hats 20

3.1 Exemplary heatmaps visualizing eyetracking data [Nie06] 28
3.2 Subtask detection algorithm 28
3.3 Subtask rating algorithm 31
3.4 The entry "Execute Workflow" can be selected using dif-

ferent mouse paths . 40
3.5 Depiction of a Distance to Success Vector 41

4.1 JSON interacting . 44
4.2 Menu entry and dialog added to RCE to prevent acci-

dentally tracking . 46
4.3 Flow chart of the recursive registration of listeners 47
4.4 Depiction of the registration of listeners for menu entries 48
4.5 Pattern for tracking activation 49
4.6 Prevention of multiple listener registration 50
4.7 Dialog to choose a file to be analyzed 53
4.8 Component diagram of the Analysis Tool 53
4.9 Exemplary mouse track visualization 56

5.1 Setup for the User Test . 61
5.2 Depiction if the iterative approach and its phases 64

6.1 Screenshot of the redesigned workflow wizard: Work-
flows can be placed inside a project 69

6.2 Screenshot of the redesigned component’s context menu:
the configuration can be opened via a menu entry 70

6.3 Screenshot of the redesigned palette: The connection ed-
itor can be directly accessed 71

6.4 The entry "Execute Workflow" can be selected using dif-
ferent mouse paths . 76

6.5 Number of found problems in round 1: The Think Aloud
method reveals more problems 77

6.6 Number of found problems in round 2: The Think Aloud
method still reveals more problems 78

xvi List of Figures

6.7 Comparison between round 1 and 2: The number of
problems decreases in all aspects 78

6.8 Average duration for entire task: More than 2 minutes
are saved in round 2 . 79

6.9 Average duration per subtask: Most times decrease, a
few increase . 80

6.10 Average satisfaction per round: The satisfaction in-
creases in round 2 . 82

xvii

List of Tables

3.1 Usability techniques: Overview of inspection methods . 35
3.2 Usability techniques: Overview of test methods 35
3.3 Frequencies of metrics in user studies [SL09] 38
3.4 Sequences of actions for a Distance to Success Vector . . . 42

4.1 SWT elements and events captured from them 50
4.2 GEF elements and events captured from them 50
4.3 Captured patterns . 51

5.1 List of typical interactions with RCE 62

xviii List of Tables

xix

Listings

3.1 Exemplary output for a Distance from Success Vector . . 42
4.1 Write into a JSON file . 45
4.2 Read in a JSON file . 45
4.3 Java code of recursive registration of listeners 46
6.1 Excerpt from the analysis results: Project naming 72
6.2 Excerpt from the analysis results: Seeking funtionality . . 72

xx Listings

xxi

List of Abbreviations

AOP Aspect Oriented Programming

AWT Abstract Window Toolkit

CPACS Common Parametric Aircraft Configuration Schema

DLR German Aerospace Center (German: Deutsches Zentrum für
Luft- und Raumfahrt e.V.)

EPL Eclipse Public License

GC Graphical Context

GEF Graphical Editing Framework

GOMS Goals, Operators, Methods, Selection rules

GUI Graphical User Interface

HTML Hypertext Markup Language

IDE Integrated Development Environment

IPO Input-Process-Output

ISO International Standards Organization

JSON JavaScript Object Notation

JVM Java Virtual Machine

OSGi Open Services Gateway Initiative

PDF Portable Document Format

RCE Remote Component Environment

RCP Eclipse Rich Client Platform

SUM Single Usability Metric

SWT Standard Widget Toolkit

1

Chapter 1

Introduction

“It is a common experience that a problem difficult at night is
resolved in the morning after the committee of sleep has worked

on it.”

—John Steinbeck

This introduction helps the reader to understanding the motivation for
the thesis and introduces the setting, challenges and limitations. To
lead over to the next chapters, the structure of the thesis is outlined.

1.1 Motivation

The demand for usability testing has become indisputable. Software
that meets its users’ needs makes it more efficient, effective and pleas-
ant. That means more tasks are solved correctly, tasks are solved faster
and users are more satisfied which enhances the reputation of a prod-
uct. Moreover, improving the usability of software can save money: If
a website is more usable it is likely that it will make more sales. If a
machine is more usable it is likely to be more secure. If a highly paid
engineer saves a few minutes to accomplish each task, the investment
into usability testing will pay off quickly [BM05, p. 17].

There are many techniques proposed to enhance the usability of a prod-
uct. They can be divided into evaluator methods where a usability ex-
pert investigates the product in a certain procedure and test methods
where actual or prototypical users are involved in the procedure. Many
usability problems can already be detected with a minimal number of
probands [Nie94a]. It can often be useful to apply several techniques to
find as many usability problems as possible and to look at them from
several points of view.

Analysis is often based on logged data [Nie92b], but there has no ap-
proach been proposed yet that works robust in the context of rich client

2 1 Introduction

applications. As a large amount of data is collected it is often not pos-
sible to be interpreted without additional contextual knowledge. The
raw data needs to be filtered and aggregated with respect to the context.
The desired result is a reasonable amount of data a human being is able
to read, analyze and interpret. Thus, deeper insight into problems can
be derived and redesign suggestions can be proposed.

In the thesis it is explored which difficulties appear when integrating
such an approach into a rich client application. Furthermore, it is an-
alyzed to which extent such an approach can replace or supplement
other proven usability techniques on the example of the Think Aloud
method.

The approach is applicable remotely and in an automated fashion. This
enables the approach to include many users in a distributed environ-
ment. Different departments of a company throughout the world can
participate in the usability test without causing enormous travel ex-
penses.

The thesis focuses on the analysis of usability problems when work-
ing for the first time with the Remote Component Environment
(RCE) [DLR13c] developed at the German Aerospace Center (German:
Deutsches Zentrum für Luft- und Raumfahrt e.V., DLR). From people
who used RCE for the first time it is known that a better start into RCE
is desired. The analysis of usability problems will be applied to this
abstract problem.

Deeper insight about the abstract usability problem is developed as it
is analyzed on a finer granularity - this will help to understand the
cause and to propose redesign solutions. Additionally the results can
substantiate the reasoning for the realization of a specific solution.

The application on the first steps with RCE will provide a better access
into RCE for engineers. Since RCE is open source software, this benefit
is not limited to the borders of the DLR. The DLR is an important part
of the setting which is presented next.

1.2 Setting

The Master’s thesis is written at the German Aerospace Center in
the facility Distributed Systems and Component Software. The German
Aerospace Center is the national aeronautics and space research center
of the Federal Republic of Germany. Research is done in the fields aero-
nautics, space, energy, transport and security. DLR has approximately
7400 employees at 16 locations in Germany: Cologne, Augsburg, Berlin,
Bonn, Braunschweig, Bremen, Goettingen, Hamburg, Juelich, Lam-
poldshausen, Neustrelitz, Oberpfaffenhofen, Stade, Stuttgart, Trauen,
and Weilheim. DLR also has offices in Brussels, Paris, Tokyo and Wash-
ington D.C. [DLR13b]

1.3 Problem Definition 3

The facility Distributed Systems and Component Software describes its
work as follows:

"The Distributed Systems and Component Software depart-
ment works on software engineering, develops challenging
software solutions for the German Aerospace Center, and
does research in scientific projects in the field of software
technology. The main focuses of work are in software engi-
neering, high performance computing, and distributed soft-
ware systems." [DLR13a]

RCE is based on the Eclipse Rich Client Platform (RCP). It is an dis-
tributed platform for the integration of applications. To these applica-
tions RCE provides access to software components like a workflow en-
gine, privilege management or an interface to external resources. Thus,
RCE enables application developers to concentrate on the application-
specific logic rather than on the interaction with other applications by
embedding them into one unified environment. [DLR13d]

RCE is open source software and can be accessed and used for free. It
is already in use among several departments in DLR and also external
companies have shown interest in using RCE.

The probands to conduct the usability tests are employees of the DLR.
There are no preferences regarding age, gender or expertise in terms of
informatics. Since the process of getting started with RCE is under ob-
servation, the probands are required to have no prior knowledge about
how to work with RCE.

After the setting and the motivation is defined, the problem definition
is presented.

1.3 Problem Definition

The problem under observation is to develop an approach that is ca-
pable of analyzing a known usability problem in more depth in an au-
tomated fashion. Having the result of the analysis at hand an analyst
should be able to quickly detect detailed usability problems and derive
redesign solutions for them.

The data basis for the approach is formed by captured interaction of the
user with the interface.

To evaluate the approach another proven usability technique is taken
as reference and simultaneously applied in a user study. Differences
and commonalities of results of the two methodologies are compared
regarding the identified detailed usability problems. Thereby the ca-
pabilities and limitations of the usability Track-Analysis-Tool based on
captured interaction are explored.

4 1 Introduction

Design improvements are derived from the identified usability prob-
lems and realized. Suitable metrics are determined. They are measured
within the user study before and after the design improvements are re-
alized. To show that actual usability problems are detected and solved
it is desirable that the metrics improve.

Having this problem definition in mind, research questions are formu-
lated.

1.4 Research Question

Research questions derived from the problem definition are the follow-
ing:

• If an abstract usability problem is identified, is there a way to
deeply analyze this problem in an automated fashion?

• Is it possible to gain information about usability problems using
captured interaction data, such as mouse tracks or clicks?

• If it is possible, does it yield the same results as other proven us-
ability methods can extract?

• If the methods yield different usability problems, which ones are
more crucial?

• Is there a systematic reason why they do or do not find the same
usability problems?

• Can the usability of the given software be significantly improved
by enhancing the problems found by the newly developed ap-
proach?

The answers to these research questions imply several challenges.

1.5 Challenges

There are several challenges to face. Some of them are of conceptional
nature while others are technical challenges.

An approach has to be developed that allows to associate user actions
with intentions given additional context knowledge. The procession of
potentially overlapping intentions in a robust manner is a particularly
challenging task.

The rating of each section of the overall task has to be defined. There-
fore existing metrics and newly developed metrics have to be weighted
and reviewed for suitability.

Moreover, it has to be made sure, that enough events can be logged
so that substantiated statements can be made. Therefore it has to be
clarified how comfortable the interaction with the used technologies is.

1.6 Limitations of the Thesis 5

The logging functionality should be integrated into the software in a
non-intrusive manner. That means it should always run in background
without interfering with the user’s actions and it should be activated
knowingly. Moreover it should be plugged into the application without
interfering with the source code. Similar to other cross-cutting concerns
like logging or security is should not be spread over multiple classes.

From an organizational point of view it is a challenge to acquire enough
suited probands for the user study. As learning effects must not occur,
each user can only participate in one iteration. Therefore an appropri-
ate task, covering the required topics has to be defined.

It is assumed that the correct assignment of interactions to intentions in
a robust and automated manner is a non-trivial task.

As a further challenge, another usability technique suitable to compare
identified usability problems has to be chosen. Due to the temporal
constraints of the thesis it is not possible to test all methods. Thus,
research based on the literature has to suffice and substantiate the deci-
sion.

As the author has just limited experience in conducting studies, the
preparation, execution and analysis of the study is associated with cer-
tain risks and uncertainties.

If the detected problems of both techniques turn out to be diverse, an
approach to deal with that has to be developed. Moreover, the deriva-
tion of solutions to the identified problems is a challenge. The problems
are not predictable, thus the complexity of the solution generation is not
known in advance.

1.6 Limitations of the Thesis

For reasons of time and scope there are several limitations to the thesis:

To recall, the presumed general existence of a problem must be clari-
fied. Though there are methods proposed [VSK96][Nie92a] to generi-
cally identify usability problems, an integration of them would exceed
the scope of the thesis. An automated, generic approach that identifies
problems without prior knowledge is not the goal of the thesis.

Another limitation of the thesis is the number of iterations of the us-
ability test process. To allow for comparison of metrics, at least two
iterations must be executed, but temporal limitations might prohibit
further iterations.

Moreover the granularity of examination might cause some trouble.
Though some iterations of this approach might optimize a wizard, it
would possibly not catch that the problem is the wizard itself. Thus,
there is no guarantee that the approach will not run into a local max-

6 1 Introduction

imum (an improved wizard) instead of a global maximum, replacing
the wizard by another more suitable concept.

The reader also has to keep in mind that the user study just consists of
one task, i.e. the successful execution of a workflow. In order to exam-
ine the limitations and possibilities of this approach more exhaustive
studies have to be conducted.

A limitation that rises from the setting of the thesis refers to the solution
generation. The proposed solutions must not disturb functionalities of
the software other than the successful execution of the first workflow.

Furthermore the reader has to keep in mind that the number of subjects
is rather small. Thus, empirical statements cannot be made. But as
Nielsen [Nie94a] states, even small numbers of subjects are sufficient to
identify the majority of usability problems. As the scope of the thesis is
the detection and not the quantification of usability problems, a small
number of users is assumed to be sufficient.

1.7 Outline

The thesis is structured as follows:

• 2—“Foundations”: Foundations, which are vital to understand-
ing several technical and conceptional parts of thesis are ex-
plained in this chapter.

• 3—“Conception”: In the chapter "Conception" the developed al-
gorithm, the criteria for the choice of a reference usability tech-
nique and metrics are described.

• 4—“Implementation of the Track-Analysis-Tool”: This chapter
describes the technical infrastructure and the use of the exchange
data format JSON. Moreover the implementation of the tool gen-
erating logs from RCE and the analysis tool, implementing the
developed algorithm are presented.

• 5—“Usability Study”: In the chapter "Usability Study" the setup,
the defined user task and the questionnaires to measure satisfac-
tion metrics are described. More over reasons for the chosen ref-
erence method, the Think Aloud method are stated. The iterative
approach and the realized design improvements are explained.

• 6—“Discussion of the Results”: In the discussion the identified
problems of the two methods are compared. The measured met-
rics are discussed. Commonalities and differences from the Track-
Analysis-Tool and the Think Aloud method are presented.

• 7—“Related Work”: In the chapter "Related Work" scientific ef-
forts dealing with the same context are summarized and analyzed
with regard to the scope the thesis.

• 8—“Conclusion and Future Work”: This chapter summarizes the
thesis and gives an outlook about possible future work.

7

Chapter 2

Foundations

“The foundation stones for a balanced success are honesty,
character, integrity, faith, love and loyalty.”

—Zig Ziglar

This chapter describes technical foundations and methodologies that
are vital to understand several aspects of the thesis. This contains the
notion of usability as it is understood in the context of the thesis. An
introduction to the Think Aloud method which is applied in the study is
given. To understand the technical background, the application under
observation (RCE) and the technologies it is based on (RCP, JFace and
SWT) are presented. It is always a creative process to derive redesign
suggestions to a given problem. In the course of the thesis the creativity
method of the Six Thinking Hats is applied and introduced here.

2.1 Usability

This section aims to give an overview about usability in general and a
notion how it is understood in the context of the thesis.

2.1.1 Definitions of Usability

There are several definitions of usability proposed in literature. Here-
inafter some of them are cited and the crucial properties, particularly
in the context of the thesis, will be extracted to form the understanding
of usability vital for the thesis. Shackel and Richardson [SR91, p. 24]
define usability as

"The capability in human functional terms to be used easily
and effectively by the specified range of users, given speci-
fied training and user support to fulfill the specified range
of tasks within the specified range of environmental scenar-
ios."

8 2 Foundations

Nielsen states his understanding of usability in [Nie94b, p. 26]:

"Usability has multiple components and is traditionally as-
sociated with these 5 attributes: [...] Learnability, efficiency,
memorability, errors, satisfaction."

According to Rubin [RCS11, p. 4] a product is usable when is has a
good usability. For him, this is given when

"... the user can do what he or she wants to do the way he or
she expects to be able to do it without hindrance, hesitation
or questions."

With ISO 9241-11 the International Standards Organization (ISO) has
published a definition of usability as being

"... the extent to which a product can be used by speci-
fied users to achieve specified goals with effectiveness, ef-
ficiency and satisfaction in a specified context of use."

In the thesis the author focuses on usability as the combination of the
following aspects:

• Effectiveness: Did the user succeed with the task? Did the user
need hints to succeed?

• Efficiency: How long did it take the user to succeed with the task?

• Satisfaction: How satisfied was the user? Were there any frustrat-
ing experiences?

• Constraints: Possible constraints are a certain target user group,
a certain limit of required training, social, cultural, political or
monetary constraints.

Derived from that, enhancing usability means to maximize efficiency,
effectiveness and satisfaction without violating these constraints.

2.1.2 Relation and Distinction to User Experience

The terms usability and user experience are often used imprecise and dif-
ferently [Pro10][Not01][TA10, p. 4][LRV+08]. Thus, the relation and
a distinction between the terms as used in the context of the thesis is
clarified here.

Law et al. collected a sample of definitions of the term user experience
[TA10, p. 4][LRV+08]. The definitions mentioned above show that the
understanding of the terms vary a lot.

2.1 Usability 9

Before Usage During Usage After Usage

Usability
(ISO 9241-11)

Anticipated use
Expectations towards the use

Effective, efficient and
satisfying usage

Procession of experienced use
Emotional binding or

dissociation

User Experience
(ISO 9241-210)

Figure 2.1: Relation between usability and user experience [Pro10]

Figure 2.1 depicts how the relation between usability and user experi-
ence can be seen.

Derived from [TA10, p. 4] the following distinction is made: While
usability refers to the ability of the user to use the product for the task
successfully, user experience covers a broader view. User experience
covers the entire interaction with the thing including thoughts, feelings,
reputation and perceptions brought about by the interaction with the
product. A good example for the distinction is the unpacking of the
product.

While usability ignores it and focuses on the actual use of the product,
user experience also examines the act of unpacking the product as it
already influences the overall attitude towards the product.

2.1.3 Further Considerations

In this section further considerations when talking about usability are
described.

Target Groups

When considering usability it is always a good idea to keep the target
group in mind as it has a major impact on the results. [Nie89] as re-
ported by [Nie94b] showed in a study that the difference between the
individual users sad a major impact on the results, even more than the
difference between the tasks.

There is a methodology proposed to classify users in a structured way
[PHR+86]. Moreover, it was shown that good designs often turn out to
be suitable for many user groups.

Nielsen proposes to determine the target groups by the experience
[Nie94b, p. 43 f]. Therefore three dimensions of experience are con-
sidered:

10 2 Foundations

• Experience regarding the current interface of the product

• Experience with computers in general

• Experience with the domain the product deals with

Further criteria for classifications are proposed by Cooper et al
[CRC12]:

Based on demographic criteria like age, gender, educational level or
home zip code users can be classified [CRC12, p. 69]. Goal-directed
design is elaborated as another approach to classify users based on their
goals [CRC12, p. 3]. These goals can be divided into experience goals
like feeling in control or having fun, end goals like being able to create
a workflow unaided and life goals like living a good life [CRC12, p. 92].
Moreover, personas can also be used to model user groups [CRC12, p.
82].

In the context of the thesis the experience regarding RCE is the only cri-
terion to determine whether a user is a potential proband for the study
or not. The probands are required to have no previous knowledge re-
garding the operation of RCE.

Trade offs

Referring to Nielsen [Nie94b, p. 41 f] it is often necessary to make trade
offs when creating redesign ideas, as the following arguments show:

Expert users often need more functionality in software than novice
users. This fact and the idea to combine the functionality needed by
both groups into one interface can lead to complex interface. These
complex interfaces can be a problem themselves. It can be a compli-
cated task not to confront novice users with the expert functionality
and vice versa.

It is often a good idea to enable several ways to interaction, e.g. via
double-click and additionally a menu entry on the respective element.
Having this in mind, interfaces can often satisfy both novice and expert
users. It is a good approach to first try to find a win-win situation where
both user groups are satisfied. If that is not possible, the design should
focus on the project specific requirements.

Metrics

In general, a metric is a way of measuring or valuating a particular
thing or phenomenon [TA10, p. 7]. Metrics quantify a certain property
or state of a thing in a numerical representation. So be able to compare
metrics, there must be a proven procedure or methodology to measure
this metric.

For various domains there is a specific set of metrics. For instance, in
aviation metrics of an aircraft like drag, fuel consumption, passenger

2.2 The Think Aloud Method 11

capacity are of interest. In business revenues, costs and return on in-
vestment are typical metrics.

In usability there are also domain specific metrics. In contrasts to the
metrics just mentioned, the metrics in usability describe how people in-
teract with a product or system. As peoples’ emotions and feelings are
very different and often less tangible than in other domains, measur-
ing these metrics has its own challenges. If it is intended to statistically
evaluate and compare these metrics, confidence intervals are a good
means. [TA10]

As a more exhaustive consideration would exceed the scope of the the-
sis, a short overview about existing metrics, derived from [TA10] is
given.

The following list gives an overview about the different kinds of met-
rics and some examples:

• Performance Metrics: Task success, Time-on-task, Efficiency, Er-
rors

• Issue Bases Metrics: Usability issues, i.e. events that prevent task
completion, take the user "off-course", produce errors or create
confusion

• Self-Reported Metrics: Post-task ratings, post-Session ratings
measuring perception of the system or product

• Behavior/Physiological Metrics: Verbal and non-verbal expres-
sions, eye-tracking, heart rate

• Combined/Comparative Metrics: SUM1, usability scorecards

For more information, see [TA10] and [SDKP06].

After a general idea about usability is formed, the Think Aloud method
is presented because it is the usability technique to be applied in the
user study.

2.2 The Think Aloud Method

In this section the Think Aloud method is examined. Thereby some gen-
eral information about the procedure is given, advantages and disad-
vantages are pointed out and a list of guidelines for the conduction of
a study using the Think Aloud method is presented.

As an outlook, possible variations of the method are described.

1SUM stands for Single Usability Metric and combines several metrics, e.g. task
success, errors and task time into one value

12 2 Foundations

2.2.1 Origin and Approach

The Think Aloud method was first described by Lewis in 1982 [Lew82]
as a method, having a test subject use the system while continuously
think out loud. It was originally applied as a psychological research
method [ES96]. There is the concurrent and the retrospective Think
Aloud procedure [BJLP02]. In the following the focus is on the concur-
rent procedure.

The Think Aloud method is particularly applicable in the early phase
of a product when it comes to the evaluation of the users’ mental model
about the product or system, but can also be applied in other phases.
There are many cases when the Think Aloud method can be used to
detect major usability problems with a very limited number of partici-
pants.

The following sections outline the advantages and disadvantages of the
approach, based on the information from [RCS11, p. 204 f] and [Nie94b,
p. 195 ff].

2.2.2 Advantages

The Think Aloud method has several advantages that make it efficient
and useful in many applications.

It reveals information individually for each participant because it
shows the interpretation of the interface for each participant. Thereby
it is possible to understand the users’ view on the system or prod-
uct and thus recognize possible misconceptions. As people verbalize
their thoughts it is possible to enrich a test report with vivid quotes by
the participants. It is more tangible and convincing to read thoughts
about problems literally than in paraphrased or aggregated state, e.g.
in charts.

The Think Aloud method yields very qualitative data, even from a
small number of participants. That means major problems of an ap-
plication can be found and substantiated using the users’ behavior and
quotes.

In the concurrent version of the Think Aloud method the data collection
takes place while the user task is executed. Thus, the user has no time
for rationalizations revealing an unobstructed view on the results. The
results reflect initial, candid and unfiltered reactions of the participants.

In contrast to other usability techniques the Think Aloud method en-
ables the supervisor to detect even small irritations on the informal
comments. Even if these irritations are not crucial to the overall suc-
cess they can be fixed.

As the actions are visible on a very precise level it is possible to detect

2.2 The Think Aloud Method 13

deviations of the user actions from the ideal path. The supervisor of a
usability study has the option to immediately respond to the procedure
and thus dig deeper into a problem or to give necessary hints.

2.2.3 Disadvantages

Despite all the advantages, there are several disadvantages and situa-
tions when the Think Aloud method should not be the means of choice
to conduct a usability study.

Conducting a Think Aloud study consumes more time and resources
compared to other techniques, which possibly run automated and re-
motely. For many participants it is unnatural to verbalize thoughts,
and encouraging them to do can make them feel insecure. It can be dif-
ficult for them to process information on multiple levels (see [Sea80] as
reported by [BJLP02]).

If a study also collects performance data it has to be kept in mind that
the Think Aloud method can have an impact on the performance met-
rics. This impact can have diverse extents and can either improve or
decrease the participant’s performance. Verbalizing thoughts is an ad-
ditional mental operation and thereby inherently exhausting. This can
decrease the performance of several participants. On the other hand
it can happen that participants work on a task more consciously and
thus their performance - despite the additional mental operation - is
improved. Studies showed that the performance of participants could
be increased:

In one case the performance was increased by 9% [BB84] In another
case the participants had only 20% of the errors and performed twice
as fast [WC92]. Nevertheless one has to keep in mind that the Think
Aloud method when improving the participants’ performance artifi-
cially overlays problems, that users would face when not working so
consciously. That is particularly the case in repetitive tasks of power
users that are performed rather unconsciously. Moreover, these power
users often have more problems verbalizing their thoughts because
they are not explicitly aware of their single actions.

Moreover, the environment established for the Think Aloud method
can be a possible irritation to the participants. For instance, the pres-
ence of the supervisor or other observers can have an (aware or un-
aware) impact on the participant and thus bias the results.

2.2.4 Variations of the Approach

In addition to the originally proposed Think Aloud method, several
variants of this can be useful, depending on the application.

As an example, the Constructive Interaction method [ODR84] encour-
ages two participant to work on a task as a team while thinking aloud.

14 2 Foundations

This feels more natural for the participants. As they talk to each other
the interaction is more vivid, comments are made as a normal part
of the interaction and not particular for the supervisor of the study
[HB92].

The approach is useful in addition to the classical Think Aloud method.
Relying solely on the results of the Constructive Interaction method can
omit the fact that some participants might be able to cooperate better
or worse than others. The method is particularly useful when conduct-
ing a usability study with children, as is feels much more natural for
children to talk to other children than to a foreign supervisor.

Another constraint for the Constructive Interaction variation is that
there must be many participants available as there is a double demand
in comparison to the classical Think Aloud approach.

For further variations of the Think Aloud method see [RCS11, p. 293
ff].

2.2.5 Guidelines for Conducting a Study

A sample of guidelines worthwhile being mentioned is presented here.
It is partially derived from the advantages and disadvantages men-
tioned above and partially adapted from [RCS11, p. 205 ff]

• Be impartial, i.e. react in the same way on mistakes and success

• Never make the participant feel incompetent

• Be aware of the voice and body language. High pitch voice re-
veals a positive reaction while a low voice can be regarded as a
negative reaction

• Following the slogan "Quality over Quantity" it is better to test
fewer participants but be mentally fresh than testing lots of par-
ticipants but being exhausted

• Do not use the Think Aloud approach for tasks that are usually
done unconsciously

• Pay attention when the participant is silent. Sometimes it reveals
more information to note the incident and the participant’s action
rather than urging the participant to think aloud again

• Show interest in the participant’s comments by sometimes repeat-
ing and affirming his or her comments

• Wait patiently

• Take care for participants’ non-verbal signs of confusion and act
accordingly

• Only work on one issue at one time and do not reveal information
about other issues the participant has not discovered yet

• Do not help participants too quickly when they struggle with the
application

2.3 RCE - The Remote Component Environment 15

• Hints should always be noted and only be given as last alterna-
tive, because:

"As soon as you assist, you are affecting the test results
in a major way." [RCS11, p. 211 ff]

This particularly holds for studies were several techniques are ap-
plied simultaneously.

For further information about when and how to give hints, see [RCS11,
p. 212 ff]

After the usability technique to use is presented, the application they
are applied to is introduced.

2.3 RCE - The Remote Component Environment

The Remote Component Environment (RCE) is a workflow-driven in-
tegration framework and serves as an example for the application of
the analysis of usability problems.

This section gives a short introduction about RCE, containing general
information, the system architecture of RCE (derived from [SFL+12])
and an introduction into the graphical user interface (GUI).

The GUI is of particular interest, because the solutions to identified
usability problems will mainly be applied on GUI-level. Changes in
the backend or the fundamental mechanisms of RCE are not applicable
within the temporal restrictions of the thesis.

2.3.1 Origin and Current Application

RCE is an application to create and execute workflows consisting of
workflow components. It is an integrated framework developed by the
DLR facility Simulation and Software Technology. RCE allows the inte-
gration of different domain-specific tools from local or remote locations
into a joined calculation. Thereby cooperation between experts and en-
gineers from various domains at distributed sites is enabled. This is
particularly useful when data and work of different domains strongly
depend on each other. For example, during the design of an aircraft the
dimensions of the wings, the design of the fuselage and the required
power of the engine influence and depend on each other.

RCE was originally developed in the context of shipyard industry to
design ships. Many components, functionalities and concepts are also
derivable onto other contexts. Meanwhile, RCE is in use in other fields
of research and development. For instance, in the early design phase
of an aircraft, in the satellite design or in the modeling of the air traffic
system RCE supports the cooperation of engineers.

The application RCE is open source and licensed under the Eclipse Pub-

16 2 Foundations

lic License (EPL). Though the workflow components are mainly writ-
ten by the RCE development team, it is generally possible that exter-
nal workflow component writers contribute to RCE. Workflow compo-
nents can be individually licensed. This is particularly useful, if com-
ponents use closed source libraries. RCE is platform independent and
currently in use under the operating systems Windows and Linux.

2.3.2 System Architecture

RCE is based on RCP, thus avoiding licensing issues and supporting
the component-based approach.

Distribution

G
U

I

Notification

Privilege Management

Workflow Engine

Components

Data
Management

Figure 2.2: RCE software components and its dependencies

Figure 2.2 shows the RCE software components. The principle of this is
approach is, that the upper layers can consume services from the lower
ones.

The GUI components located next to all other components can con-
sume services from them. Thus, functionality across various layers is
possible, e.g. to depict states about the distributed system or to show
notifications to the end user.

The GUI part is most crucial to the rest of the thesis.

The GUI elements are standard RCP components, enhanced with other
RCE-specific parts, e.g. a login dialog, a log browser, a data manage-
ment view or a graphical workflow editor. All parts are located in sep-
arate bundles. They can be added via the extension point mechanism
(see [HS08]).

For example, the menu entry for the login dialog is added to the "File"-
menu common in many applications. It is important that the GUI bun-
dles can be deactivated, as some components are required to run head-
less, i.e. without a GUI.

2.3 RCE - The Remote Component Environment 17

For example, a component representing a database server that is used
as remote service does not need a graphical interface.

2.3.3 GUI Parts

In this section the major parts of the GUI of RCE are presented. Fig-
ure 2.3 shows a prototypical state of the GUI when working with RCE.

Figure 2.3: Screenshot of the graphical user interface of RCE

The numbered parts are described in the following list:

1. Menu Bar: The menu bar contains standard menus and entries
known from other application, like saving files, opening files,
editing and searching functionality

2. Tool Bar: The tool bar contains controls for the workflows, i.e.
pausing, canceling, resuming

3. Project Explorer: The project explorer contains the projects and
files (e.g. scripts or input data) located in the workspace folder in
a tree view.

4. Graphical Workflow Editor: On the surface of the graphical work-
flow editor workflow components can be added, arranged and
connected. A workflow component is represented by a rectangle
holding an icon and a name.

5. Palette: The palette shows tools and a list of all components avail-
able

18 2 Foundations

6. Properties: The properties tab contains configurations for each
component, for instance the definition of inputs and outputs.

7. Others: At the same location the views for the workflow data
browser, the log, a workflow list and a workflow console are
placed.

The functionality to customize the application by placing different
views at various positions in the GUI is part of RCP and also avail-
able in RCE. The screenshot presented in Figure 2.3 shows the default
layout of RCE.

After RCE is introduced, the technical background influencing the im-
plementation is of interest. Therefore an introduction to RCP, JFace and
SWT is given.

2.4 RCP, JFace and SWT

To recall, usability problems and possible design improvements are ex-
pected on GUI-level. Thus, the relation of RCE to the technologies JFace
and the Standard Widget Toolkit (SWT) [Ecl13] which mainly compose
the graphical user interface is introduced here.

2.4.1 Benefits of the Eclipse Rich Client Platform

The main benefits of the Eclipse Rich Client Platform as presented in
[MLA10, p. 5 ff] are:

Functionalities and code are encapsulated in components. These com-
ponents are also called plug-ins. Components can be combined as de-
sired, thus minimizing overhead by leaving out unnecessary compo-
nents and maximizing flexibility by dynamically loading desired plug-
ins providing additional functionality.

Moreover, as lot of infrastructure comes shipped with RCP, the focus is
the domain and not on the infrastructure. Thus, developers can concen-
trate on how to enhance their views and not how to let them interact.

2.4.2 UI Toolkits JFace and SWT

In the context of the GUI of RCP applications the UI toolkits JFace and
the SWT are important. The following sketch depicts their relations:

The following explanation describing Figure 2.4 is derived from
[Rub06]. Eclipse RCP contains these parts:

• UI Workbench with editors, perspectives, and views.

• SWT, low-level graphics library of Java GUI components. It con-
tains native implementations that hide differences between plat-
forms or operating systems. Thus, there is a single API for the
developer for all platforms.

2.5 Creativity Method Six Thinking Hats 19
Platform Runtime

Workspace Team

Workbench

JFace

SWT

Help

Eclipse Platform

New Tool 1

New Tool 2

New Tool n

Eclipse Platform

Platform Runtime

Workspace Team

Workbench

Help

New Tool 1

New Tool 2

New Tool n

SWT
JFace

Figure 2.4: Overview of the Eclipse Development Environment [Rub06]

• JFace, a GUI abstraction layer for displaying objects that is lay-
ered on top of SWT. It helps developers by providing helper
classes for features that can be tedious to implement.

• Platform Runtime, which defines a model to add extensions.
Thus, loose coupling between plug-ins and just-in-time lazy load-
ing and initialization is enabled.

The other parts are not crucial to the scope of the thesis and are not
further explained here. [Rub06][IBM07]

To conclude the foundations the creativity method Six Thinking Hats is
presented. It is used to gather redesign suggestion.

2.5 Creativity Method Six Thinking Hats

The Six Thinking Hats is a creativity method developed by Edward de
Bono [DB99]. According to de Bono the concept is described as follows:

" ... [A thinker] becomes able to separate emotion from logic,
creativity from information, and so on. The concept is that
of the six thinking hats." [DB99, p. xi]

The hat is a metaphor you can apply several expressions people are
familiar with from real-life. It is a tangible object, thus virtually or lit-
erally putting on a specific hat means to think with a certain attitude.

20 2 Foundations

This attitude is a deliberate process and each attitude is set exclusively.
In the same manner, switching the hat symbolizes jointly switching the
attitude towards the topic. [Car96].

De Bono describes the way the hats influence a discussion as follows:

"The six thinking hats allow us to conduct our thinking as a
conductor might lead an orchestra." [DB99, p. xii]

2.5.1 Six Colors - Six Attitudes

There are six hats, each one associated with a color and an attitude
towards the topic under observation (see Figure 2.5).

Emotions

Facts Critic

Optimism

Creativity

Process

Figure 2.5: Colors and attitudes of the Six Thinking Hats

The idea behind the hats as presented in [DB99, p. 25 ff] is explained
here:

• White hat - Facts: The white hat is associated with a neutral and
objective attitude. It takes care of facts, numbers and information.

• Red Hat - Emotions: The red hat represents emotional attitudes
like wrath, fury, intuition. Hunches and gut feelings are also cov-
ered by that hat.

• Black Hat - Critic: The black hat simulates a sad and negative
attitude towards the issue under observation. Negative aspects,
possible risks and other problems that could arise from the issue
are in the focus of this hat.

• Yellow Hat - Optimism: The opposite of the black hat is the yel-
low one. It is associated with positive and glad feelings. Opti-
mism, hope and possible benefits that might arise from the issue
are the aim of this hat.

2.5 Creativity Method Six Thinking Hats 21

• Green Hat - Creativity: The green hat is associated with creativity.
Symbolizing vegetation and fertile growth the green hat is used
to generate new creative ideas, assuming anything is possible.

• Blue Hat - Process: The blue hat is a meta hat. It is associated
with the organization of the process itself. Thus, the agenda, the
process and the desired decisions are determined while this hat is
put on.

2.5.2 Benefits of the Method

The creativity method Six Thinking Hats has several benefits.

Within the process of the method all members of the team are free to
speak out their ideas without any risk. Several points of view towards
the issue are examined and thus the awareness towards the issue is en-
hanced. Moreover the here describes method has become a convenient
mechanism for thinking in new ways applying simple rules. These
rules help the team to focus their thinking onto one specific attitude at
a time. Several orders of the hats are proposed (see [Ser12]) depending
on the application.

It is assumed that this leads to more creativity in the thinking of the
members of the team. As the method is very verbose, the communi-
cation within the team is improved. The process of decision making is
improved since a lot of aspects are stated, weighted and discussed.

After the foundations for the thesis are clarified, the conception is pre-
sented in the next chapter.

23

Chapter 3

Conception

“There is nothing worse than a sharp image of a fuzzy
concept.”

—Ansel Adams

The conception can be divided into the presentation of the general
strategy, the conception of the two techniques to be compared (Track-
Analysis-Tool and Think Aloud method) and the metrics to be mea-
sured.

3.1 Strategy

As described in the problem definition, the thesis aims to develop a tool
to analyze usability problems in depth and to compare the results with
an existing usability technique as reference.

This chapter describes the strategy and the concepts required to accom-
plish this.

First, the Track-Analysis-Tool developed in the course of the thesis is de-
signed. The Track-Analysis-Tool consists of two parts. One part that
makes sure that all required interaction of the user with the interface is
captured and another part that executes the analysis given additional
knowledge. Therefore technical terms vital to the approach and the
developed algorithms are described.

Second, the selection of a reference usability technique is presented.
Requirements for the technique are stated and a compilation of existing
technique is created. Eventually reasons for the Think Aloud method
as chosen reference technique are presented.

To allow for comparison of the results, usability metrics are defined.
On the one hand a set of standardized metrics is selected. On the other

24 3 Conception

hand application specific metrics are defined to enhance the approach
of usability problem analysis.

3.2 Track-Analysis-Tool

As mentioned above, the Track-Analysis-Tool consists of two parts:

• User interaction with the interface is captured

• Captured user interactions are analyzed

The capture of interactions is realized on the example of the workflow-
driven integration environment RCE. It is assumed that a sufficient
amount and variety of interactions of the user with the interface can
be captured.

The approach regarding the analysis is as follows: To recall, the abstract
usability problem under observation is that people struggle with RCE
when they use it for the first time. Derived from that a user task should
cover the first starting of RCE up to the first successful execution of an
exemplary workflow.

This section describes the concept of subtasks as segments of the user
task that can be examined separately. Moreover the meaning of inter-
action patterns in the context of the thesis are described. As an en-
hancement of the analysis, mouse track visualizations are explored. An
abstract algorithm to assign interactions to their respective subtask and
a further abstract algorithm to rate a subtask given certain additional
contextual knowledge are presented.

3.2.1 Definition of a Subtask

In order to understand the relation between a task, a subtask and in-
teractions it has to be described in more detail, what the term Subtask
means.

For short, a subtask is a subunit or a fraction of a task. A task is for
example a user task given to a user in the course of a study. On the
example of RCE the overall task is to create, configure and execute a
first workflow. The task possibly has a defined goal, but can also be
formulated more freely. Accordingly, a subtask can also have a fixed
goal. An example for a subtask can be the insertion of workflow com-
ponents. The respective goal is reached when all required workflow
components are added to the workflow.

Referring to the context of the thesis, a subtask is a division of the user
task the probands ought to fulfill in the study. Each subtask is defined
by a name and a distinct beginning and end. The beginning and end
can be a certain event or state of the system or a combination of these.
Subtasks can be processed sequentially or concurrently.

3.2 Track-Analysis-Tool 25

In the literature other terms for related constructs or concepts are used,
depending on the domain. Alternative terms are context, task, pro-
cess, activity, activity cluster, task-related subsection or from an abstract
point of view: knowledge.

In the context of the thesis the term subtask is understood as described
above.

3.2.2 Subtask Segmentation

Automated subtask segmentation is desirable, as is makes the tool ap-
plicable on a more universal scope. This is particularly useful when
the task to fulfill is very complex and there are various ways to fulfill
it. Thus, an automated approach would generically map these ways of
fulfillment as a sequence of fulfilled subtasks to the results. It yields
clues about the way people interact with a certain software and which
solution strategies are applied.

Literature proposes several approaches to that issue (see
[GRA10][LFBG07][LG08]). The related work shows that it is gen-
erally possible to detect subtasks to some extent, but it is a complex
task, that still needs manually defined training data, e.g. when
applying machine learning techniques (see [LFBG07]).

Moreover, the results can be imprecise. In [CS09b] a study testing an
segmentation approach was conducted. The correctly detected tasks
were averagely 81%, ranging from 100% to 66%. In the study conducted
in the course of this thesis only a small number of probands is tested.
Thus, a deviation in correctly detected tasks has significant impact.

To conclude, the drawbacks of an automated approach mentioned
above are compared with the additional effort a manual definition of
subtasks would cause:

Given a large number of subtasks, the manual definition requires a lot
of effort and is error prone. In this case the effort to integrate a generic
approach would pay off. As the number of subtasks is quite small,
only one single task is examined and they are easily distinguishable by
human beings they are defined manually.

To recall, the overall task is to create, configure and execute a first work-
flow successfully. The following list gives an overview about the sub-
tasks that the overall task has been devided into:

1. Start the "New Project" wizard

2. Execute the "New Project" wizard

3. Start the "New Workflow" wizard

4. Execute the "New Workflow" wizard

5. Open the workflow

26 3 Conception

6. Add the required components

7. Configure the components

8. Configure required connections between components

9. Start the "Execute Workflow" wizard

10. Execute the "Execute Workflow" wizard

A vital part for the manual definition of subtasks is a distinct begin-
ning and end. The subtasks are required to be executed subsequently.
Concurrent subtasks would increase the complexity tremendously and
are thus excluded from consideration. If subtasks can run concurrently
the assignment has to be done in a more sophisticated way. Given the
points of beginning and end of a subtask are correctly detected, the
events can be assigned accordingly.

A typical beginning of a subtask is the start of a wizard or the open-
ing of the graphical workflow editor. A list of the beginnings and
ends for the subtasks mentioned above can be found in Appendix A—
“Beginning and End Conditions of the Subtasks”.

The identification of the beginning and end of a subtask enables the as-
signment of patterns to subtasks. Moreover, the duration and a mouse
track for each subtask can be associated.

The granularity of the subtasks is further elaborated and explored. It
may be the case that the cause of a usability problem is on a more ab-
stract level than represented by the subtasks.

For example, the analysis might yield the result that a wizard must be
redesigned, although the actual problem is because a wizard might not
fit in that specific situation. So an optimization of the wizard would run
into a local optimum but would fail to optimize on the global scope. In
this case, further examinations are required.

3.2.3 Interaction Patterns

Interaction patterns can be interpreted as interactions between the
graphical user interface and the user on several levels of abstraction.
For example, the starting of a wizard might be seen as a pattern or a
simple click on a button. To proceed towards usability problems rat-
ings are assigned to each pattern depending on whether it contributes
to solving a particular subtask or not.

Patterns on a higher level of abstraction can be seen as a combination
of the simple interaction patterns. On this level of abstraction there are
lots of general patterns common in many applications. Others might
be entirely context specific and must be defined separately.

The following list shows a sample of interaction patterns on a higher
level of abstraction:

3.2 Track-Analysis-Tool 27

• Filling out a form

• Choosing values from a drop down menu

• Fulfilling a wizard

• Move elements on a graphical surface

• Find an element in a tree viewer

• Operate the search function

• Writing an email

Moreover patterns on the lowest level are investigated. Therefore a
sample of common GUI elements and their typical way of interaction
is collected.

A sample of significant patterns on the lowest level is presented here.
For a more exhaustive list, see Appendix B—“List of Typical GUI Ele-
ments and Interaction Patterns”.

• Button: Select

• Checkbox: Check, uncheck

• Wizard: Open, back, next, cancel, finish, close

• Menu: Show, hide

• Palette item: Drag, drop, select

3.2.4 Mouse Track

The mouse positions per subtask are captured. An analysis based on
existing approaches with mouse tracks might help to understand the
identified usability problem in more depth.

One way to capture a mouse track is the use of an external tool. A
basic test showed that IOGraph [ZS13] serves for the purpose of captur-
ing mouse tracks, but lacks the integration into RCE and thus makes
controls complicated.

As described in 2.4.2—“UI Toolkits JFace and SWT” RCE uses SWT as
framework for the graphical user interface. A first test showed that it is
generally possible to automatically collect the mouse movement from
all views of interest. The resulting mouse movement was rudimentary
visualized using SWT graphics functionality.

There are various more sophisticated visualization techniques imag-
inable. For instance, Arroyo et al. [ASW06] present an approach
how to visualize mouse tracks. Moreover, the statistics application R
[Adl10] can be used to visualize two dimensional data as a heatmap.
Heatmaps are often used to visualize the attention of users on web-
sites [OS08][AL08][HNZ]. An example for a heatmap can be seen in
Figure 3.1.

28 3 Conception

Figure 3.1: Exemplary heatmaps visualizing eyetracking data [Nie06]

3.2.5 Analysis Algorithms

In this section the algorithms for subtask detection and subtask rating
are presented. Correctness, completeness and complexity are examined
and examples are given.

Algorithm for Subtask Detection

In order to assign the events to their respective subtask an algorithm
was designed:

Data:

• Set of events E = {e1, e2, ..., en}
• Per subtask with identifier n: A set of conditions to fulfill
Cn = {cn1, cn2, ..., cnm}

Result:
• Per subtask with identifier n: A set of events
En = {en1, en2, ..., enm}

1 x = 1
2 create priority queue Pe containing all events of E ordered by

time stamp
3 forall the events e in Pe do
4 add e to Ex

5 if e fulfills a condition cnm then
6 mark cnm as fulfilled
7 if all cnm in a Cn are fulfilled then
8 mark Cn as fulfilled
9 x = n+ 1

10 end
11 end
12 end

Figure 3.2: Subtask detection algorithm

3.2 Track-Analysis-Tool 29

The input of algorithm 3.2—“Algorithm for Subtask Detection” con-
sists of two sets. Firstly, the set of events identified from the log, which
in turn comes from the capture plug-in of the application. Secondly, per
subtask a list of conditions that have to be fulfilled is defined.

The output of the algorithm is one list of events per subtask.

The algorithm works as follows:

The assignment index x is initialized as 1. I.e. the algorithm starts to
assign events to the subtask with the ID 1. Then a priority queue con-
taining all events of the set E is created, using the time stamp as order-
ing key. This enables the algorithm to process logs containing events
that are not necessarily chronologically ordered or combined logs from
various sources.

The events are processed in the order of their time stamps. That means
the earliest occurring event is processed at first, while the rest follows
sequentially. Thus, it is assumed that all events that do not cause a
change of the subtask can be assigned to the currently active subtask.
As a first step, the event under observation is added to the currently ac-
tive subtask. That means, if an event completes a subtask, it is assigned
to this subtask and not to the next one.

For each event in the input set it is checked whether it fulfills one of
the conditions cnm for one of the subtasks, as defined in Cn. If a con-
dition is fulfilled, it is marked so. If then all conditions in Cn for the
subtask with the identifier n are fulfilled, the set of conditions Cn and
thus the subtask is marked as fulfilled. The assignment index x is set
to the identifier of the just fulfilled subtask incremented by 1. Thus,
the subsequent events are assigned to the next subtask, until another
subtask is marked as fulfilled.

The time complexity of the algorithm can be determined line by line:
Setting the index has constant time complexity (line 1). The creation
of the priority queue has a time complexity of O(n ∗ log(n)). The en-
queue operation (complexity of O(log(n))) is executed n times (line 2).
The loop is executed n times, once for each event (line 3). Checking the
condition of the first conditional statement in line 5 is linear in the size
of all Cn, i.e. the number of all fulfillment conditions. Additionally,
checking the condition of the second of statement in line 7 is linear in
the size of the respective Cn, i.e. the conditions for the subtask poten-
tially being fulfilled. The other actions within the for loop have linear
time complexity.

Thus, the complexity of the for loop adds up toO(n∗m), where m is the
amount of all conditions |C1| + |C2| + ... + |Cn|. The overall algorithm
has a complexity of O(n ∗ log(n) + n ∗ m) = O(n ∗ m), where m is
|C1|+ |C2|+ ...+ |Cn| and n is the number of events to be processed.

30 3 Conception

Concrete example

As a concrete example one might think about a subtask where several
configurations have to be done in order to fulfill the subtask. From
these configurations it is possible to derive conditions. For example, a
choice in a drop-down menu, inputs to text fields or the selection of a
radio button might be required. In addition to that, more application
specific events on a different level of abstraction can be seen conditions,
for example the definition of connections or adding elements to a can-
vas.

The algorithm iterates over the ordered events. When an event indicat-
ing a valid selection in the respective drop-down menu or radio button
is identified, the respective condition is marked as fulfilled. When the
fulfillment of a condition can be revoked later on, e.g. by deleting text
from a text field after successful insertion, the mark is removed. For
sake of simplicity, the deletion of marks is omitted in the algorithm.
Whenever a condition is met, the subtask is verified to ensure all con-
ditions are met. In this case, when a radio button is pressed, the con-
dition of selecting an item in the drop-down menu and entering texts
into the fields are verified to ensure they are fulfilled. The same holds
for the other conditions. Assuming that the selection of a radio button
was the last condition that had to be fulfilled, the set of conditions for
this subtask is marked as fulfilled. The index for the next event under
observation is incremented by one. The event that caused the fulfill-
ment of the subtask (i.e. the selection of the respective radio button)
was already assigned to the subtask it contributed to.

3.2 Track-Analysis-Tool 31

Algorithm for Subtask Rating

After the events have been assigned to their subtasks successfully,
the subtasks are rated. Therefore the following algorithm is defined:

Data:

• Threshold factor t

• Per subtask with identifier n:
– A set of events En = {en1, en2, ..., enm}
– A set of ratings Rn = {rn1, rn2, ..., rnm}
– A set of reference values Vn

Result:
• A set of rated subtasks S = {s1, s2, ..., sn}

1 foreach subtask with identifier n do
2 cg, cpos, cneg, cneut = 0
3 forall the events e in En do
4 find rating for enm in corresponding Rn

5 set rating for enm accordingly
6 increment respective counter cpos, cneg or cneut
7 end
8 determine duration of subtask sn using En

9 determine confusion flag using En, t and Vn

10 add reference duration from Vn to sn
11 add actual duration to sn
12 add confusion flag to sn
13 add overall number of events |En| to sn
14 add actual counters cpos, cneg and cneut to sn
15 add reference counters from Vn to sn
16 add sn to S
17 end

Figure 3.3: Subtask rating algorithm

Algorithm 3.3—“Algorithm for Subtask Rating” has several inputs.
The threshold factor t determines the sensitivity of the algorithm to
generate confusion warnings. Depending on the domain this factor can
be used to tune the accuracy of the analysis. Moreover three lists per
subtask are taken as input.

• En contains all events assigned to the subtask with identifier n.

• Rn contains ratings for specific events in the context of the respec-
tive subtask. For example, entering text into a specific text field
might contribute to subtask A but is not useful for subtask B and
thus a hint for a potential usability problem in the context of sub-
task B.

• Vn contains some reference values that give an indication how
long a subtask should take. If the actual value exceeds the ref-
erence value to a high extent it is a hint for possible usability
problem. The reference values per subtask are: The duration,
the amount of negative events, the amount of neutral events, the

32 3 Conception

amount of positive events and the amount casual events.

The output of the algorithm is a set of rated subtasks S, where each
subtask sn holds several properties.

For sake of readability a listing of the reference values in Vn and the
properties per subtask sn in the algorithm is omitted.

The properties that are added to each subtask are the following:

• The actual duration and a reference duration

• The confusion flag

• The overall amount of events

• The actual amount of positive, neutral and negative events

• The reference values for positive, neutral and negative events

Though there are approaches [SK05b] to combine various aspects into
one single number as a metric, the approach presented here leaves the
interpretation of the properties per subtask to a usability expert analyz-
ing the outcome.

It is assumed that it is a non-trivial task to combine this information
into one single number in a robust manner. Thus, the values are added
to the subtasks and the task of interpreting these values is left to the
usability expert analyzing the outcome.

The algorithm rates the subtasks using the following procedure:

Per subtask the list of events that has been assigned to the subtask is
processed. Each event is rated as either positive, negative or neutral
using the list of ratings Rn for that specific subtask with identifier n. As
mentioned above the ratings are subtask specific, that means an event
can be regarded as positive or negative, depending on its context. For
example, opening a menu can be positive, if an entry required to fulfill
the subtask is contained in this menu. If the same menu is opened in
another context where it is not expedient, the event is rated differently.
Depending on the rating the respective counter is incremented. The
duration of the subtask is determined as the difference of the extremes
of the occurring time stamps in the events of a subtask.

To determine whether the confusion flag is set to true or false an ap-
proach using En, t and a reference value r from Vn is applied. First, the
number of so-called casual events is counted as ctemp. Casual events are
events that are often invoked unintentionally, for example focus events,
mouse events or arm events. If that number is higher than the product
of a reference value r from Vn and the threshold factor t, it is assumed
that the events have been triggered due to confusion and thus the con-
fusion flag is set to true. For short: if ctemp > t ∗ r the confusion flag is
set to true.

3.3 Reference Usability Technique 33

In lines 9-14 the respective variables are set in the rated subtask. Finally,
the rated subtask sn is added to the set of subtasks S.

The time complexity can be determined by analyzing the algorithm’s
loops, as all operations inside the loops have constant time complexity.
The inner for loop (line 3) is iterated over all event lists (line 1) thus
overall each event is processed exactly once. So the time complexity is
O(n ∗ c) = O(n), where n is the overall number of events and c is the
constant procession time per event. To sum up, the algorithm has linear
time complexity in the number of events.

Concrete example

A concrete example for the rating algorithm might be the set of events
assigned to the subtask of opening a specific dialog. In the course of
fulfilling this subtask the user is looking for a way to open this dialog,
might browse several menus (and invokes lots of arm events), open a
different dialog at first, cancel this dialog, browse further menus until
the required menu entry is found and the desired dialog is opened.

From this sample of events, canceling the first dialog would be re-
garded as a negative event, opening the correct menu and selecting
the required menu entry would be regarded as a positive event and the
other events are neutral. Depending on the given threshold t the num-
ber of invoked casual events, particularly the arm events, exceeds the
product of reference value and threshold and thus the confusion flag is
set to true.

The subtask is rated and the fact that there was a negative event and
that the confusion flag indicated confusion it is likely that this subtask
is further examined by the analyst.

Possible adaptation

A possible adaptation of this algorithm would be to use separate
thresholds for each subtask. In the course of the thesis is it assumed
that this approach is too prone to overfitting and thus not applied here.
Future work might examine this issue in more depth.

The Track-Analysis-Tool is compared with another usability technique.
The determination of this reference technique is presented next.

3.3 Reference Usability Technique

In this section the requirements for a reference usability technique are
stated. In order to find a suitable usability technique to serve as a ref-
erence to the Track-Analysis-Tool described above, several techniques
proposed in the literature are compared. This section concludes with
reasons for the selection of the respective method. Due to the temporal
restriction of the thesis the selection of the technique is solely based on

34 3 Conception

literature.

3.3.1 Requirements for the Reference Technique

To be able to select a reference technique it is important to clarify the
requirements. As the reference technique is supposed to be applied
within the temporal constraints of the thesis, the required amount of
time is supposed to be small. For the same reason the required amount
of users should be small, as the acquisition of probands takes a certain
amount of time. As neither the author of the thesis nor anyone of the
RCE development team is a usability expert the expertise of a possible
evaluator should be minimal.

Another property that would enhance the comparison of the two ap-
proaches is a common time axis. Particularly in the development phase
it will help to compare the findings.

The selected reference technique must be able to detect major usability
problems. When less critical usability problems are detected it is no
problem, but the focus is on crucial problems. As the application RCE is
already implemented and in use (but still evolving), a formative study
has to be conducted. Thus, the reference technique must be applicable
on existing products. Techniques only suitable for the design phase or
for finalized products are not fitting here.

Moreover one should keep in mind that the target group of the thesis is
novice users, regarding their experience with RCE.

3.3.2 Comparison of Existing Techniques

There are several comparisons of existing usability techniques pre-
sented in the literature. In this section the comparisons presented by
Nielsen [Nie94b, p. 224], Holzinger [Hol05] and Sarodnick [SB06] are
examined. The combined properties of the techniques are shown in Ta-
ble 3.1—“Usability techniques: Overview of inspection methods” and
Table 3.2—“Usability techniques: Overview of test methods”.

The techniques are classified into inspection methods and test methods.
When applying inspection methods, usability experts inspect the sys-
tem. Real users are not required. Guidelines, GOMS1, Heuristic Eval-
uation and Cognitive Walkthrough are assigned to this class of tech-
niques. In contrast to these methods, the test methods involve actual
users of the product. Eyetracking, Think Aloud Method, Question-
naires and Field Observation are located in this group.

Most of the properties are self-explanatory and do not need further ex-
planation. For some of them further information is given here:

1GOMS stands for Goals, Operators, Methods and Selection rules. It is a model to
analyze human-computer interaction.

3.3 Reference Usability Technique 35

Inspection Methods

Guidelines GOMS Heuristic
Evaluation

Cognitive
Walkthrough

Probands none none none none
Evaluator’s Expertise + +++ ++ +++

Evaluators 3+ 3+
Amount of Time +++ +++ + ++

Phase all/early design all
Equipment + + + ++

Intrusive no no no no
Productivity +++ + +++ ++

Specificity +++ +++ +++ ++
Common Time Axis no no no no

Table 3.1: Usability techniques: Overview of inspection methods

Test Methods

Eyetracking
Think
Aloud

Method
Questionnaires Field Ob-

servation

Probands 5+ 3+ 30+ 3+
Evaluator’s Expertise + + ++

Evaluators 1 1 1 1+
Amount of Time +++ +++ + +++

Phase all/design all/follow-up follow-up
Equipment +++ +++ + ++

Intrusive no yes no yes
Productivity +++ + +++

Specificity +++ + +++
Common Time Axis no yes no yes

Table 3.2: Usability techniques: Overview of test methods

• Phase in Product Lifecycle: The assignments are stated in the liter-
ature are rather imprecise as they are based on different lifecycle
approaches (iterative vs. linear). Nevertheless, the stated phases
are assumed to give a feeling about suitable techniques.

• Required Equipment: The required equipment subsumes all pur-
chases that have to be done to conduct the study successfully, e.g.
software or a video recorder.

• Intrusive: A technique is intrusive if it affects the user’s work
with the application.

• Productivity: Productivity represents the ratio of valuable infor-
mation and the required time. If a method detects lots of usability
problems within a short amount of time, the productivity will be
rated "+++".

• Specificity: Specificity describes the level of abstraction of the
problems found with the techniques. For instance, when there

36 3 Conception

is a problem filling out a form, some methods just yield the infor-
mation that there is a problem with the form while other methods
with a higher specificity yield information which problem users
had with which element of the form.

Some properties presented in the original sources which are not crucial
for the selection were omitted. In some cases the tables used in the
literature are blank. In some cases reasonable values could be entered.
In other cases the cells are left empty.

3.3.3 Reasons for the Think Aloud Method

An examination of the presented usability techniques let to the conclu-
sion that the Think Aloud method is best suitable a reference technique
for the context of the thesis.

There are some aspects why other techniques do not fit: For instance,
Heuristic Evaluation and Cognitive Walkthrough require at least three
evaluators. They are not available. Moreover, the results of the test
methods are can be more tangible which is another drawback for the
inspection methods.

On the other hand there are several arguments that substantiate the
choice of the Think Aloud method:

A common time axis is an important property of the reference tech-
nique, which is only given for the Think Aloud method and Field Ob-
servation. Moreover, the productivity of the Think Aloud method is
high. That means within a few conducted tests lot of information is
gained. Similarly, the aspect of specificity is high when using the Think
Aloud method. This is particularly important because the comparison
with the Track-Analysis-Tool can just be as specific as the reference re-
sults obtained by the selected method.

The amount of users which are potential users of RCE but have no used
RCE before is rather small. This and temporal consideration make the
low amount of users needed for the Think Aloud method an important
argument.

A final argument that substantiates the suitability of the Think Aloud
method is the phase in the lifecycle when the technique can be applied.
The Think Aloud method can be applied in the design phase, possibly
as part of an iterative approach. As this meets the intended schedule
of both the general RCE development and the study for the thesis, and
thus fits very well.

After the conception of the Track-Analysis-Tool and the determination
of the reference technique suitable metrics to allow for a comparison of
the two methodologies are presented.

3.4 Usability Metrics 37

3.4 Usability Metrics

The selection of standardized usability metrics and additional applica-
tion specific aspects which can be useful to determine usability prob-
lems are presented in this section.

3.4.1 Between vs. Within Comparisons

The usability study conducted in the course of the thesis has temporal
constraints. So there is only one task designed. Thus, it is not possible
to do within-subject testing. The testing can be seen as between-subject
testing. [Nie94b, p. 179]

It is required to let each user just participate in one round to avoid
learning effects. As only one task needs to be solved no learning ef-
fects can occur and no counterbalancing (see [TA10, p. 19]) is needed.

Within one iteration a comparison between probands can detect out-
liers in the metrics, which might be a hint for problems only faced by
a few users. But this might also be caused by personal problems or
misunderstandings. If the metrics of all probands are high it can be
caused either because all users face a certain problem or because a sub-
task inherently takes longer than others. To give the usability expert
who analyses the metrics reference values for the metrics are added.

3.4.2 Standardized Metrics

There are many metrics proposed in literature. A short overview and
introduction on the topic is given in 2.1.3—“Metrics”. The essence is:
Metrics are a means to quantify properties of a thing or procedure.

This section describes which usability metrics are measured in the user
study of the thesis and why.

To recall: In the context of the thesis improving usability is seen as the
maximization of the three parts effectiveness, efficiency and satisfac-
tion. Thus, the selection of the metrics strives to cover these three as-
pects.

Another requirement towards the metrics is that they are supposed to
be simple and proven useful. Thus, metrics that are frequently used in
other contexts are preferred.

Sauro and Lewis [SL09] examined which metrics are used frequently.
There analysis is based on 97 data sets containing data of 2286 distinct
users and distinct 1034 tasks. The frequencies of the metrics is shown
in the following table by Sauro and Lewis [SL09]:

The paper examines the metrics and correlations between them. The
main message can already be extracted when mapping the table to

38 3 Conception

N %

Task Time 96 99
Completion Rate 95 98

Errors 56 58
Post-Test Satisfaction 47 48

Post-Task Satisfaction 39 40

Table 3.3: Frequencies of metrics in user studies [SL09]

the three areas of focus mentioned above: Task time represents effi-
ciency, completion rate and errors represent effectiveness and satisfac-
tion speaks for itself.

In the following the metrics are surveyed in more detail:

Completion Rate

The completion rate is measured binary, that means the task is either
accomplished entirely or not at all. This is the case because a halfway
constructed workflow or a workflow that never ran to check its func-
tionality is not likely to be useful. The task is weighted as success when
the workflow runs correctly. When the workflow runs technically, but
yields wrong results the user is allowed to retry. Thereby it is assumed
that a deeper insight how users work can be gained. If the user gives
up, the task is rated unsuccessful.

Errors

Errors in this context are seen synonymous as blocking usability prob-
lems that require help. Slight usability problems that did not require
the intervention of the supervisor are not included here. Later on the
term "hint" describes the same aspect as it is the immediate result from
the error. Note that this error does not refer to error messages from the
interface.

Task Time

When measuring the task time one has to keep in mind that it can inter-
fere with the Think Aloud method. When people think aloud they can
possibly just work slower because of the additional cognitive work-
load. But also the opposite can be case: Users might work faster be-
cause they are more concentrated on the task [RCS11, p. 80]. It is as-
sumed that the influence is not significant.

In many cases it can be assumed that faster means better. There are
some exceptions, for instance games, where the user wants to enjoy the
gaming experience as long a possible or in learning applications, for
the longer someone struggles with an issue the deeper it is anchored
in mind. Moreover, anything else that serves as a pastime is not better

3.4 Usability Metrics 39

when it’s quicker. In the context of the thesis faster is better. The overall
task time is measured as well as the time per subtask.

Satisfaction

The table above distinguishes between post task and post test satis-
faction. As the test of the user study conducted in the context of the
thesis consists of just one task, it is same in this case. Satisfaction is
a self-reported metric, i.e. it is reported by the users themselves and
inherently subjective.

Questionnaires are a common technique to measure self-reported
metrics like satisfaction. There are lots of standards proposed
[Bro96][CDN88][Lew95][Lun01] containing various sets of questions.
As the questions of the Computer Usability Satisfaction Questionnaires by
Lewis (see [Lew95]) offer a view onto satisfaction from several perspec-
tives it is chosen as the basis for the questionnaire.

The questionnaire uses a Likert scale (see [Lik32]) having 7 possible rat-
ings per question. The number is intentionally odd since it allows users
to express a neutral attitude. To the left and the right of the scale a state-
ment representing the associated attitude is located.

Minimal and Maximal Values

It has to be considered whether expected values should be added to
the analysis. For example, a maximal task time could be set and if it is
exceeded the task is rated unsuccessful. Sauro and Kindlund [SK05a]
propose a method to determine minimal and maximal values for the
metrics, e.g. a maximal task time.

As the study is explorative and there is no knowledge about what to
expect, such values are not determined. Despite that, a reference value
how long an experienced users take for the different subtasks is given
to detect subtasks that take significantly longer.

3.4.3 Application Specific Metrics

In addition to the standardized metrics further aspects are considered
to allow for deeper insights.

Optimal Value Comparison

As reference values an average time an experienced user needs to fulfill
a task, as well as the amount of neutral events is given. If the times are
much higher for all users this might be a hint for a usability problem.
There are subtasks that have a high learning curve, i.e. the first execu-
tion takes rather long but once the user has understood the principle
the performance improves significantly. Though novice users will not
compete with experienced users in terms of performance anyways too

40 3 Conception

low metrics could be seen as a hint to improve the subtask anyways.
When the performance is regarded as "too low" is up to the analyst.

Confusion Factor

In addition to the negative events described above and long times for a
subtask another hint for usability problems was integrated. Confusion
is assumed when the amount of possibly unintentional events exceeds a
reference value by a certain multiplication factor (see 3.3—“Algorithm
for Subtask Rating”). To recall, unintentional events are focus events,
mouse events and arm events. They are often fired unintentionally but
rather as a follow-up of another event. For example, when a view is
opened the focus changed several times. If this view is not needed to
fulfill the task these focus events are not needed and give a hint about
a possible usability problem.

Another good example for confusion is when lots of arm events are in-
voked. When users search for certain functionality they tend to browse
through the menu entries. But only considering one of these types
tends to be too sensitive. To depict this figure Figure 3.4 shows two
ways a user can select a menu entry.

a) b)

Figure 3.4: The entry "Execute Workflow" can be selected using differ-
ent mouse paths

On the one hand, the user can move the mouse next to the menu and se-
lect the menu entry without moving over the other menu entries and on
the other hand the user moves the mouse over all menu entries, invok-
ing lots of arm events. The logged events significantly differ, though
the semantic meaning is the same.

An issue open for future work is the determination of the multiplica-
tion factor. In the scope of the thesis the factor will be set to match the
observed results. Of course, this approach is prone to over-fitting. To
make this factor usable on a universal scale it can be determined by

3.4 Usability Metrics 41

empiric studies.

Distance from Success Vector

To provide a deeper understanding of the users’ state of mind and their
attempts to solve a subtask it is desirable to detect sequences of ac-
tions that almost solved a subtask but failed shortly before succeeding.
Therefore a metric called Distance from Success Vector is introduced.

This approach can be suitable when there are several sequences of ac-
tions (hereafter called "path") that can solve a subtask. The set of paths
form the Distance from Success Vector. The paths can have different
lengths, thus both relative and absolute advance can be of interest. Ad-
ditionally, a counter indicating how often a path was started can be
integrated.

Figure 3.5 depicts the idea behind that:

S1

S2 S4

S8

S6

S5

S7

S3

Figure 3.5: Depiction of a Distance to Success Vector

The nodes are states of the system and the edges are actions that cause
the transition to the next state. Actions like closing a wizard or hiding
a menu discard advances and set the system state respectively.

To exemplify this the subtask of opening the workflow wizard is fur-
ther examined here. The workflow wizard can be started by various
sequences having lengths between one and five actions. Table 3.4—
“Sequences of actions for a Distance to Success Vector” shows proto-
typical paths.

42 3 Conception

Sequence of Actions Length

Toolbar entry 1
Context menu - menu entry 2

File - menu entry 2
File - new - menu entry 3

File - new - other - rce - menu entry 5
Toolbar chevron - menu entry 2

Toolbar chevron - other - rce - menu entry 4
Toolbar chevron - rce - menu entry 3

Table 3.4: Sequences of actions for a Distance to Success Vector

To depict how a possible output of the Distance from Success Vector
might look like the following behavior of the user can be imagined. At
first, the user browses the context menu of the project explorer but does
not find the menu entry though it is present. Then the user might open
the general wizard via the chevron in the toolbar, click on "other", then
on "RCE" but is not sure whether the entries visible there are the correct
ones. So the user cancels the wizard and continues searching. The next
location under observation is the "file" entry in the menu bar. The entry
"new" is expanded and the correct menu entry is found.

The analysis tool marks each step on the respective path whenever the
required next action is invoked. Going back on a path, e.g. by clos-
ing a menu causes the path to be set back to the respective step on the
path. A possible output for the analysis of the theoretical example just
mentioned looks like the following:

0% − [] − Toolbar entry
50% − [x] [] − Context menu−menu entry

0% − [] [] − F i l e−menu entry
100% − [x] [x] [x] − F i l e−new−menu entry

0% − [] [] [] [] [] − F i l e−new−other−rce−menu entry
50% − [x] [] − Toolbar chevron−menu entry
75% − [x] [x] [x] [] − Toolbar chevron−other−rce−menu entry

0% − [] [] [] − Toolbar next to chevron−rce−menu entry

[x] v i s i t e d step on path [] not v i s i t e d step on path

Listing 3.1: Exemplary output for a Distance from Success Vector

This output can support an analyst to find possible solutions. For
instance, path 2 could be improved by reordering the menu entries.
Moreover, changing the labels in the general wizard that was opened
via path 7 could help to understand the entry’s proper meaning.

To this point the focus has been on the conception of the techniques to
compare. It is now important to consider the implementation of these
concepts.

43

Chapter 4

Implementation of the
Track-Analysis-Tool

“Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.”

—Martin Fowler

In this chapter the implementation of the concept of the Track-Analysis-
Tool is described. Therefore the technical infrastructure and the data
exchange format are introduced. The implementation of the capturing
ability to RCE is presented. Eventually the analysis, implementing the
subbtask detection and rating algorithms (see 3.2.5—“Analysis Algo-
rithms”) is explained.

4.1 Technical Infrastructure

The tool was implemented using the infrastructure established for the
development of RCE. To keep track of bugs and features the bug tracker
Mantis is used. It is web-based and connected to the versioning system
Subversion [The13].

Additionally the static code analysis tool Checkstyle [Che12] is used to
enforce common code conventions throughout RCE.

To make sure the code conventions are satisfied in the Subversion
repository the tool Repoguard [DLR12] is used. Further information can
be checked before a commit into the Subversion repository is allowed.
Moreover Jenkins [Jen13] is used to support continuous integration.

From an organizational point of view two kinds of meetings set the
frame. On the one hand weekly meetings of all RCE developers induce
the exchange of ideas which turned out to be very productive for the
implementation of the tools. Moreover, meetings of smaller teams were

44 4 Implementation of the Track-Analysis-Tool

held on demand to focus on specific topics.

The development of the capture functionality and some artifacts re-
quired for the user study took place in a separate branch. The branch
was extracted from version 2.4.1. Updates caused by the daily business
of RCE were not applied during the development to provide compara-
ble results. So the RCE version used in the two iterations of the user
study are based on 2.4.1, though 2.5.0 was already available.

Another aspect to be clarified before the actual implementation is the
data exchange format between the capture tool and the analysis tool
which is described in the following section.

4.2 Data Exchange Format

For the data exchange between the tracking part of RCE and the analy-
sis tool it is desirable to draw on a proven exchange format. This avoids
the overhead to design such an exchange format. The chosen data ex-
change format should be supported by libraries in several program-
ming languages to allow its use on a universal scope. Libraries should
be available to make the mapping between the data exchange format
and the data structures (e.g. objects) in the respectively programming
as seamless as possible. That means changes on one side should not
effect the other side.

In order to have as broad functionality as possible it should be possible
to use nested data structures in the exchange format, e.g. to represent
multiple selections, each having multiple properties. Moreover the for-
mat should be legible for human beings. This is particularly important
for debugging during the development.

A format that matches the requirements mentioned above is JSON
[JSO] with Jackson JSON Processor [Fas09] as Java library.

JSON

Analysis Tool

Figure 4.1: JSON as data exchange format between RCE and the Anal-
ysis Tool

4.3 Capture Tool 45

Figure 4.1 depicts how JSON glues the two parts of the implementation
together.

Jackson is a Java library that supports the JSON format and is already
used in the context of RCE to handle the processing of configuration
files.

To write the interaction events generated during the use of RCE to a
log file, the following lines basically suffice, where jsonGenerator is an
instance keeping the file location and eventList is the list that stores the
generated interaction events.

1 ObjectMapper om = new ObjectMapper();
2 om.writeValue(jsonGenerator, eventList);

Listing 4.1: Write into a JSON file

Mapping the interaction events from the log file to Java objects is done
within this method:

1 private Collection<InteractionEvent>
readInteractionEventsFromFile(File inputFile){

2 ObjectMapper mapper = new ObjectMapper();
3 Collection<InteractionEvent> events = null;
4 // ...
5 events = mapper.readValue(inputFile, new TypeReference<

Collection<InteractionEvent>>() {});
6 // ...
7 return events;
8 }

Listing 4.2: Read in a JSON file

Thus, the only effort the developer has to expend is to keep the ex-
changed classes (i.e. InteractionEvent) synchronized.

Having examined the infrastructure and the data exchange format it is
now described how the capture functionality was added to RCE.

4.3 Capture Tool

The implementation of the capture functionality in RCE is described in
this section. Technical challenges are presented and the GUI elements
and patterns detectable with this approach are listed. Moreover facts
about the mouse track and missing patterns are shown.

4.3.1 Enable Tracking only when needed

To make sure that nobody uses the modified RCE version accidentally
and that his or her actions are tracked unintentionally, the tracking has
to be activated explicitly.

46 4 Implementation of the Track-Analysis-Tool

Therefore a plugin containing a simple dialog was created as an exten-
sion to RCE, which can be activated via a menu entry that was defined
as an extension point of type org.eclipse.ui.menus as shown in Figure 4.2.

Figure 4.2: Menu entry and dialog added to RCE to prevent acciden-
tally tracking

When the check box in the dialog (see Figure 4.2) is checked and the
dialog is confirmed, the tracking begins. In the user study this is the
point in time when the task begins.

4.3.2 Implementation-specific Challenges

For SWT and JFace GUI elements it is common to group elements in
instances of class Composite. Composites are controls which are capable of
containing other controls. [Ecl11]

Some GUI elements are already instantiated at the start of the applica-
tion whilst others are created at runtime, e.g. when a menu or a dialog
is opened for the first time.

To make sure all GUI elements have their respective listeners registered
it is important to first register all listeners for the elements instantiated
at application start. Whenever new GUI elements are instantiated at
runtime the respective listeners are registered, too.

The general approach of the listener registration is to check each
GUI element for its type and then add the according listener, e.g.
SelectionListeners to buttons or TreeListeners to trees. The following
recursive function processes the respective GUI elements:

1 private void registerListeners(Composite parent){
2 for(Control child : parent.getChildren()){
3 if (child instanceof Composite) {
4 registerListeners(child);
5 } else {
6 checkListenerRegistration(child);
7 }
8 }
9 }

Listing 4.3: Java code of recursive registration of listeners

4.3 Capture Tool 47

Composite?
Register
Listeners

GetChildren

Child

NoYes

Parent

Legend

Start

Method

Instance

Decision

Figure 4.3: Flow chart of the recursive registration of listeners

That means, whenever a Composite is found its contained elements are
either processed as Composites again or they are other GUI Elements
and it is checked whether a listener has to be registered.

The procedure is depicted as a flow chart in Figure 4.3.

At self-made dialogs it is possible to register the listeners manually.
For example, the connection editor is equipped with listeners at sev-
eral spots to track low level interaction events as well as RCE specific
patterns.

Some issues turned out to be not intuitive and are worthwhile being
mentioned here:

ArmListeners for Menu Entries

To get a feeling how users interact with the application it is important
to identify how and when they browse menus. The event that is trig-
gered when a menu is browsed and entries are highlighted is a so called
ArmEvent, the respectively called listener and method are ArmListener and
widgetArmed(ArmEvent event).

As the menu is instantiated when it is opened for the first time, it is not
possible to simply add the ArmListeners to the menu entries at the start
of the application.

Figure 4.4 shows the relations between the listeners and the respective

48 4 Implementation of the Track-Analysis-Tool

Legend

EmptyMenu

„Menu
Filled“

„Empty
Menu

Created“

Menu
Listener

Click

Menu Detect
Listener

Menu
Shown()

Menu
Detected()

FilledMenu

„Menu
Visible“

GUI Element

MenuEntries

Listener

Informal
Action

Informal
Object

Method

Figure 4.4: Depiction of the registration of listeners for menu entries

methods that are necessary to register ArmListeners to menu entries dy-
namically at runtime. A MenuDetectListener’s method menuDetected() is
invoked whenever a menu is opened via right-click or the toolbar, for
instance. Within this method’s arguments the menu is contained, but
in an empty state. Adding a MenuListener to the menu will enable access
to the menu entries via the listener’s method menuShown(). Registering
ArmListeners to all these menu entries provides the application with the
desired functionality to detect browsing through menus.

Native wizards

Wizards are an important and proven concept of RCP. There are many
wizards shipped with RCP. These wizards are called "native" wizards
henceforth. Tracking the interaction with wizards and dialogs has a
vital share to detect and understand usability problems.

For many parts of the application it is possible to hook in listeners pro-
grammatically via the pattern shown here:

4.3 Capture Tool 49

1 if tracking == true then
2 registerListeners;
3 else
4 //doNothing
5 end

Figure 4.5: Pattern for tracking activation

The "tracking" flag is determined in the dialog described in 4.3.1—
“Enable Tracking only when needed”.

As some parts are either derived from Eclipse built-in classes (like
the native wizards) or just added declaratively as extension points it
is not possible to apply this pattern. For example, the wizard for
new projects is present in RCP applications by default and the origi-
nal wizard for new workflows consists of standard pages derived from
WizardNewFileCreationPage.

To hook into these dialogs the workbench is equipped with a
WindowListener. Whenever a new dialog is opened the method
windowDeactivated() of this listener is invoked. Inside this method the
list of currently existing windows (i.e. instances of Shell) in the work-
bench is processed. With each of the shells as parent element the recur-
sive listener registration method explained in Figure 4.3 is called.

Prevention of Multiple Listener Registration

The relation between GUI elements and listeners is n to m. That means
GUI elements can have multiple listeners (also of the same type) and
listeners can be added to multiple GUI elements. For the purpose of
tracking it is not desirable to have identical listeners added several
times to the same GUI elements, as this would result in redundant cap-
tured messages.

In order to prevent the registration of multiple identical listeners to a
GUI element, each of it is equipped with a flag for each type of listener.
This is realized via the setData() method that all SWT elements have in
common. Before the registration of a listener it is checked whether the
flag it set. If the flag is not set already, the listener is registered and the
flag is set. If the flag is already set the listener is already registered and
nothing needs to be done.

50 4 Implementation of the Track-Analysis-Tool

The following code depicts this approach:

1 if element.flag == false then
2 element.flag = true;
3 registerListener(element);
4 else
5 //doNothing, Listener already registered
6 end

Figure 4.6: Prevention of multiple listener registration

4.3.3 SWT Components and Events

The following list gives an overview about the covered GUI elements
from the SWT framework and their respective events.

SWT Elements Captured Events

CTabFolder Selection event
Specific Text field Key event
Button Selection event
Any Control Mouse event
Any Control Focus event
Any Control Key event
Combo Selection event
Tree Open event, Tree event, Drag event
Any Control Traverse event
Menu item Arm event, Selection event

Table 4.1: SWT elements and events captured from them

This list is small compared to the more exhaustive list presented in
3.2.3—“Interaction Patterns” and Appendix B—“List of Typical GUI
Elements and Interaction Patterns”. Nevertheless, it turned out to be
sufficient to detect many usability problems.

4.3.4 GEF Components and Events

GEF Element Captured Events

PaletteViewer Active tool changed, Mouse event
GraphicalViewer Selection changed event
EditPart Removing child, Adding child

Table 4.2: GEF elements and events captured from them

The Graphical Editing Framework (GEF) is used for the workflow edi-
tor. Thus, interaction events dealing with the selection of tools (e.g.
workflow components) in the palette or with the interaction with the
workflow components on the canvas (adding, removing, selecting) are
considered.

4.3 Capture Tool 51

4.3.5 RCE-specific Patterns

In addition to the low level events like mouse clicks or selections events,
so called patterns are tracked on a higher level of abstraction. Patterns
in the context of RCE can be the following:

RCE Element Action

Project created
New Workflow Wizard started
Workflow created, executed
Workflow Editor opened
Workflow Component added, deleted
Endpoint added, edited, deleted
Connection added, deleted

Table 4.3: Captured patterns

These patterns are intended to give a broader overview about the prob-
lems the probands might face. Comparisons between the points in time
at which the patterns are invoked might help to understand problems
on a broader scale, similar to the times for the subtasks.

4.3.6 Mouse Track Events

In order to create visualizations of the mouse track it is necessary to log
mouse positions. Therefore instances of the class MouseSpot are created
and added to a list that is written into a separate file in JSON format
in the same way as the interaction events. The class MouseSpot is a plain
data class holding the properties:

• Time stamp

• X-Coordinate

• Y-Coordinate

• Reporting class

X and Y coordinates are important for the visualization. The time stamp
is necessary to assign mouse spots to subtasks. In the analysis all mouse
spots with a time stamp in the period of a subtask are assigned to this
subtask. The reporting class is necessary for debugging purposes the
make sure that all windows and dialogs contribute to the tracking of
mouse spots.

It is important to make sure that each window is equipped with
MouseMovementListeners. They are added in the same manner as the other
listeners. The mouse events the mouse movement listeners receive con-
tain coordinates relative to the window’s position. Thus, the position
of the window must be added as offset.

52 4 Implementation of the Track-Analysis-Tool

4.3.7 Missing Events

For the prototypical implementation of the tracking tool several inter-
action events that might be interesting for a deeper understanding but
were not crucial to the analysis were not considered.

One interaction event that turned out to be invoked by the probands
in the user study very frequently was the browsing of the tool palette
of the graphical editor. While the browsing of the menus and toolbars
is covered by means of SWT ArmListeners (see Figure 4.4) the palette is
part of the GEF framework and does not provide this functionality. As
alternative, a mouse listener with the according mouseHover() method
was registered. The respective event is invoked when the mouse stays
on one palette entry for more than a second which turned out to be a
too long time span.

Another missing interaction pattern in the context of GEF is drag and
drop within the graphical editor. Tracking the movements of workflow
components over the canvas might allow to draw further conclusions.

Moreover views that do not contribute to the user task are not included
in the tracking process. For example, the workflow browser, an RCE
specific view displaying information about past workflow executions,
is not included explicitly. Nevertheless, when probands spend a lot
of time in this view the elapsing time is tracked but events invoked
within this view are not tracked as they are assumed to provide little
information.

Text fields that contribute to the user task are equipped with a property
holding a representative name. Text fields missing that property can
not be determined exactly but are generally assumed to be "unproduc-
tive" text fields in the context of the user task. When text is entered into
such an "unproductive" text field this is regarded as a negative event.

Considering the mouse track it is not possible to track mouse move-
ments faster than the interval of the driver. That means when a proband
moves the mouse very fast over the screen the track becomes porous.

Though all of these points are not assumed to reveal crucial usability
problems it would be a nice addition to the set of tracked events to
create a fundamental understanding about the users’ interactions.

In the above presentation the realization of the capture ability in RCE
was shown. Now it is important to analyze this captured interaction
data. Therefore the analysis tool is presented hereinafter.

4.4 Analysis Tool

The analysis tool implementing the algorithms described in 3.2.5—
“Analysis Algorithms” was written in Java. When the analysis tool

4.4 Analysis Tool 53

starts a dialog for file selection is opened. Therefore the predefined
SWT class FileDialog is used. When the user picks a file that contains in-
teraction data the corresponding file for the mouse track is determined
by using the time stamps that initiates the file name. A filter showing
only files with the extension "json" by default is applied (see Figure 4.7).

Figure 4.7: Dialog to choose a file to be analyzed

The following component diagram depicts the way the analysis tool:

AnalysisInput

<< reads >>

<< reads >>

Output

Results.log

MouseMap.png

<< writes >>

<< uses >>

Events.json

MouseTrack.json

Data Objects

Analysis Export

Visualization

Reference
Values

<< writes >>

<< uses >>

<< uses >>

Figure 4.8: Component diagram of the Analysis Tool

The structure of the analysis follows the Input-Process-Output (IPO)
Model.

The input is the captured interaction events and the captured mouse
location stored in JSON-formatted files. The output is an analysis re-
port as a text file and the mouse track visualizations as image files. In
the analysis the events and mouse locations are mapped to data objects
using the Jackson library.

The data objects are InteractionEvent and MouseSpot. The analysis uses

54 4 Implementation of the Track-Analysis-Tool

a data object Subtask to group them. The analysis uses reference values
to enhance the report. In the current implementation they are defined
programmatically, but adding them via configuration files is also imag-
inable. The analysis results are written to the file system as a report in
text format and the visualizations are stored in the same folder.

4.4.1 Subtask Detection

The events are sequentially assigned to the currently detected sub-
task using the algorithm in 3.2.5—“Algorithm for Subtask Detection”.
Thereby for each event it is checked whether the event can potentially
cause the beginning of a subtask and if all conditions to fulfill the pre-
ceding subtask are met. When these two conditions are fulfilled the
event currently under observation is added to the current subtask, then
the subtask identifier is switched. This is necessary to assign the event
that fulfills a subtask to this subtask and not to the next one.

4.4.2 Subtask Rating

After this assignment the list of events per subtask is rated depend-
ing on the rating list for each subtask (see 3.3—“Algorithm for Subtask
Rating”). For the prototypical implementation in the course of the the-
sis it was decided to add the rating lists per subtask programmatically.
I.e. for each event several conditionals are checked whether the event
should be rated positive, neutral or negative. For this single task this
approach suffices, but as a general approach it would be desirable to
configure the conditions for the respective rating in a centralized con-
figuration file in a human readable manner.

Additionally, the idle time for the entire task was calculated. There-
fore the time stamps of the tracked mouse spots and interaction events
where combined and chronologically ordered. If the time span between
two time stamps was longer than a certain threshold this time span was
regarded as idle time and added to the idle time counter.

This idle time counter would also trigger if the proband is over-
whelmed by the application and keeps staring on the screen. But the
user study showed idle time is most times triggered when the user does
not work on the task, e.g. when turning around to the supervisor and
giving feedback.

4.4.3 Result Presentation

Within the prototypical implementation it was decided to print the re-
sults on the console and to place a copy of the printed messages in a
text file in the workspace of the project in the Eclipse IDE. An excerpt
from a prototypical output of the analysis can be found in Appendix
C—“Excerpt from Example Results Of the Analysis”. To beautify the
output and to enhance the readability for a usability expert using the
analysis tool it would be desirable to add output in a nicely formatted

4.4 Analysis Tool 55

PDF or HTML file. The textual output consists of several parts:

• Log date: The time stamp when the log started

• Analysis date: The time stamp when the analysis was executed

• Overall amount of subtasks and events, overall duration and idle
time

• Short description of the subtasks

• Short overview over each subtask, consisting of:
– The amount of events
– The duration
– An optimal duration reference value
– The amount of positive, neutral and negative events
– The confusion warning flag
– The amount of distinct events
– The amount per event type

• Sequence of events per subtask, containing an ID, the rating, the
event type and (if available) further information, e.g. the typed
key or the label of the selected button.

• Sequence of patterns, time passed since the last pattern, a short
human readable description of the pattern

• Screen resolution: The resolution of the proband’s primary mon-
itor

• Save location: The location where the created screenshots are
saved

• Overall mouse track length in pixel

• List of mouse spots per subtask

With this output at hand it is possible to identify many usability prob-
lems, that are not visible from the raw captured data. The context
added to the data is one reason for that. Events that are positive in
some context might be negative or neutral in another context and vice
versa.

Moreover events that are assumed to be not crucial in this context
(FocusEvents, MouseEvents and ArmEvents are filtered and only included
in the calculation of a possible confusion warning. The following pro-
cedure to browse the output turned out to be effective:

First, in the overview subtasks with both negative events and confusion
warning are sought. Then having a closer look at the chronologically
ordered events is assumed to allow more understanding about possible
usability problems.

The same procedure is repeated for subtasks only having either neg-
atively rated events or confusion warnings and then for subtasks that
took significantly longer than the given optimal value. Comparing the
actual times to the optimal times is rather error prone and can often

56 4 Implementation of the Track-Analysis-Tool

be skipped because these times vary a lot and might be influenced by
many other factors (general working speed, reading performance, cur-
rent concentration).

Currently the rating of events has the three states positive, neutral or
negative. More diverse ratings would allow finer nuances and a more
precise overview. For example, it would be possible to rate pressing
backspace (to delete text field content) with a -0.5 as it is possibly just a
sign for a typo (but can also be a sign for misunderstanding the mean-
ing of a text field, so 0 would be too optimistic). Furthermore events
that are clearly a sign for a usability problem (canceling a wizard, for
instance) can be accredited with a rating of -2.

But as these more granular ratings would be set arbitrary without more
exhaustive studies which would exceed the scope of the thesis they are
not implemented.

4.4.4 Mouse Track

Another means to provide further inside about possible usability prob-
lems is a visualization of the mouse track.

There are several visualization techniques imaginable, for example sev-
eral variations of heat maps, plots with lines connecting the single spots
or plots showing the all single saved spots as circles or crosses. For sake
of simplicity it was decided to plot the single spots as small dots. Fig-
ure 4.9 shows an example of a plotted mouse track of a single subtask.

Figure 4.9: Exemplary mouse track visualization

As background a screenshot of the RCE surface with standard dimen-
sions and standard arrangement was added in the respective screen res-
olution of the proband. It was assumed that the views are not moved
and that the window is maximized. The user study showed that these
assumptions are appropriate.

4.4 Analysis Tool 57

The proband’s resolution is determined by an interaction event of type
ControlEvent which is invoked when the tracking starts. It was assumed
that the probands work on their primary monitor so this resolution was
taken into account here. In study it turned out that some probands
worked on their secondary monitor so the proper resolution of the ap-
plication had to be determined manually.

Technically the plot was realized with SWT. On an instance of the type
Canvas with the means of the GraphicalContext (GC) of SWT Graphics dots
are drawn at the locations of the tracked mouse spots.

This is done for each subtask. If the subtask contains the usage of a
wizard or a dialog the background image shows the application with
the respective wizard or dialog open. The resulting canvas is printed
to a file using the capability of the class Robot of the Abstract Window
Toolkit (AWT) to take screenshots.

The implemented tracking functionality and the analysis tool enable an
automated approach to analyze usability problems. This is applied in
the user study which is presented in the next chapter.

59

Chapter 5

Usability Study

“I long to accomplish a great and noble task, but it is my chief
duty to accomplish small tasks as if they were great and noble.”

—Helen Keller

In order to evaluate to which extent the Track-Analysis-Tool developed
in the course of the thesis can compete with the proven Think Aloud
method, a user study applying both techniques simultaneously is con-
ducted.

The study is conducted as an exploratory (sometimes called formative)
study [RCS11, p. 29 ff][TA10, p. 45 ff]. Exploratory studies are par-
ticularly useful when several designs are to be examined and a final-
ization of the product takes a while. This chapter contains the setup,
the probands and the task of the user study. Questionnaires and the
methodology to create design improvement are described.

5.1 Application of the Track-Analysis-Tool and the
Think Aloud Method

In 3.3.2—“Comparison of Existing Techniques” it is reasoned why the
Think Aloud approach is a suitable reference usability method here. To
recall, the main reasons for that are listed here:

As neither the author or anyone in RCE development team is a usabil-
ity expert, all reference techniques requiring a high level of usability
expertise are discarded as candidates.

Another requirement is a small number of required probands. In
combination with the small number of evaluators required, the Think
Aloud method became the reference technique of choice.

There are arguments that the Think Aloud approach can decrease

60 5 Usability Study

the user’s performance because of the overhead of verbalizing the
thoughts, but others argue that the verbalization stimulates a very con-
scious way of working and thus improves performance.

To counterbalance the drawbacks the fact of only one supervisor brings
in, the execution of the user task is videotaped. Then the analysis can be
done afterwards, notes do not have to be taken while the user executes
the task and it becomes less likely that information is missed.

5.1.1 Distinction between User and Proband

In order to prevent confusion about the terms User and Proband the
distinction as it is made in the thesis is clarified here:

A User refers to a general user of the product independent from any
studies. In contrast to that a person taking part in a study is regarded
as a Proband.

5.2 Setup

In this section the setup of the study is described. This contains prepa-
rations and information about the probands.

5.2.1 Infrastructure

The user study was conducted at the proband’s workplace. If a
proband works on a different workplace, several circumstances might
have an impact: An unfamiliar chair, a different keyboard layout, a dif-
ferent screen contrast and resolution, a different mouse or other light-
ing conditions. In order to prevent such bias, the technical infrastruc-
ture was set up at every proband’s workplace.

A camera was placed behind the proband, so that the screen is video-
taped. The proband’s voice and thus the verbalized thoughts are cap-
tured. Additional videotaping of the proband’s facial expressions was
omitted as the emotional reactions are assumed to be covered by the
verbalization.

Figure 5.1 sketches the arrangement of a typical workplace.

In order to minimize distractions by other people in the room, there
is just one supervisor present. The proband is requested to fill in the
questionnaire about her or his background knowledge.

Then a version of RCE containing the tracking plug-in is installed on
the proband’s machine, started and maximized to have comparable
conditions. Note that in the second round the installed RCE version
contains the design improvements derived from the first round. There-
after, the proband is requested to read the introduction to RCE and the
user study, to get some feeling about the context (see Appendix G—

5.2 Setup 61

Workstation

Proband
Supervisor

Cam
era

Figure 5.1: Sketch of the setup for the user test

“General Information About User Task”. The proband activates the
tracking, starts to read the user task and processes the items on the task
step by step (see Appendix D—“User Task Sheet”). When the proband
works on the task and gets stuck so that she or he would not be able to
continue with the task, a hint is given.

After the task is finished the questionnaire inquiring the satisfaction is
filled out and the log file is copied to a storage device (see Appendix
E—“Questionnaire about Satisfaction”).

5.2.2 Users

Potential RCE users were chosen as probands. For sake of simplicity
only employees of DLR were chosen. There were no specific require-
ments regarding prior knowledge except for one: The probands were
supposed to have as little knowledge as possible about working with
RCE. This assumption was confirmed by the results of the question-
naire regarding previous knowledge (see Appendix F—“Questionnaire
about Foreknowledge”).

The questionnaire yielded that all probands felt rather experienced in
working with computers. The probands’ average age was 33.6 years,
and youngest proband was 24 and the oldest proband was 50. Regard-
ing the profession computer scientists and business economists were
predominant. Eight of the probands were male while 3 were female.
The probands are from two different departments in the DLR, working
on different domains. The native language of all probands is German.

As a reference, in each round one proband familiar with RCE was
tested. Their metrics are not included in the evaluation. Probands were
only employed to one round, as otherwise learning effects would have

62 5 Usability Study

biased the results.

After the setup is clarified, the task the probands are required to solve
is explained.

5.3 User Task

For the study the users had to fulfill a single task. This has the advan-
tage that it is possible to conduct a test with more probands within the
temporal restrictions of the thesis. Moreover effects of exhaustion do
not have to be taken into account. It is assumed that typical usability
problems will occur also in a single task.

The task should cover many typical interactions with RCE. It does not
aim to detect problems related to specific workflow components, but to
discover problems occurring with the RCE framework itself. Note that
in the context of RCE and the user study "workflow components" refer
to a tool that can be added to a workflow. It must not be confused with
software components as presented in 4.4—“Analysis Tool”.

Typical interactions with RCE are the following:

Interaction

Create, copy, paste, delete, rename a project folder
Create, copy, paste, delete, rename a workflow file
Create, copy, paste, delete, rename workflow data
Open a workflow in the workflow editor
Add, copy, delete, move, rename a workflow component
Configure inputs and outputs of a workflow component
Configure workflow component specific options
Create channels between workflow components
Execute a workflow
Check outcome of a workflow

Table 5.1: List of typical interactions with RCE

The task to be defined is a tradeoff between complexity and closeness to
reality. On the one hand, if the task is too complex users might get stuck
because the task itself is not suitable to be done within appropriate time
in a user study or without a briefing. On the other hand users might
not take their job seriously if the task is trivial or meaningless.

In the given task three workflow components created for the user study
have to be used. The generator component generates integer values in
a range defined by the user. The separator component takes a stream of
values as input and provides only the even numbers as output for the
next workflow component. The checker component verifies whether
the received stream equals the desired sequence of numbers. If the
checker component succeeds a dialog informs the user about the suc-
cess.

5.4 Questionnaires 63

Actions the user has to accomplish are: Creating a project, creating a
workflow, open a workflow in the workflow editor, configure inputs
and outputs of a workflow component, configure workflow component
specific options via text fields and check boxes, create channels between
workflow components, execute a workflow.

Other interactions are also possible, trackable and might lead to suc-
cess, but this is the minimal set of interactions.

The sheet as is was handed out the users is attached in Appendix G—
“General Information About User Task”. To avoid problems that the
users might have with the wording in English, the sheets are in Ger-
man.

The instructions listed on the sheet differ from the list of subtasks intro-
duced in 3.2.2—“Subtask Segmentation”. The reason is that there are
different scopes related with the lists. While the list of instructions is
supposed to simulate typical goals from a user’s point of view, the list
of subtasks has a more technical focus. For example, to fulfill the first
instruction "Create a workflow" four subtasks have to be fulfilled. Stat-
ing these four subtasks explicitly would be a possibility, but it would
bias the results. When the user wants to create a workflow his or her
mental model does possibly not include the idea of creating a project
first.

To determine the previous knowledge of the probands and the satisfac-
tion when working on the user task presented here two questionnaires
have been defined. They are presented in the next section.

5.4 Questionnaires

The users were asked to fill out two questionnaires. To prevent misun-
derstandings caused by the language they are written in German.

The first one dealing with background information about the users
was presented before working with the application, to prevent distrac-
tion. It can be found in Appendix F—“Questionnaire about Foreknowl-
edge”. Information about technical prior knowledge was acquired. By
doing so reasons for positive or negative outliers could be found.

For example, it could be the case that people familiar with the Eclipse
IDE know that in most cases projects are required as root node before
any application specific files can be created. Moreover, performance
tendencies regarding age and general computer knowledge could be of
interest.

The second questionnaire measures satisfaction as a metric. It was
presented after the probands worked with RCE so their feeling when
working with it was still present. It is desirable that the satisfaction
metrics improve per iteration. The questionnaire contains seven ques-

64 5 Usability Study

tions adapted from the Computer Usability Satisfaction Questionnaires
as described in 3.4.2—“Standardized Metrics”

To determine whether the satisfaction measured with the question-
naires improve an iterative approach is useful. This is explained in the
following section.

5.5 Iterative Approach

The user study is planned as an iterative procedure. The Think Aloud
method applied here is suited for this approach as it provides sufficient
insight into the nature of the problems to suggest specific changes to
the interface. [Nie94b, p. 105]

Conduct Test

Im
pl

em
en

t
Im

pr
ov

em
en

ts

Derive Improvements

D
etect P

ro
b

lem
s

Iterative Approach

Figure 5.2: Depiction of the iterative approach and its phases

Figure 5.2 depicts the steps per iteration derived from the approach
presented in [Per07]: Conduct the test, detect usability problems, de-
rive design improvements, implement design improvements.

In theory, the iteration can be repeated either until no more usability
problems are detected or until the metrics do not improve anymore.

Due to the temporal restrictions of the thesis two iterations are exe-
cuted. Though revealing less exhaustive results it is assumed that ten-
dencies are recognizable.

The problem detection procedure mentioned in this section is presented
hereinafter.

5.6 Problem Detection Procedure 65

5.6 Problem Detection Procedure

During the usability study several usability problems were detected.
The usability problems had different degrees of severity and different
frequencies. The severity was assigned by the author based on the im-
pact the detected problem had on the task accomplishment during the
usability study. The severity ranges from 1 to 10 where 10 is a blocking
problem that could only be resolved by a hint and 1 is something like a
typo or labeling issue that a proband stumbled over.

Note that there are other notions of severity. For example, [Nie94b, p.
102 ff] understands severity as composed of frequency and impact. For
sake of simplicity the definition of severity mentioned above is referred
to henceforth.

In order to find the problems that were crucial to the task the frequent
(i.e. they occured at least twice) and the severe (degree of severity of at
least 5) problems were examined in more detail and design improve-
ments were suggested.

5.7 Design Improvements

It is assumed that good design improvements are better found in a
group discussion than by a single person. Based on the list of severe
or frequent problems possible solutions were discussed in the group of
RCE developers. Thereby the creativity method Six Thinking Hats (see
2.5—“Creativity Method Six Thinking Hats”) was applied.

The entire group is required to have a look at a problem with a cer-
tain attitude, ignoring the other attitudes. The six hats represent six
different attitudes, which are: Organize the thinking, neutral or objec-
tive thinking, creative thinking, positive thinking, negative thinking,
emotional thinking.

It turned out that some of the hats were experienced as artificial or too
similar to each other in this context. Other approaches, like the Walt
Disney method [SB12, p. 276] are more minimalistic and are probably
perceived as more natural in this context.

A particularly useful aspect is the green and yellow hat which stand
for creativity and optimism. Hereby many valuable ideas are created
as any technological, temporal or monetary boundaries are ignored.

The composition of members of the development team turned out to fit
good here. There are members that have years of experience with RCE
but might be stuck with some control concepts. Other new members
of the RCE development team lack the experience with the application
but bring in new creative ideas as they have an impartial view on the
issues.

66 5 Usability Study

Ideas for design improvements were analyzed and a list with crucial
and optional design improvements was created. Due to the restrictions
of the thesis’ schedule some improvements could not be realized.

5.8 Open Design Improvements

For some problems no design improvements have been implemented.
This has several reasons. First, the temporal restrictions limit the im-
provements and second, sometimes no global solution is apparent. The
solutions implemented here have the requirement to be applicable on
the global scope and not for the specific use case of the user study.

A usability problem that has not been tackled is the missing feedback
when values are entered to configure a workflow component. There
are some solutions that appear suitable at first sight, but have draw-
backs on the global scope. Thus, no changes are implemented and the
usability problem is expected to remain.

Having examined the setup and procedure of the user study it now
necessary to discuss the results.

67

Chapter 6

Discussion of the Results

“However beautiful the strategy, you should occasionally
look at the results.”

—Winston Churchill

In this chapter the results of the thesis are discussed. Thereby the capa-
bilities of the log analysis and the think aloud technique are compared.
Moreover the metrics before and after the design improvements are
compared. Limitations of the results and possible bias are explained.

6.1 Identified Usability Problems in the First
Round

All problems detected in the first round occurred at least one and at
most five times. There were 30 distinct problems detected with an
unique count of 53 usability problems.

11 frequent and 12 severe problems were detected. As some problems
were severe and frequent a total of 15 severe or frequent problems were
under observation. To enhance the solution generation the problems
were grouped into categories so that possible problems on a different
level of abstraction might become obvious.

Five categories of problems were formed:

• Creation of projects and workflows

• Recognition that the workflow editor is open

• Add workflow components to the workflow

• Workflow component configuration

• Connect workflow components

For a more exhaustive list containing detailed identified problems, see
Appendix H—“List of Frequent and Severe Usability Problems”.

68 6 Discussion of the Results

Derived from these concrete problems concrete design improvements
have been realized, as described hereinafter.

6.2 Realized Design Improvements

The concrete realized design improvements are the following:

Creation of Projects and Workflows

The most crucial problem the probands faced was that the concept of
projects and other files was not intuitive. Only one of the six probands
was familiar with the concept that you need a project as parent instance
for other files in Eclipse RCP based applications.

The task intentionally says "Create a workflow" and not "Create a
project and then create a workflow" because this is assumed to match
the user’s plan more accurate: The user just wants to create a workflow.
The new designed workflow wizard intends to assist the user in creat-
ing the workflow by "placing" a workflow inside a project. This project
can either be an existing one or it is implicitly created.

Once the structure of a project containing a workflow is created, it is as-
sumed to be easier to learn for the users. Figure 6.1 shows a screenshot
of the new designed workflow wizard:

Recognition that the Workflow Editor is open

When a new empty workflow editor is opened an additional label on
the canvas of the workflow editor was added that gives a hint that
workflow components can be added on the canvas. The label disap-
pears when the first workflow component is added to the workflow.

Add Workflow Components to the Workflow

As some users tried to add workflow components to the canvas via
double-click as a common pattern used in other applications this func-
tionality was added. A double-click adds the selected workflow com-
ponent to the upper left corner of the canvas, if it intersects with an
already present workflow component it is shifted by an offset until a
free spot is detected.

Moreover the label to recognize the workflow editor mentioned above
is assumed to help to understand the way workflow components are
added.

Find and Execute the Workflow Component Configuration

A fact that made it hard for the users to find the configuration of a
workflow component is that there is only one way to open the tab
where the configuration is located. A double-click on the workflow

6.2 Realized Design Improvements 69

Figure 6.1: Screenshot of the redesigned workflow wizard: Workflows
can be placed inside a project

component is the only possibility to open the configuration. As most
probands first searched for the configuration in the context menu of the
workflow component, a menu entry "Open Configuration" was added.

Moreover, the context menu was reorganized and the RCE specific en-
tries were added to a group delimited by separators (see Figure 6.2).

Connect Workflow Components

To pull connections a dialog called Connection Editor is used. In the
improved design the connection editor was made accessible not only
from the context menu of the workflow editor but also via an entry in
the palette.

Once the connection editor is opened in the original design drag and
drop was the only possible way to connect the workflow components.
As the insertion of workflow components to the workflow editor is pos-
sible via drag and drop as well as via point and click this behavior
should be consistent. Workflow components can be connected via drag
and drop in the improved design.

Another issue appeared when probands entered the connection editor

70 6 Discussion of the Results

Figure 6.2: Screenshot of the redesigned component’s context menu:
the configuration can be opened via a menu entry

via another entry point. There is a palette entry "Connection" that opens
- when selecting two workflow components - a connection editor re-
duced to the two components about to be connected. For the probands
it was not clear why they had to pull connections twice if their choice
is unique. So in the improved design the connections are automatically
shown in the connection editor if there is only one output in the source
component and only one input in the target component and the types
match.

The palette entry "Connection" was renamed into "Pull Connection", an
entry to open the connection editor was added (see Figure 6.3).

The identified problems and redesign suggestions give an insight in
the capabilities of the approaches used to detect them. An detailed
evaluation of the findings is conducted in the following section.

6.3 Evaluation

This section contains the evaluation of the results of the two iterations
conducted within the user study. The evaluation focuses on three as-
pects:

• What are the commonalities and the differences of the problems
detected by the Track-Analysis-Tool and the Think Aloud ap-
proach?

• How did the number of identified problems change between the
iterations?

• Did the metrics improve between the iterations?

6.3 Evaluation 71

Figure 6.3: Screenshot of the redesigned palette: The connection editor
can be directly accessed

The evaluation aims to clarify in which situations an automated anal-
ysis tool such as the Track-Analysis-Tool is suitable and when a more
labor-intensive approach like a Think Aloud method should applied.

6.3.1 Comparison between Track-Analysis-Tool and Think
Aloud Method

The examination of the results of the Track-Analysis-Tool and the Think
Aloud approach yielded several commonalities and several differences.
Some of are likely to be accountable to the setup, others appear to be
inherent to the two approaches and yet others are caused by the fact
that the implementation is prototypical and that some functionalities
have flaws.

General Differences

In general one can say that the Track-Analysis-Tool reveals less usabil-
ity problems than the Think Aloud approach.

The problems found by the Track-Analysis-Tool are on a higher level
of abstraction. The most crucial usability problem of the first iteration
serves as an example here. The probands had problems with the princi-
ple that for the creation of any folder or file a project as containing struc-
ture has to be added. I.e. in order to proceed first a project and then a
workflow has to be created. This does not match the intended actions
of the probands as they only want to create one instance, namely the
workflow. So it happened that probands created a project and assumed
that this was already the workflow. On the video this is clearly visi-
ble and audible as people commented the action of creating a project
like "And now I think I created the workflow". On the results of the

72 6 Discussion of the Results

Track-Analysis-Tool this information is also visible as one can see that
the text field containing the project’s name is filled like "Workflow" (see
6.1—“Excerpt from the analysis results: Project naming”).

1 KeyEvent - keyPressed - Text {} - ProjectNameTextfield - W
2 KeyEvent - keyPressed - Text {} - ProjectNameTextfield - o
3 KeyEvent - keyPressed - Text {} - ProjectNameTextfield - r
4 KeyEvent - keyPressed - Text {} - ProjectNameTextfield - k
5 KeyEvent - keyPressed - Text {} - ProjectNameTextfield - f
6 KeyEvent - keyPressed - Text {} - ProjectNameTextfield - l
7 KeyEvent - keyPressed - Text {} - ProjectNameTextfield - o
8 KeyEvent - keyPressed - Text {} - ProjectNameTextfield - w

Listing 6.1: Excerpt from the analysis results: Project naming

Additionally one can observe from the large number of arm events in
the analyzed log that the user was not able to go on with the task and
thus started seeking (see 6.2—“Excerpt from the analysis results: Seek-
ing funtionality”).

1 ArmEvent - MenuItem {&Help} - Help
2 ArmEvent - MenuItem {&Help Contents} - Help Contents
3 ArmEvent - MenuItem {&Help} - Help
4 ArmEvent - MenuItem {&Window} - Window
5 ArmEvent - MenuItem {&Run} - Run
6 ArmEvent - MenuItem {Se&arch} - Search
7 ArmEvent - MenuItem {&Edit} - Edit
8 ArmEvent - MenuItem {&File} - File
9 ArmEvent - MenuItem {New} - New

Listing 6.2: Excerpt from the analysis results: Seeking funtionality

This can lead to the conclusion that all actions vital to the creation of a
workflow should undergo an inspection and the affected GUI elements
should be redesigned.

Given that is was already speculated that the steps to create a work-
flow might cause trouble, a first use case for the Track-Analysis-Tool
can be derived: If there is a suspicion that a part of the application is
problematic, the Track-Analysis-Tool can substantiate this suspicion.

In this context the first difference between the two approaches becomes
visible. While the Track-Analysis-Tool just reveals that there is a prob-
lem with the creation of workflows, the Think Aloud study is able to
gather more distinct problems. Several problems on a lower level of
abstraction are found.

For example, probands had problems mixing up the wizards for a new
project and for a new workflow, or probands did not find where they
can add a workflow to a project or they did not even know that adding
the workflow to the project is required as next step. These problems
were concluded to a more general problem.

Recalling that the Track-Analysis-Tool yields the problems on that

6.3 Evaluation 73

higher level of abstraction it can be seen as another benefit of the Track-
Analysis-Tool over the Think Aloud approach: While the Think Aloud
approach tends to find problems on a low level of abstraction problems
on a more global scale can be missed. But on the other hand it can hap-
pen that the Track-Analysis-Tool yields problems on a too high level of
abstraction, that makes concrete design improvements problematic or
that does not reveal any further information. The knowledge about the
general presence of a usability problem in the application under obser-
vation is one of the requirements for the approach.

As another difference of the two approaches the intended actions of the
users are differently apparent. Understanding the intended actions can
be vital to find clues where to put additional menu entries or additional
functionality the user expected. While browsing of menus can be un-
derstood by examining the arm event from the Track-Analysis-Tool as
well as from the video, in other situations the Track-Analysis-Tool has
drawbacks.

As a good example, the setting of the generated numbers for the gen-
erator component is mentioned here. After the creation of the output
channel the probands are requested to enter the first and last number
to be generated. This is done in a separate tab in the properties view.
Some probands tried to define these borders by editing the output they
created beforehand. From the captured data it can not be determined
whether this was the actual intention or whether concepts are mixed
up. On the video it is clearly recognizable that the proband experiences
confusion here.

Derived from the experiences made during the examination of the an-
alyzed log and the videos another difference between the approaches
becomes clear. For efficient analysis of the output of the Track-Analysis-
Tool fundamental knowledge about the context is required. For exam-
ple, in the chronological listing of events per subtask, an arm event is
represented by the event type (i.e. ArmEvent) and the label of the hov-
ered menu item. If the analyst is familiar with the context this suffices
and the analyzed log can be examined efficiently. But if the analyst is
not familiar with the context and has to seek every menu entry in the
application this can make an examination tedious or even impossible.

Moreover, the interpretation of the results of the Track-Analysis-Tool
is often ambiguous. The probands often missed feedback whether
their entered values are saved or not. In search of confirmation, they
browsed the other tabs in the properties view, particularly the tab
labeled "advanced". In the video the reasons for that are clear as
probands verbalized their problems. Though the opening of the ad-
vanced tab is regarded as a negative event, because it is not necessary
to solve the task, it could also be opened out of curiosity. Similarly, the
issue mentioned in the paragraph above, is an example for the inter-
pretation of an event sequence.

74 6 Discussion of the Results

Appending a degree of severity to each of the identified usability prob-
lems helps to prioritize the redesign implementations. Using the Track-
Analysis-Tool it is not possible to determine the severity of the prob-
lems. While in the video one can see how much impact the problem
had and how much the proband had to struggle this is missing in the
captured data. The missing reactions on an emotional level (insecurity,
anger, joy) are a reason for that.

When it comes to the quantification of values, the Track-Analysis-Tool
is superior to the Think Aloud method. Concrete durations or amounts
of certain events can be gathered in an automated fashion. They can be
determined by analyzing the video as well, but this would result in im-
moderate labor. Derived from that an automated log analysis approach
like the Track-Analysis-Tool is preferable, when precise durations in
certain parts of the application are under investigation.

Another difference between the two approaches that did not come to
mind during the implementation of the analysis tool is the interaction
with anything outside of RCE. This is an inherent property of the Track-
Analysis-Tool because its scope is on one specific application. When the
proband tries to interact with the file system and therefore minimizes
the application, this is not tracked by the prototypical implementation
of the capture abilities in RCE. But even if the minimization event is
in the log, all further information is inherently missing. One of the
probands was searching the workflow he just created and thought that
the workflow has to be opened in the file system. In the video the ac-
tions as well as the user’s idea behind that was recognizable.

Moreover the analysis of the video is able to reveal very subtle prob-
lems, which probably have minor severity but still provide reasons for
improvements. As a concrete example, the missing focus in one of the
text fields might serve. The proband already switched to the keyboard
and was about to type, hesitated because the focus was not set, moved
his hand back to the mouse again, set the focus and then filled the text
field. Though this is a very subtle issue and was even not memorized
by the proband until the end of his task it exemplifies the idea behind
this. This minor problem and the hesitation of the proband is not vis-
ible in the captured data, because the additional seconds the proband
needed to set the focus could also be accounted as something different,
e.g. mental operations.

Generally it is hard to detect usability problems using the Track-
Analysis-Tool when a user - though she or he is confused - does not
react with a lot of interaction with the interface on that, e.g. by brows-
ing menus. The measured durations will increase but similarly to the
issue mentioned before, it is not possible to differ between necessary
and other mental operations. In the video it is likely that the proband
verbalizes these problems. To conclude, problems that are only found
by the verbalization or gestures of the proband are hard to detect in the
captured data. Another example for that is the confusion a proband

6.3 Evaluation 75

had with the appearance of the different wizards. The general wizard
and the wizard specific for workflows were mixed up.

Another fact to keep in mind when comparing the results of the two
approaches is that they were applied simultaneously. That means, im-
pacts inherent to a Think Aloud study also influence the metrics. For
example, when the user formulates verbalizations or suggests improve-
ment (as they often do), the duration of that specific subtask is influ-
enced. The same holds for the hints that were given when the proband
got stuck somewhere. Of course, the point in time when the hint was
given can be determined from the video, but this is rather clumsy.

Generalizing the issue just mentioned it is hard to detect outer influ-
ences, that can not be captured. For example, it could happen that a
colleague enters the room while the log data is captured and distracts
the users. In the study the supervisor would be able to react on that,
but in a remote session it is not possible to detect. Calculating idle time
and take account for that in the analysis helps to cope with that, but
can also be omitted, e.g. when the user unintentionally prevents the
idle time counter to start by moving the mouse back and forth while
she or he talks.

Moreover, the Track-Analysis-Tool is prone to over-interpretation of se-
mantically identical sequences of actions. That means, the same seman-
tic action can invoke different events and will thus be accounted differ-
ently in the Track-Analysis-Tool. In many cases, a human being would
be able to detect the semantic meaning of the actions and not the se-
quence of actions itself. As a vivid example the selection of an entry
at the bottom of a menu might serve. On the one hand, the user can
move the mouse alongside the menu without hovering the single en-
tries. On the other hand, the user can browse through all entries (see
Figure 6.4). This ambiguity is already presented in 3.4.3—“Confusion
Factor” to show that the confusion factor can be error prone.

While the first approach (a) does not invoke events, the second ap-
proach (b) invokes several arm events, although they both have the
same semantic meaning.

Additionally minor flaws in the prototypical implementation of the
capturing abilities can influence the results of the Track-Analysis-Tool.
A minor flaw, that attracted attention during the user study and thus
was not fixed to keep results comparable is described here:

To determine which text field was typed into, each text field that can
possibly contribute to the success of the task is equipped with a name
property. If a text field is missing this property it is assumed that the
user is confused and all key events within the text field are accounted as
negative events. In the implementation for one text field the name was
missed. Thus, the respective subtask was rated with lots of negative
events, though no actual problem was present.

76 6 Discussion of the Results

Figure 6.4: The entry "Execute Workflow" can be selected using differ-
ent mouse paths

Furthermore, there are some issues one has to keep in mind using the
Think Aloud method. These issues are general issues and not only lim-
ited to the scope of the thesis.

Probands often already give hints about improvement suggestions.
One might tend to take that as granted and apply these improvements
without further considerations, but the probands do not have the big
picture of the application in mind. As the Think Aloud method reveals
many even subtle problems it must always be kept in mind that the
solutions to the problems must not have negative impact on the rest of
the application.

6.3.2 Comparison of Identified Usability Problems

To quantify the findings mentioned above the number of found prob-
lems is reflected on from different aspects. At first, the identified prob-
lems of the first round are compared (see Figure 6.5).

The overall number of identified problems is compared. When a us-
ability problem is observed by many probands it is counted multiple
times. The Track-Analysis-Tool reveals 21 problems, while the Think
Aloud approach reveals 53 problems. Taking into account the number
of probands, this results in an average number of problems per proband
of 3.5 with the Track-Analysis-Tool and 8.83 with the Think Aloud ap-
proach.

Another aspect is the amount of distinct problems, i.e. problems that
occur several times are just accounted once in this metric. Following the
numbers mentioned before, the Track-Analysis-Tool reveals 31 distinct
problems while the Think Aloud approach reveals 9 distinct problems.

6.3 Evaluation 77

0

10

20

30

40

50

60

Overall Average Distinct

N
um

be
r o

f P
ro

bl
em

s

Comparison Between Log Analysis and Think
Aloud Method in Round 1

Think Aloud Method Log Analysis

Figure 6.5: Number of found problems in round 1: The Think Aloud
method reveals more problems

Comparing the heights of the bars shows that the ratio is constant to a
certain degree. This shows that the Track-Analysis-Tool does not have
strange behavior compared to the Think Aloud approach, like finding
the same problem extra ordinary often.

In the second round 30 overall problems are revealed by the Think
Aloud approach while the Track-Analysis-Tool reveals 9 problems. Per
proband this leads to an average of 6 problems in the Think Aloud ap-
proach and 2.25 in the Track-Analysis-Tool. Distinct identified prob-
lems are 18 in the Think Aloud method and 6 in the Track-Analysis-
Tool. As in round 1, the ratio of the numbers remains constant between
the two approaches (see Figure 6.6).

Analyzing the two diagrams Figure 6.6 and Figure 6.5 shows that the
ratio between the problems found in the two rounds stays constant to
some extent. This can be regarded as an indicator that the log anal-
ysis produces stable results, i.e. a certain fraction of the problems is
constantly found.

Figure 6.7 gives another perspective to the numbers, focusing on the
comparison between the two rounds.

In addition to the overall, average-per-proband and the distinct prob-
lems from the charts above, the numbers of severe and frequent prob-
lems, as introduced in 5.6—“Problem Detection Procedure” are exam-
ined. The number of frequent problems changed from 11 in round 1 to
8 in round 2. The number of severe problems reduced from 12 in round
1 to 3 in round 2.

78 6 Discussion of the Results

0

5

10

15

20

25

30

Overall Average Distinct

N
um

be
r o

f P
ro

bl
em

s

Comparison Between Log Analysis and Think
Aloud Method in Round 2

Think Aloud Method Log Analysis

Figure 6.6: Number of found problems in round 2: The Think Aloud
method still reveals more problems

0

10

20

30

40

50

60

Overall Average Distinct Frequent Severe

N
um

be
r o

f P
ro

bl
em

s

Comparison Between Identified Problems
in Round 1 and 2

Round 1 Round 2

Figure 6.7: Comparison between round 1 and 2: The number of prob-
lems decreases in all aspects

These results have limitations: There were only two iterations done,
the number of probands and the number of problems found is rather
small. Therefore the pure numbers do not have statistical significance,
but tendencies visible.

6.3.3 Comparison of Metrics

As described in 3.4.2—“Standardized Metrics” several metrics are mea-
sured in the study. To recall, the metrics cover the three aspects re-
garded as being vital to usability in the context of the thesis: effective-

6.3 Evaluation 79

ness, efficiency and satisfaction.

• Effectiveness: Was the task successfully executed?

• Efficiency: How fast was the task executed?

• Satisfaction: How satisfied was the user executing the task?

Effectiveness

Effectiveness is represented by the fraction of probands that succeeded
in the task. All probands were able to complete the task successfully.

The amount of hints required by the probands decreased marginally
from 1.67 in round 1 to 1.40 in round 2. It would be desirable, that the
amount of hints decreases significantly. It is assumed that the small
number of probands is the reason for that. In the second round two
probands struggled with a problem, that did not appear in the first
round.

Efficiency

Efficiency is represented by the durations of the single subtasks and by
the execution time of the entire task.

0

2

4

6

8

10

12

Round 1 Round 2

Co
m

pl
et

io
n

Ti
m

e
in

 M
in

ut
es

Average Completion Time per Round

Figure 6.8: Average duration for entire task: More than 2 minutes are
saved in round 2

Figure 6.8 shows that the average completion time per user decreased
from round 1 to round 2 by more than 2 minutes (from 643 to 495 sec-
onds), which is about one fifth. In the first round the completion times
ranged between 388 and 945 seconds, while in the second round the
completion times ranged from 336 to 689 seconds.

Taking advance of the fact that the Track-Analysis-Tool provides more
quantified values, i.e. completion times per subtask, more exhaustive
analysis per subtask is possible (see Figure 6.9):

80 6 Discussion of the Results

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Co
m

pl
et

io
n

Ti
m

e
in

 S
ec

on
ds

Subtask ID

Average Completion Time per Subtask
Round 1 Round 2

Figure 6.9: Average duration per subtask: Most times decrease, a few
increase

Comparing the completion times per subtask shows that several sub-
tasks were faster completed while some were completed slower. Rea-
sons for that are listed per subtask:

• Subtask 1: The times to find the project wizard (or in the second
round the workflow wizard) differ about 8 seconds and can be
regarded as normal deviation.

• Subtask 2: In the second round the subtasks 2, 3 and 4 can be fin-
ished all in one by finishing the new designed workflow wizard.
Thus, subtask 2 could be solved implicitly without spending time
on it. One user invoked an event that starts subtask 2 and thus a
minor duration is assigned here.

• Subtask 3: Opening a separate workflow wizard is omitted in the
second round and thus the duration is zero here.

• Subtask 4: The execution of the workflow wizard improved sig-
nificantly in round 2. As the red bar at subtask 4 has to be com-
pared with the blue bars of subtask 2, 3 and 4 together it becomes
obvious that the redesign of the workflow wizard enhanced the
start into RCE a lot. Hints were also not required anymore within
these subtasks.

• Subtask 5: The time to open the workflow in the workflow editor
has slightly increased. A possible reason for that might be, that
the probands in the first round had to interact with the project ex-
plorer in the course of creating a workflow. Thus, the they were
familiar with the concept of the project explorer, while in the sec-
ond round the project and the workflow were both created via a
menu entry and the interaction with the project explorer had to
be recognized first.

• Subtask 6: Adding workflow components to the workflow edi-

6.3 Evaluation 81

tor took nearly the same time in both rounds. Though further
functionality was added here (adding workflow components via
double-click on the palette) none of the probands in the second
iteration made use of that.

• Subtask 7: The configuration of the workflow components be-
came about 30 seconds slower in round 2. This is assumed to be
induced by the small number of probands. In the second round,
two probands had a problem that none of the probands of the
first round faced. If the number of probands was larger, the prob-
lem is assumed to also occur in round 1 and the times would be
more equal. For this subtask a design improvement was imple-
mented that enabled the probands to open the configuration of a
workflow component via the context menu of the rectangle repre-
senting the workflow component on the graphical editor. As the
time for the subtask increased, the positive effect of the design
improvement observed in the study was overlayed. Splitting the
subtask of configuring the workflow components into two parts,
i.e. opening the configuration and execution the configuration
would make the effects more visible.

• Subtask 8: The times to connect the workflow components has
decreased in the second iteration. This can possibly be accounted
to a design improvement: The connection editor was enhances
with an auto-complete functionality. That means, whenever two
workflow components which are about to be connected have ex-
actly one input and one output of the same data type, the con-
nection is automatically pulled and the user just has to confirm
it.

• Subtask 9: Opening the execution wizard worked fine in the first
iteration, no changes in design were implemented and the times
remained constant.

• Subtask 10: The same holds for processing the execution wizard.

Satisfaction

As mentioned in 3.4.2—“Standardized Metrics” in addition to the per-
formance metrics covering effectiveness and efficiency the satisfaction
is measured using a short questionnaire that has a look at satisfaction
from several points of view. All questions are equally important and
thus it is possible to average over all values. The goal of the user study
was to improve performance and not to beautify the application. Nev-
ertheless, satisfaction is important in terms of acceptance and thus con-
sidered.

The average satisfaction increased from 4.81 to 6.03 from the first to the
second round. In round 1 the average ranges from 4.17 to 5.50 while in
the second round the range was from 5.67 to 6.50. A graphical repre-
sentation of the results is shown in Figure 6.10.

Though satisfaction is a subjective impression and thus can not be com-

82 6 Discussion of the Results

1

2

3

4

5

6

7

Round 1 Round 2

Sa
tis

fa
ct

io
n

Average Satisfaction per Round

Figure 6.10: Average satisfaction per round: The satisfaction increases
in round 2

pared and measured like completion times for instance, the numbers
presented here match the impression of the analyst in the two rounds.

6.4 Influences of the Previous Knowledge

A second questionnaire gathering general information and prior know-
ledge was assessed. To recall, the overall information collects informa-
tion about the age, gender, profession, employee and department. Pre-
vious knowledge is collected with regard to experience with comput-
ers, experience with the Eclipse IDE, experience with workflow-driven
tools and experience with RCE.

The experience was estimated by the probands themselves, so the val-
ues are subjective. There was no correlation found between the general
information or the prior knowledge on the one hand and the metrics
on the other hand.

Nevertheless, collecting this data helped to get a feeling about the de-
mographic structure of the probands under observation, as presented
in 5.2.2—“Users”.

6.5 Limitations of the Results and Possible Bias

There are several influences that might bias the results.

As a first bias the bridge between the languages German and English
could cause confusion. RCE uses English wording. The task was
given in German to provide best understandable information, because
the probands have German as native language. Thus, the mapping
between German and English phrases might cause trouble for some
probands.

6.5 Limitations of the Results and Possible Bias 83

Moreover, the sample size was small and thus the results are not statis-
tically representative. The sample size suffices to find crucial usability
problems, but the resulting metrics should not be seen to strict.

Additionally the chosen probands can not be seen as representative for
the entire DLR. There were only 2 departments involved and possibly
departments with different focus of research might perform differently.

The user task is no real-life task. As it is artificial to use specially tai-
lored workflow components to separate even and odd numbers instead
of a script, it might appear droll to probands and influence their perfor-
mance.

The used Think Aloud method can both improve or impair the users’
performance, as shown in 2.2.1—“Origin and Approach”.

Another bias might be the wording in the task description and in the
questionnaires. People sometimes associate words with more or less
positive emotions which might have an impact.

A bias that could be caused by technical issues is the assignment of
events in non-linear contexts. The users are asked to complete the tasks
step by step. But if a user misses a task the events could be assigned
incorrectly causing corrupt metrics.

Additionally, the analyzer of the results of the Track-Analysis-Tool and
the videotapes was the same person, the author of the thesis. Though it
was tried, it can not be guaranteed that the analysis was not influenced
to some extent.

Moreover, the satisfaction metrics and the prior knowledge was rated
subjectively by the users. Though general tendencies are recognizable
the given values should not be taken to strictly. Although the approach
worked in the context of RCE it is necessary to apply it onto different
software to verify the general applicability.

Another bias which is of more technical nature is the granularity of the
subtasks. Though the subtasks as defined for the user study yielded
reasonable results, it is possible that subtask definitions on different
levels of abstraction would yield other - still reasonable - results.

After the discussion of the results it is presented which related work
influenced the thesis.

85

Chapter 7

Related Work

“Shadow is a colour as light is, but less brilliant; light and
shadow are only the relation of two tones.”

—Paul Cezanne

The thesis encounters several areas of research. In this chapter a sam-
ple of publications is presented that is related to the thesis and had an
impact on how the approach was planned and realized.

7.1 Interaction Capturing Approaches

There is several research about what is generally possible regarding
logging data and analyzing.

Based on the occurrence of program errors several work was done: For
example, Nielsen relates the detection and prevention of errors with the
analysis of logged data as follows:

"[A test method is] automatic computer logging of user ac-
tions. Later Analysis can determine, say, that a certain error
message is issue so frequently that the "prevent errors" us-
ability guideline should be applied to reduce the probability
of the corresponding error situation." [Nie92b]

Moreover, Nielsen [Nie94b, p. 217 ff] analyses several studies that have
been conducted in the context of logging data, particularly errors. As
examined by Nielsen, [BMC90] conducted a study with a line-oriented
system. Thereby the error messages are analyzed. The analysis showed
that 30% of the errors were spelling errors, i.e. commands were prob-
ably known but just misspelled. This gives hints to add a spelling cor-
rector to the software. Moreover, 48% of the errors were mode errors,
i.e. commands were called which were not appropriate in the current

86 7 Related Work

state of the system. As a consequence, larger redesigns are to be con-
sidered. Furthermore, Nielsen reports about a study [SS87] conducted
by Senay and Stabler. In the study the usage of help functionality was
examined. Only 10% of the help screens were invoked by 92% of the
requests. Thus, the focus should be set on these 10%.

These approaches focus on the analysis of help or error messages and
show that logged actions can be used to gain viable information. The
focus of the thesis is not only on the detection of problems that cause an
error or the usage of help functionality. The thesis aims to find general
usability problems and to improve the application even in cases were
an error message is not invoked despite a design worth of improve-
ment.

Moreover, log analysis can be used to find out which features of an
application are frequently used. If features are not used at all, it can
be considered to discard them or to place them more present in the
application.

There are several implementations dealing with logging data from ap-
plications.

Paper: Capturing and Analyzing Low-Level Events from the Code
Editor

Yoon and Myers [YM11] present a plug-in for the Eclipse IDE called
Fluorite which captures all of the low-level events when using the
Eclipse code editor. In addition to the type of the event, further in-
formation like inserted or deleted text or other specific parameters are
logged. Analysis and visualization tools which report various statistics
about usage patterns are presented.

A short test of the plug-in showed that it works well to gather informa-
tion about the user’s interaction with the code editor. As the interaction
to be considered in the course of the thesis goes beyond the code editor
this approach is not suitable for the thesis.

Paper: NaCIN - An Eclipse Plug-In for Program Navigation-based
Concern Inference

With NaCIN Majid and Robillard [MR05] present a plug-in for the
Eclipse IDE that records how developers navigate through the code.
Navigation paths and structural dependencies are analyzed and clus-
tered into groups. This allows the detection of potential high-level con-
cepts. The architecture and a preliminary assessment is presented in
the paper. The approach presented in the paper focused on the usage
of the code editor of Eclipse. The scope of the thesis is a broader one,
including the entire application. Additionally the assessment is prelim-
inary, so NaCIN is not employed in the thesis.

7.2 Mouse Tracking 87

Paper: Computer Analysis of User Interfaces Based on Repetition in
Transcripts of User Sessions

In the paper "Computer Analysis of User Interfaces Based on Repeti-
tion in Transcripts of User Sessions" Siochi and Ehrich [SE91] present
a tool to analyze logged data. Basis is a log that contains all user in-
put and all system output. Such a log can be collected automatically
and non-invasively over a long period of time. The resulting data is
inherently voluminous. Thus, tools and techniques that allow to detect
performance and usability problems are needed.

The authors assume that repetitions are an indicator for interface prob-
lems. In their paper they present an algorithm that detects the maximal
repeating pattern from a sequence of actions. The developed tool, im-
plementing the algorithm and its application on an image-processing
system is discussed. The result is, that the assumption that repetitions
are an indicator for interface problems is justified and the technique is
useful.

The detection of maximal repeating patterns appears to be useful in
many cases. As stated in the paper, actual usability problems in the
application were detected. The approach fits well to analyze very spe-
cific usability problems but fails to analyze the general aspects of the
usability of interfaces.

Referring to the thesis, it is assumed that the approach is not suitable
for several reasons. In a rather complex user interface as the RCE inter-
face it is assumed to be unlikely that users will repeat the same pattern
or sequence of actions multiple time. Instead, it is assumed that people
browse various locations of the interface seeking for a specific function-
ality. Given this, the confusion factor introduced in 3.4.3—“Confusion
Factor” appears to be a better indicator. In a line-oriented environment
is more likely to repeat several actions as there are not so many interac-
tion events to be invoked.

Further automated loggers named in [RCS11, p. 168] are Morae,
Uservue, the Observer, Ovo Logger, Keynote and Userzoom.

7.2 Mouse Tracking

Seminar paper: Mousemap-basierte Erkennung der Problemfelder
von Anwendern bei der Bedienung von Software

The seminar paper "Mousemap-basierte Erkennung der Problemfelder
von Anwendern bei der Bedienung von Software" by Nelius [Nel03]
describes how to setup an environment for semi-automated recording
of mouse maps.

Several methods for visualizations are discussed. The interaction with

88 7 Related Work

typical GUI elements like buttons or dropdown menus is recorded. The
resulting mouse maps are manually analyzed and typical patterns are
detected. The paper states that there is no generic approach to detect
patterns. The interpretation of mouse maps always depends on the
context, experience and prior knowledge.

The paper provides nice approaches to visualize mouse tracks. The
analysis of the mouse maps is executed manually. As the thesis aims
for an automated approach based on interaction patterns the seminar
paper can only serve as a basis for further analysis.

7.3 Eye Tracking

Thesis: Eyes don’t lie: Understanding Users’ first impressions on
website design using eye tracking

The thesis "Eyes don’t lie: Understanding Users’ first impressions on
website design using eye tracking" by Dahal [Dah10] deals with users’
first impressions on websites based on eye tracking and retrospective
surveys.

It states that the first impression is important for the effectiveness of a
website. The length of time it takes for users to form a first impression
is analyzed and comes to a result of about 180ms. Moreover the re-
lationship between first impression and eye movement is studied and
web design factors that influence the first user impression are named.

The first user impression is just a minor part of the task to be improved,
i.e. running the first successful workflow. The thesis stresses the impor-
tance of the first user impression on the overall effectiveness of a web-
site. This is also applicable on a stand-alone application and should be
kept in mind.

Paper: Identifying Web Usability Problems from Eye-Tracking Data

The paper "Identifying Web Usability Problems from Eye-Tracking
Data" by Ehmke and Wilson [EW07] deals with the correlation between
eye movement patterns and usability problems.

It aims to move the correlation from an anecdotal and subjective ap-
proach to a more systematic level. Therefore an initial framework is
developed. A table that matches patterns and usability problems is
proposed. A pattern in this context can be a single metric like a long
fixation or a combination of metrics such as a scan path. The detected
problems are compared to the results of other usability techniques. The
comparison showed that some problems cannot be identified by eye
movement analysis.

Though this paper deals with eye movement data and not with mouse

7.3 Eye Tracking 89

movement data, many ideas can be transferred to the thesis. The aim to
identify patterns on different levels of abstraction and the comparison
to other usability techniques are approaches derived from this paper.

Thesis: An eye movement analysis of web-page usability

In the thesis "An eye movement analysis of web-page usability" by
Cowen [Cow01] an exploratory study was conducted to investigate the
use of eye movements in evaluating usability.

Therefore eye movement measures like the average fixation time and
performance measures like task completion times were recorded. Per-
formance data revealed significant interaction between the task per-
formed and the page it was performed on. Eye movement measures
were sensitive to interaction but not significantly. Is assumed that dif-
ferent search strategies and behavior result in different eye movement
patterns. These patterns should be further investigated.

The thesis shows that eye tracking measures do not necessarily relate
significantly to performance measures. So other less expansive usabil-
ity testing methods suit for the thesis.

Note: Using eye tracking for usability testing

The note "Using eye tracking for usability testing" by Namahn [Nam01]
deals with the current usage, benefits and challenges of eye tracking in
usability testing.

Namahn comes to the conclusion that eye tracking can help to convince
managers to invest in usability testing as eye tracking results in many
numbers that can be converted to useful metrics. Eye tracking in us-
ability testing is not necessary in most applications as most usability
problems can be identified with cost effective techniques. Despite that,
eye tracking can quickly pay off in applications that deal with large
transactions. Minimal failures due to bad usability may cause a large
financial impact.

The approach of eye tracking in usability testing is relatively cost inten-
sive compared to the budget available for the thesis. Additionally, the
task to be examined in the thesis neither deals with large transactions
nor with the correct placement of advertisements. It is assumed that
most usability problems can be found by other methods.

90 7 Related Work

7.4 Subtask Recognition

Paper: Automated segmentation of development session into task-
related subsections

The paper "Automated segmentation of development session into task-
related subsections" by Coman and Sillitti [CS09a] presents an ap-
proach to automatically segment streams of low level data in subtasks
and discusses potential benefits.

High level information can only be collected intrusively, i.e. with an
interruption of the tasks and thus influences the results. Moreover, au-
tomated collected data lacks high level information like the (sub)task
the user was working on. Filtering and aggregation of low level data
to higher levels can easily be done by humans but is hard for a ma-
chine. The authors propose more exhaustive testing of parameters for
the algorithm as future work.

The presented approach is not tested exhaustively enough to be used
without doubts. Moreover the need for an automated segmentation
is not crucial because the number of subtasks is small and they have
distinct and easily detectable start and end points.

7.5 From Problems to Solutions

Paper: What do Usability Evaluators Do in practice? An explorative
Study of Think Aloud Testing

The paper "What do Usability Evaluators Do in practice? An ex-
plorative Study of Think Aloud Testing" by Norgaard and Hornbæk
[NH06] describes the results of an explorative study of 14 Think Aloud
sessions.

It states that an immediate analysis of the observations is only sporad-
ically made. Moreover evaluators tend to seek for confirmation of al-
ready known usability problems rather than to unaffectedly discover
new ones. Though these issues influence the results of sessions they
are rarely discussed in literature. It appears that evaluators prioritize
usability over utility.

The paper shows that the need for systematic analysis of problems ex-
ists as unstructured procedures apparently affect the results of sessions.
Moreover it emphasizes that it is important to avoid biased questions
or hints during a session.

7.6 Relation of Eye Movement to Mouse Movement 91

Report: Analysis of usability evaluation data: An interview study
with usability professionals

The study report "Analysis of usability evaluation data: An inter-
view study with usability professionals" by Følstad, Law and Hornbæk
[FLH09] examines how usability experts deal with the analysis of eval-
uation data collected during usability tests.

There interviews with 11 usability professionals have been conducted
and analyzed. The analysis shows that only few structured procedures
are used. It is an unstructured, creative process with subjective results
approved by other cooperating usability experts. This methodology
appears to have proven reliable.

The study report stresses the impression that the step from evaluation
data to an actual usability problem is not yet established. Furthermore
it shows that the step from an identified usability problem to a solution
proposition remains a creative process that can hardly be formalized.

7.6 Relation of Eye Movement to Mouse Move-
ment

Paper: Exploring How Mouse Movements Relate to Eye Movements
on Web Search Results Pages

The paper "Exploring How Mouse Movements Relate to Eye Move-
ments on Web Search Results Pages" by Rodden and Fu [RF07] exam-
ines the potential of mouse movements and their relation to eye move-
ments.

Therefore user tests are conducted and both mouse and eye movement
are recorded. Three main types of eye-mouse coordination were iden-
tified: Keeping the mouse still while reading, using the mouse as a
reading aid and using the mouse to mark an interesting result. Those
patterns are applied by users to varying degrees. Thus, the percentage
of data points with eye and mouse position in the same region ranges
from 25.8% to 59.9%.

The paper shows that it is not possible to directly map from mouse
movement to eye movement. Nevertheless they can relate quite closely
to each other. In the studies the mouse was often used to mark a link be-
fore clicking. This justifies the benefit of a mouse track for the problem
analysis.

Having examined related work the next chapter summarized the re-
sults of the thesis and gives an overview about open issues and future
work.

93

Chapter 8

Conclusion and Future Work

“Life is divided into three terms - that which was, which is,
and which will be. Let us learn from the past to profit by the

present, and from the present, to live better in the future.”

—William Wordsworth

To conclude the thesis, the approach and the results are summarized
and issues that remain open for future work are outlined.

8.1 What has been done?

In the course of the thesis various work has been done to gather the
required information and draw appropriate conclusions.

The workflow-driven integration framework RCE was enhanced by
prototypical implemented capturing abilities. The captured data is
written into a JSON-based log file that contains a brought spectrum
of interaction events.

An algorithm that analyses such a log file given additional context
knowledge was designed and implemented. Therefore the term "sub-
task" is introduced. A subtask is a fraction of a task in a user study.
Given additional knowledge about the beginning and end of the sub-
tasks events can be assigned to subtasks. With additional context
knowledge it is possible to rate how straightforward each subtask was
accomplished. This enables an analyzer to draw conclusions about
possible usability problems. As a reference another proven usability
technique is determined based on literature research. The Think Aloud
method was chosen and further studied.

Suitable standardized metrics were determined and the respective im-
plementations to measure them in an automated fashion were realized.
Thereby the task completion rate, completion times, the number of

94 8 Conclusion and Future Work

given hints and satisfaction are measured. As an enhancement, appli-
cation specific metrics are defined. An approach to determine when a
user is confused based on unintentionally invoked events is designed
and realized as a confusion warning. To depict which actions a user
tried to solve a task the concept of a Distance to Success Vector has
been designed.

A user study consisting of two iterations with overall 13 probands was
conducted simultaneously applying the Track-Analysis-Tool and the
Think Aloud method. A task covering typical interaction of users with
RCE from the first start to the first successful execution of a workflow
was designed. Three minimalistic workflow components tailored to the
given task were implemented.

For the frequent or severe usability problems revealed in the first iter-
ation design improvements were determined with the RCE develop-
ment team using the creativity method Six Thinking Hats. A sample of
the improvements was realized and integrated in the second iteration.
The metrics were collected in both iterations. The metrics, the revealed
usability problems and the differences between the Track-Analysis-Tool
and the Think Aloud method were analyzed in detail.

8.2 What are the Discoveries?

The discoveries made in the course of the thesis refer to the realization
of the conceptions and to the results of the study and the captured data.

As a first discovery temporal aspects are mentioned here. It takes a
while to get the Track-Analysis-Tool running, but once set up a vast
amount of data can be collected within minimal time. On the schedule
the implementation was expected to take less time. In turn conducting
the study and analyzing the results was expected to take longer so the
schedule could still be kept.

The Track-Analysis-Tool can be applied in distributed environments
and run remotely in an automated fashion. In contrast to other meth-
ods like the Think Aloud method or a field observation the analyst does
not have to travel around visiting the probands. Moreover, the Track-
Analysis-Tool revealed the crucial usability problems the Think Aloud
method revealed, but on a higher level of abstraction. The verbalized
thoughts give a deeper insight into the proband’s mental model. In
terms of quantification, e.g. completion times, the Track-Analysis-Tool
performs very well. The Think Aloud method is able to reveal very sub-
tle problems, sometimes not even recognized by the probands them-
selves. The Track-Analysis-Tool is not capable of that. Efficiently ana-
lyzing the output of the Track-Analysis-Tool requires knowledge about
the domain, as otherwise names of GUI elements can not be contextu-
alized.

Referring to a comparison between the two iterations the following dis-

8.3 What remains open for Future Work? 95

coveries were made: The performance metrics improved most times
due to the realized design improvements. If the performance metrics
significantly decreased this can be regarded to the small sample size,
so problems accidentally occurred only in the second iteration. The
satisfaction when using RCE for the first time increased. The results
show that the design changes improved the metrics, so actual usability
problems were detected by the approaches. The determination when
probands were confused while working on their task worked reliably.

8.3 What remains open for Future Work?

There are several open issues regarding the concepts and their realiza-
tion.

The ability to capture the required events is prototypically imple-
mented, but spread over various classes in a rather unclean manner. Be-
ing closely related to logging this is a typical cross-cutting concern, as it
concerns various functional aspects of the application. Approaches like
AOP1[IKL+97], reflection or the sophisticated use of extension points
would allow for separation of cross-cutting concerns.

The definition of reference values such as the beginnings and ends of
a subtask or the information which events are regarded as positive
or negative in the context of a subtask are integrated to the analysis
tool programmatically. To make the approach more flexible and easier
adaptable to other applications and user tasks, a definition based on a
configuration file is desirable and an open issue.

In order to enhance the statistical relevance of the results more exhaus-
tive studies must be conducted. More probands can be considered,
other applications can be tested and more iterations can be carried out
until convergence of the metrics is reached.

The concept of the "Distance to Success" Vector is open to further inves-
tigation and implementation.

The analysis of the mouse track can be enhanced. The expressiveness of
different visualizations of mouse tracks can be examined and possible
correlations between captured interaction events and the mouse track
can be explored.

Eventually it could be subject to future work how good the results of
the Track-Analysis-Tool can be interpreted by an analyst who is no ex-
pert in the respective domain.

1AOP stands for Aspect Oriented Programming and is a programming paradigm
that aims to increase modularity

97

Bibliography

[Adl10] J. Adler. R in a Nutshell. O’Reilly Media, 2010.

[AL08] R. Atterer, P. Lorenzi. A heatmap-based visualization for
navigation within large web pages. In Proceedings of the
5th Nordic conference on Human-computer interaction: building
bridges. NordiCHI ’08, pp. 407–410. ACM, New York, NY,
USA, 2008. doi:10.1145/1463160.1463206 http://doi.acm.org
/10.1145/1463160.1463206

[ASW06] E. Arroyo, T. Selker, W. Wei. Usability tool for anal-
ysis of web designs using mouse tracks. In CHI ’06
Extended Abstracts on Human Factors in Computing Sys-
tems. CHI EA ’06, pp. 484–489. ACM, New York, NY,
USA, 2006. doi:10.1145/1125451.1125557 http://doi.acm.org
/10.1145/1125451.1125557

[BB84] D. C. Berry, D. E. Broadbent. On the relationship between
task performance and associated verbalizable knowledge.
The Quarterly Journal of Experimental Psychology Section A
36(2):209–231, 1984. doi:10.1080/14640748408402156

[BJLP02] R. Birns, J. Joffre, J. Leclerc, C. Paulsen. Getting the whole
picture–The importance of collecting usability data using
both concurrent think aloud and retrospective probing pro-
cedures. In Usability Professionals Association Conference, July.
Pp. 8–12. 2002.

[BM05] R. G. Bias, D. J. Mayhew. Cost-Justifying Usability: An Update
for the Internet Age, Second Edition. Morgan Kaufmann, April
2005.

[BMC90] J. H. Bradford, W. D. Murray, T. Carey. What kind of errors
do Unix users make? In Proceedings of the IFIP TC13 Third
Interational Conference on Human-Computer Interaction. Pp. 43–
46. 1990.

[Bro96] J. Brooke. SUS-A quick and dirty usability scale. Usability
evaluation in industry 189:194, 1996.

[Car96] W. J. Carl. Six Thinking Hats: Argumentativeness and Re-
sponse to Thinking Model. March 1996.

http://dx.doi.org/10.1145/1463160.1463206
doi.acm.org/10.1145/1463160.1463206
doi.acm.org/10.1145/1463160.1463206
http://dx.doi.org/10.1145/1125451.1125557
doi.acm.org/10.1145/1125451.1125557
doi.acm.org/10.1145/1125451.1125557
http://dx.doi.org/10.1080/14640748408402156

98 Bibliography

[CDN88] J. P. Chin, V. A. Diehl, K. L. Norman. Development of
an instrument measuring user satisfaction of the human-
computer interface. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. CHI ’88, pp. 213–218.
ACM, New York, NY, USA, 1988. doi:10.1145/57167.57203
http://doi.acm.org/10.1145/57167.57203

[Che12] Checkstyle Development Team. Checkstyle 5.6. http://check-
style.sourceforge.net, 2012. [Online; accessed 2013.06.24].

[Cow01] L. Cowen. An eye movement analysis of web-page usability.
Master’s thesis, Masters by Research in the Design and Eval-
uation of Advanced Interactive Systems, 2001.

[CRC12] A. Cooper, R. Reimann, D. Cronin. About Face 3: The
Essentials of Interaction Design. Wiley, 2012. http://http://
books.google.de/books?id=e75G0xIJju8C

[CS09a] I. D. Coman, A. Sillitti. Automated segmentation of
development sessions into task-related subsections. In-
ternational Journal of Computers & Applications 31(3):159,
2009. http:// citeseerx.ist.psu.edu / viewdoc / down-
load?doi=10.1.1.188.5812&rep=rep1&type=pdf

[CS09b] I. D. Coman, A. Sillitti. Automated segmentation of devel-
opment sessions into task-related subsections. International
Journal of Computers & Applications 31(3):159, 2009.

[Dah10] S. Dahal. Eyes Don’t Lie: Understanding Users’ First Impressions
on Website Design Using Eye Tracking. PhD thesis, Missouri
University of Science and Technology, 2010.

[DB99] E. De Bono. Six thinking hats. Back Bay Books, Boston, 1999.

[DLR12] DLR. A Framework for Integration of Development Tools
with Source Code Repositories. http://repoguard.tigris.org,
2012. [Online; accessed 2013.06.24].

[DLR13a] DLR. Distributed Systems and Component Software. http://
dlr.de/sc/en/desktopdefault.aspx/tabid-1199/1657_read-
3066, 2013. [Online; accessed 2013.01.10].

[DLR13b] DLR. DLR at a glance. http://dlr.de/dlr/en/desktopde-
fault.aspx/tabid-10002/#/DLR/Start/About, 2013. [Online;
accessed 2013.07.12].

[DLR13c] DLR. RCE - Distributed, Workflow-driven Integration Envi-
ronment. http://code.google.com/a/eclipselabs.org/p/rce,
2013. [Online; accessed 2013.01.05].

[DLR13d] DLR. Remote Component Environment (RCE). http://
www.dlr.de / sc / en / desktopdefault.aspx / tabid-5625 /
9170_read-17513, 2013. [Online; accessed 2013.01.05].

http://dx.doi.org/10.1145/57167.57203
doi.acm.org/10.1145/57167.57203
checkstyle.sourceforge.net
checkstyle.sourceforge.net
http://books.google.de/books?id=e75G0xIJju8C
http://books.google.de/books?id=e75G0xIJju8C
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.188.5812&rep=rep1&type=pdf
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.188.5812&rep=rep1&type=pdf
repoguard.tigris.org

Bibliography 99

[Ecl11] Eclipse Contributors. Class Composite. http://
help.eclipse.org / indigo / index.jsp?topic=, 2000, 2011.
[Online; accessed 2013.06.24].

[Ecl13] Eclipse Foundation. SWT: The Standard Widget Toolkit.
http://eclipse.org/swt, 2013. [Online; accessed 2013.01.05].

[ES96] K. A. Ericsson, H. A. Simon. Protocol Analysis verbal reports as
data. MIT Press, Cambridge, MA, 1996. revised edition.

[EW07] C. Ehmke, S. Wilson. Identifying web usability problems
from eye-tracking data. In Proceedings of the 21st British HCI
Group Annual Conference on People and Computers: HCI...but
not as we know it. BCS-HCI ’07, pp. 119–128. British Com-
puter Society, Swinton, UK, UK, 2007. http://dl.acm.org/ci-
tation.cfm?id=1531294.1531311

[Fas09] FasterXML. Jackson JSON Processor Wiki. http://
wiki.fasterxml.com/JacksonHome, 2009. [Online; accessed
2013.06.24].

[FLH09] A. Folstad, E. Law, K. Hornbak. Analysis of usability evalua-
tion data: An invterview study with usability professionals.
September 2009. http://www.sintef.no/home/Publications/
Publication/?pubid=SINTEF+A13889

[GRA10] C. Günther, A. Rozinat, W. Aalst. Activity Mining by Global
Trace Segmentation. 2010. doi:10.1007/978-3-642-12186-9_13
http://dx.doi.org/10.1007/978-3-642-12186-9_13

[HB92] G. S. Hackman, D. W. Biers. Team Usability Testing: Are two
Heads Better than One? Proceedings of the Human Factors and
Ergonomics Society Annual Meeting 36(16):1205–1209, 1992.
doi:10.1177/154193129203601605 http://pro.sagepub.com/
content/36/16/1205.abstract

[HNZ] O. Horák, M. Novák, V. Zákoutskỳ. Heatmap Generation
Techniques used for GeoWeb Application User-Interface
Evaluation.

[Hol05] A. Holzinger. Usability engineering methods for soft-
ware developers. Commun. ACM 48(1):71–74, January 2005.
doi:10.1145/1039539.1039541 http://doi.acm.org/10.1145/
1039539.1039541

[HS08] M. Hennig, H. Seeberger. Einführung in den Extension Point-
Mechanismus von Eclipse. JavaSPEKTRUM 1:19–24, 2008.

[IBM07] IBM. The JFace UI framework. http://help.eclipse.org/
juno/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/
jface.htm, 2007. [Online; accessed 2013.07.05].

[IKL+97] J. Irwin, G. Kickzales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J. Loingtier. Aspect-oriented programming. Pro-
ceedings of ECOOP, IEEE, Finland, pp. 220–242, 1997.

help.eclipse.org/indigo/index.jsp?topic=
help.eclipse.org/indigo/index.jsp?topic=
dl.acm.org/citation.cfm?id=1531294.1531311
dl.acm.org/citation.cfm?id=1531294.1531311
http://dx.doi.org/10.1007/978-3-642-12186-9_13
http://dx.doi.org/10.1177/154193129203601605
pro.sagepub.com/content/36/16/1205.abstract
pro.sagepub.com/content/36/16/1205.abstract
http://dx.doi.org/10.1145/1039539.1039541
doi.acm.org/10.1145/1039539.1039541
doi.acm.org/10.1145/1039539.1039541
help.eclipse.org/juno/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/jface.htm
help.eclipse.org/juno/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/jface.htm
help.eclipse.org/juno/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/jface.htm

100 Bibliography

[Jen13] Jenkins Development Team. Meet Jenkins. http://
wiki.jenkins-ci.org / display / JENKINS / Meet+Jenkins,
2013. [Online; accessed 2013.06.24].

[JSO] JSON.org. Introducing JSON. http://www.json.org. [Online;
accessed 2013.06.24].

[Lew82] C. Lewis. Using the" thinking-aloud" method in cognitive inter-
face design. IBM TJ Watson Research Center, 1982.

[Lew95] J. R. Lewis. IBM computer usability satisfaction ques-
tionnaires: Psychometric evaluation and instructions
for use. International Journal of Human-Computer Inter-
action 7(1):57–78, 1995. doi:10.1080/10447319509526110
http:// www.tandfonline.com / doi / abs / 10.1080 /
10447319509526110

[LFBG07] R. Lokaiczyk, A. Faatz, A. Beckhaus, M. Goertz. Enhancing
just-in-time e-learning through machine learning on desktop
context sensors. In Modeling and Using Context. Pp. 330–341.
Springer, 2007.

[LG08] R. Lokaiczyk, M. Goertz. Extending low level context events
by data aggregation. In Proceedings of I-KNOW. Volume 8,
pp. 118–125. 2008.

[Lik32] R. Likert. A technique for the measurement of attitudes.
Archives of psychology, 1932.

[LRV+08] E. Law, V. Roto, A. P. Vermeeren, J. Kort, M. Hassen-
zahl. Towards a shared definition of user experience. In CHI
’08 Extended Abstracts on Human Factors in Computing Sys-
tems. CHI EA ’08, pp. 2395–2398. ACM, New York, NY,
USA, 2008. doi:10.1145/1358628.1358693 http://doi.acm.org
/10.1145/1358628.1358693

[Lun01] A. M. Lund. Measuring usability with the USE questionnaire.
Usability interface 8(2):3–6, 2001.

[MLA10] J. McAffer, J.-M. Lemieux, C. Aniszczyk. Eclipse Rich Client
Platform. Addison-Wesley Professional, May 2010.

[MR05] I. Majid, M. P. Robillard. NaCIN: an Eclipse plug-in for pro-
gram navigation-based concern inference. In Proceedings of
the 2005 OOPSLA workshop on Eclipse technology eXchange.
Pp. 70–74. 2005.

[Nam01] Namahn. Using eye tracking for usability testing. 2001.

[Nel03] M. Nelius. Mousemap-basierte Erkennung der Problem-
felder von Anwendern bei der Bedienung von Software.
September 2003.

www.json.org
http://dx.doi.org/10.1080/10447319509526110
http://dx.doi.org/10.1145/1358628.1358693
doi.acm.org/10.1145/1358628.1358693
doi.acm.org/10.1145/1358628.1358693

Bibliography 101

[NH06] M. Norgaard, K. Hornbaek. What do usability evaluators do
in practice?: an explorative study of think-aloud testing. In
Symposium on Designing Interactive Systems: Proceedings of the
6 th conference on Designing Interactive systems. Volume 26,
p. 209–218. 2006. http://https://blog.itu.dk/DIND-F2011/
files/2011/02/norgaard_dis_2006.pdf

[Nie89] J. Nielsen. The matters that really matter for hypertext us-
ability. In Proceedings of the second annual ACM conference on
Hypertext. HYPERTEXT ’89, pp. 239–248. ACM, New York,
NY, USA, 1989. doi:10.1145/74224.74244 http://doi.acm.org/
10.1145/74224.74244

[Nie92a] J. Nielsen. Finding usability problems through heuristic eval-
uation. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’92, pp. 373–380. ACM,
New York, NY, USA, 1992. doi:10.1145/142750.142834 http://
doi.acm.org/10.1145/142750.142834

[Nie92b] J. Nielsen. The usability engineering life cycle. Computer
25(3):12–22, 1992.

[Nie94a] J. Nielsen. Guerrilla HCI: Using discount usability engi-
neering to penetrate the intimidation barrier. Cost-justifying
usability, p. 245–272, 1994. http://www.useit.com/papers/
guerrilla_hci.html

[Nie94b] J. Nielsen. Usability Engineering. Interactive Technolo-
gies. Elsevier Science, 1994. http://books.google.de/
books?id=DBOowF7LqIQC

[Nie06] Nielsen Norman Group. F-Shaped Pattern For Read-
ing Web Content. http://www.nngroup.com/articles/f-
shaped-pattern-reading-web-content, 2006. [Online; ac-
cessed 2013.06.24].

[Not01] M. Notess. Usability, user experience, and learner expe-
rience. http://elearnmag.acm.org/archive.cfm?aid=566938,
2001. [Online; accessed 2013.06.25].

[ODR84] C. O’Malley, S. Draper, M. Riley. Constructive interaction:
A method for studying human-computer-human interaction.
In PROC IFIP INTERACT’84 First Intl Conf Human-computer
Interaction (London UK, 4-7 September). Pp. 269–274. 1984.

[OS08] J. W. Owens, S. Shrestha. How Do Users Browse a Portal
Website? An Examination of User Eye Movements. Usabil-
ity News 10(2), 2008.

[Per07] C. Perfetti. Five Survival Techniques for Creating
Usable Products. http://www.uie.com / articles / prod-
uct_survival_techniques, 2007. [Online; accessed 2013.06.26.

https://blog.itu.dk/DIND-F2011/files/2011/02/norgaard_dis_2006.pdf
https://blog.itu.dk/DIND-F2011/files/2011/02/norgaard_dis_2006.pdf
http://dx.doi.org/10.1145/74224.74244
doi.acm.org/10.1145/74224.74244
doi.acm.org/10.1145/74224.74244
http://dx.doi.org/10.1145/142750.142834
doi.acm.org/10.1145/142750.142834
doi.acm.org/10.1145/142750.142834
www.useit.com/papers/guerrilla_hci.html
www.useit.com/papers/guerrilla_hci.html
elearnmag.acm.org/archive.cfm?aid=566938

102 Bibliography

[PHR+86] K. Potosnak, P. J. Hayes, M. B. Rosson, M. L. Schneider, J. A.
Whiteside. Classifying users: a hard look at some controver-
sial issues. SIGCHI Bull. 17(4):84–88, April 1986. doi:10.1145/
22339.22353 http://doi.acm.org/10.1145/22339.22353

[Pro10] ProContext Consulting GmbH. Usability und User Ex-
perience unterscheiden. http://blog.procontext.com/2010/
03/usability-und-user-experience-unterscheiden.html, 2010.
[Online; accessed 2013.06.24].

[RCS11] J. Rubin, D. Chisnell, J. Spool. Handbook of Usability Testing:
Howto Plan, Design, and Conduct Effective Tests. Wiley, 2011.
http://books.google.de/books?id=l_e1MmVzMb0C

[RF07] K. Rodden, X. Fu. Exploring how mouse movements re-
late to eye movements on web search results pages. In SI-
GIR 2007 Workshop on Web Information Seeking and Interac-
tion (WISI). P. 29–32. 2007. http://wattproject.com/wordpress
/wp-content/uploads/2010/06/eye-mouse1.pdf

[Rub06] D. Rubel. The heart of eclipse. Queue 4(8):36–44, 2006.

[SB06] F. Sarodnick, H. Brau. Methoden der Usability Evaluation.
Verlag Hans Huber, 2006.

[SB12] C. Schawel, F. Billing. Walt-Disney-Methode. In Top 100 Man-
agement Tools. Pp. 276–278. Springer, 2012.

[SDKP06] A. Seffah, M. Donyaee, R. B. Kline, H. K. Padda. Usability
measurement and metrics: A consolidated model. Software
Quality Journal 14(2):159–178, 2006.

[SE91] A. C. Siochi, R. W. Ehrich. Computer analysis of user inter-
faces based on repetition in transcripts of user sessions. ACM
Transactions on Information Systems (TOIS) 9(4):309–335, 1991.

[Sea80] J. Seamon. Memory & Cognition: an introduction. Ox-
ford University Press, 1980. http://books.google.de/
books?id=Hm8QAQAAIAAJ

[Ser12] D. Sergent. Six Thinking Hats - New Tools for New So-
lutions. http://www.capitalquality.org/wp-content/uploads
/2012/11/CQI_Six_Hats_LL_Lite1.pdf, 2012. [Online; ac-
cessed 2013.06.26.

[SFL+12] D. Seider, P. Fischer, M. Litz, A. Schreiber, A. Gerndt. Open
Source Software Framework for Applications in Aeronautics
and Space. In IEEE Aerospace Conference. 2012.

[SK05a] J. Sauro, E. Kindlund. How long should a task take? iden-
tifying specification limits for task times in usability tests.
In Proceeding of the Human Computer Interaction International
Conference (HCII 2005), Las Vegas, USA. 2005.

http://dx.doi.org/10.1145/22339.22353
http://dx.doi.org/10.1145/22339.22353
doi.acm.org/10.1145/22339.22353
blog.procontext.com/2010/03/usability-und-user-experience-unterscheiden.html
blog.procontext.com/2010/03/usability-und-user-experience-unterscheiden.html

Bibliography 103

[SK05b] J. Sauro, E. Kindlund. A method to standardize usability met-
rics into a single score. In Proceedings of the SIGCHI conference
on Human factors in computing systems. Pp. 401–409. 2005.

[SL09] J. Sauro, J. R. Lewis. Correlations among prototypical usabil-
ity metrics: evidence for the construct of usability. In Proceed-
ings of the SIGCHI Conference on Human Factors in Comput-
ing Systems. CHI ’09, pp. 1609–1618. ACM, New York, NY,
USA, 2009. doi:10.1145/1518701.1518947 http://doi.acm.org
/10.1145/1518701.1518947

[SR91] B. Shackel, S. Richardson. Human Factors for Informat-
ics Usability. Cambridge University Press, 1991. http://
books.google.de/books?id=KSHrPgLlMJIC

[SS87] H. Senay, E. Stabler. Online Help System Usage: An Empir-
ical Investigation. In Proc. Second Int. Conference on Human-
Computer Interaction. 1987.

[TA10] T. Tullis, W. Albert. Measuring the User Experience: Collect-
ing, Analyzing, and Presenting Usability Metrics. Interactive
Technologies. Elsevier Science, 2010. http://books.google.de
/books?id=KsjpuMJ6T-YC

[The13] The Apache Software Foundation. Apache Subversion
- "Enterprise-class centralized version control for the
masses. http://subversion.apache.org, 2013. [Online; ac-
cessed 2013.06.24].

[VSK96] R. A. Virzi, J. L. Sokolov, D. Karis. Usability problem identi-
fication using both low- and high-fidelity prototypes. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems. CHI ’96, pp. 236–243. ACM, New York, NY, USA,
1996. doi:10.1145/238386.238516 http://doi.acm.org/10.1145
/238386.238516

[WC92] R. B. Wright, S. A. Converse. Method Bias and Concur-
rent Verbal Protocol in Software Usability Testing. Proceed-
ings of the Human Factors and Ergonomics Society Annual Meet-
ing 36(16):1220–1224, 1992. doi:10.1177/154193129203601608
http://pro.sagepub.com/content/36/16/1220.abstract

[YM11] Y. Yoon, B. A. Myers. Capturing and analyzing low-level
events from the code editor. In Proceedings of the 3rd ACM
SIGPLAN workshop on Evaluation and usability of programming
languages and tools. Pp. 25–30. 2011.

[ZS13] A. Zenkov, A. Shipilov. IOGraphica - Turn your routine work
into modern art. http://iographica.com, 2013. [Online; ac-
cessed 2013.01.10].

http://dx.doi.org/10.1145/1518701.1518947
doi.acm.org/10.1145/1518701.1518947
doi.acm.org/10.1145/1518701.1518947
subversion.apache.org
http://dx.doi.org/10.1145/238386.238516
doi.acm.org/10.1145/238386.238516
doi.acm.org/10.1145/238386.238516
http://dx.doi.org/10.1177/154193129203601608
pro.sagepub.com/content/36/16/1220.abstract
iographica.com

105

Glossary

AOP Aspect Oriented Programming, a
programming paradigm that aims to
increase modularity

Arm Event An interaction event invoked whenever the
mouse cursor enters a menu entry

Bundle Unit within an application based on OSGi
that encapsulates functionality

Checkstyle A tool for static code analysis

Cognitive Walkthrough A usability technique where an evaluator
examines the product and identifies
problems that novice users might face when
accomplishing a given task

Component In RCE: A configurable tool to contribute to
a workflow, also called workflow
component

Composite A class of SWT used to group other SWT
instances

Connection In RCE: A channel between workflow
components to exchange data

Equinox Reference implementation of the OSGi
framework

Error In a user study: An action that prevents the
user from fulfilling her or his task, thus
inducing a hint by the supervisor

Event An instance of interaction between the user
and the interface

Extension Point In RCP based applications: Elemental
structure to declaratively add functionality

Eyetracking A method so capture which parts of the
screen attract particular attention

Field Observation A usability technique where real users are
observed using a product

106 8 Glossary

Heuristic Evaluation A usability technique where an evaluator
examines a product and judges the
compliance with usability principles

GOMS Goals Operators Methods and Selection
rules, a means to model human computer
interaction

Hint Further information given by the supervisor
to the proband when proceeding with the
task is impossible otherwise

JFace Toolkit used to create graphical interfaces in
RCP based applications

Jenkins A continuous integration service

Key Event An interaction event invoked whenever a
keystroke is done

Likert Scale Scale to determine affirmation or rejection of
a statement in a questionnaire.

Log List of events invoked when working with
an application

OSGi A framework to create modular applications
using a dynamic component model.
Components can be installed, started,
stopped, updated and uninstalled at runtime

Palette List of all tools available attached to
graphical editor.

Pattern A action or set of actions when interacting
with an application, e.g. a button click or
filling out a form

RCP Eclipse Rich Client Platform, a platform to
develop rich clients in Java, using SWT and
JFace as UI toolkits

Repoguard A tool to enforce specific rules on a
repository

Robot Class to programmatically invoke mouse or
keyboard actions

Shell A class of SWT representing windows

Six Thinking Hats Creativity method based on parallel
thinking

Subtask Subunit of a task in a user test

Subversion A versioning system

107

SUM Single Usability Metric, combines several
metrics, e.g. task success, errors and task
time into one value

SWT Standard Widget Toolkit, a graphical
widget toolkit to create graphical user
interfaces in Java

Think Aloud Method Usability method where the proband is
requested to verbalize her or his thoughts

Wizard A dialog consisting of several pages, leading
the user through a task step by step

Workflow In RCE: Several workflow components
exchanging and processing data to
investigate a research questions

108

The attached disc contains:

- The exposee of the thesis
- The thesis
- The referenced websites
- The used versions of RCE
- The analysis tool
- The study and analysis results
- The sheets handed out to the probands

111

Appendix

A Beginning and End Conditions of the Subtasks

The following list shows the subtasks and their respective beginnings
and end conditions:

1. Start the "New Project" wizard:
• Beginning: Tracking is activated
• End: The project or general wizard is opened

2. Execute the "New Project" wizard:
• Beginning: Project or general wizard is opened
• End: A project is created and appears in project explorer

3. Start the "New Workflow" wizard:
• Beginning: A project is created and appears in project ex-

plorer
• End: The workflow or general wizard is opened

4. Execute the "New Workflow" wizard:
• Beginning: The workflow or general wizard is opened
• End: A workflow is created

5. Open workflow:
• Beginning: A workflow is created
• End: A workflow is opened in the graphical editor

6. Add the required components:
• Beginning: A workflow is opened in the graphical editor
• End: All required components are added to the workflow

7. Configure the components:
• Beginning: All required components are added to the work-

flow
• End: All components are configured correctly

8. Configure required connections between components:
• Beginning: All components are configured correctly
• End: All connection are correctly established

112 Appendix

9. Start the "Execute Workflow" wizard:
• Beginning: All connection are correctly established
• End: The workflow execution wizard is opened

10. Execute the "Execute Workflow" wizard:
• Beginning: The workflow execution wizard is opened
• End: The currently selected workflow is executed

B List of Typical GUI Elements and Interaction
Patterns

The following list presents common graphical interface elements and
typical ways to interact with them:

Button Select

Radio button Select

Toggle button Toggle state

Menu Show, hide

Menu item Select, hover

Wizard Open, back, next, cancel, finish, close

Tree Expand, collapse, select

Palette Expand, collapse, scroll

Palette item Drag, drop, select

Checkbox Check, uncheck

Text field Keystroke, select

Dropdown menu Dropdown, hide, select

Slider Change value

Spinner Change value

Tab folder Select

Tab Select, close

Scrollables Scroll

Accordion Expand

Canvas Move, select, drag, drop

Tool bar Move, select

Calender Select, switch scope

Dialog Open, confirm, abort

Table Select, change order

C Excerpt from Example Results Of the Analysis 115

C Excerpt from Example Results Of the Analysis

C Excerpt from Example Results Of the Analysis 117

D User Task Sheet 119

D User Task Sheet

Aufgabenstellung

Die Aufgabenstellung wird im Folgenden erläutert, wobei für jeden Unterpunkt mehrere
Schritte erforderlich sein können.

1. Erstellen Sie einen Workflow mit einem Namen ihrer Wahl, z.B. ”MeinWorkflow”.

2. Öffnen Sie den Workflow im WorkflowEditor.

3. Fügen Sie jeweils eine Komponente vom Typ ”Generator”, ”Separator” und ”Checker”
hinzu.

4. Konfigurieren Sie die Komponenten:

• Generator:

– Erstellen Sie ein Output vom Typ Integer

– Lassen Sie Zahlen von 4 bis 22 generieren

• Separator:

– Erstellen Sie jeweils ein Input und ein Output vom Typ Integer

– Aktivieren Sie das Trennen gerader und ungerader Zahlen

• Checker:

– Erstellen Sie ein Input vom Typ Integer

– Aktivieren Sie das Überprüfen des Inputs

5. Verbinden Sie die Komponenten:

• Verbindung vom Generator zum Separator

• Verbindung vom Separator zum Checker

6. Führen Sie den Workflow aus.

Ergebnis:

• Wird der Workflow erfolgreich durchgeführt, erscheint ein Popup und der Be-
nutzertest endet.

• Schlägt der Workflow fehl, haben Sie die Möglichkeit, es noch ein mal zu probieren,
wenn Sie möchten.

E Questionnaire about Satisfaction 123

E Questionnaire about Satisfaction

Zufriedenheitsumfrage RCE

Bitte bewerten Sie folgende Aussagen zur Zufriedenheit bei der Benutzung von RCE.

• Stimmen Sie der getroffenen Aussage zu, kreuzen sie bitte links an.

• Stimmen Sie der getroffenen Aussage nicht zu, kreuzen sie bitte rechts an.

• Ist Ihre Haltung neutral, kreuzen Sie bitte in der Mitte an.

Aussagen:

1. Ich bin allgemein mit der Benutzung der Software zufrieden.

Stimme zu 2—2—2—2—2—2—2 Stimme nicht zu

2. Die Benutzung der Software war komfortabel.

Stimme zu 2—2—2—2—2—2—2 Stimme nicht zu

3. Die Oberfläche ist ansprechend gestaltet.

Stimme zu 2—2—2—2—2—2—2 Stimme nicht zu

4. Ich konnte einen leichten Einstieg in die Benutzung der Software finden.

Stimme zu 2—2—2—2—2—2—2 Stimme nicht zu

5. Die Software bietet alle Funktionen und Möglichkeiten, die ich erwartet habe.

Stimme zu 2—2—2—2—2—2—2 Stimme nicht zu

6. Die Informationen auf dem Bildschirm waren klar strukturiert.

Stimme zu 2—2—2—2—2—2—2 Stimme nicht zu

Vielen Dank für Ihre Teilnahme!

1

F Questionnaire about Foreknowledge 127

F Questionnaire about Foreknowledge

Fragebogen zum Hintergrundwissen

Bitte füllen Sie folgenden Fragebogen nach eigener Einschätzung aus:

Organisatorischer Hintergrund:

1. Wie alt sind Sie? :

2. Geschlecht: 2 weiblich 2 männlich

3. Was ist Ihr Beruf? :

4. In welchem Unternehmen arbeiten Sie? :

5. In welchem Institut/welcher Abteilung arbeiten Sie? :

Technischer Hintergrund:

6. Wie erfahren sind Sie im Umgang mit Computern allgemein?

Sehr erfahren 2—2—2—2—2—2—2 Unerfahren

7. Wie erfahren sind Sie in der Benutzung von Eclipse?

Sehr erfahren 2—2—2—2—2—2—2 Unerfahren

8. Wie erfahren sind Sie in der Benutzung von Workflow-Bearbeitungssoftware?

Sehr erfahren 2—2—2—2—2—2—2 Unerfahren

9. Wie erfahren sind Sie in der Benutzung von RCE?

Sehr erfahren 2—2—2—2—2—2—2 Unerfahren

Vielen Dank für Ihre Teilnahme!

1

G General Information About User Task 131

G General Information About User Task

Benutzerstudie mit RCE

Informationen und Aufgabenstellung

Informationen

• RCE steht für Remote Component Environment und ist eine Anwendung, um auf
einfache Weise Workflows1 aufzubauen und automatisiert auszuführen.

• Dazu werden verschiedenartige Komponenten in einem Workflow zusammenge-
fasst, konfiguriert und verbunden.

• Ziel dieser Studie ist es, Probleme herauszufinden, auf die Benutzer bei der ersten
Anwendung von RCE stoßen.

• Im Rahmen dieser Studie ist es ihre Aufgabe, einen kleinen Workflow zusammen-
zubauen, der typische Arbeitsschritte mit RCE abdeckt.

• Der Workflow, der im Rahmen dieser Studie zu erstellen ist, besteht aus drei
Komponenten.

• Eine Komponente generiert Zahlen (Generator), eine Komponente trennt gerade
und ungerade Zahlen (Separator) und eine dritte Komponente überprüft welche
Zahlensequenz bei ihr ankommt (Checker).

• Sie werden während dem Benutzertest per Video aufgezeichnet. Das erleichtert die
spätere Auswertung. Sollten Sie damit nicht einverstanden sein, kann auch darauf
verzichtet werden.

• WICHTIG: Die Studie wird als Think-Aloud Studie durchgeführt, d.h. Sie werden
gebeten ihre Gedanken laut auszusprechen.

• WICHTIG: Aus technischen Gründen ist es wichtig, zuerst alle Komponenten
einzufügen, bevor Sie diese konfigurieren.

1Ein Workflow ist eine Zusammenstellung von sogenannten Komponenten, die Daten verarbeiten und
austauschen können

H List of Frequent and Severe Usability Problems 135

H List of Frequent and Severe Usability Problems

The following list contains all severe and frequent usability problem
that were detected in the first round of the user study. They are grouped
into categories.

• Creation of projects and workflows:
– It was not clear, that the created project is not the workflow
– It was not clear, how to add a workflow to a project
– It was not clear, the a workflow was successfully created
– The different wizards were mixed up
– It was not clear what the entries in the menu "new" mean
– It was not clear, that the wizard at "new-other" is the same as

"new-project" just with another filter applied

• Recognition that the workflow editor is open:
– It was not clear, how the workflow editor looks like and

when it is reached

• Add components to the workflow:
– It was not clear, how to add components to the workflow

• Component configuration:
– It was not clear, where the component configuration is

opened
– It was assumed, that some component options can be set by

editing an endpoint
– It was not clear, whether the entered values are saved

• Connect components:
– It was not clear, that a connection is created, though a line

was already pulled once
– It was not clear, that a connection only exists when a line

between the components is visible
– It was not clear how connection lines are pulled
– It was not clear, that connections don’t have to be pulled

from the exact edge of the tile

	Introduction
	Motivation
	Setting
	Problem Definition
	Research Question
	Challenges
	Limitations of the Thesis
	Outline

	Foundations
	Usability
	Definitions of Usability
	Relation and Distinction to User Experience
	Further Considerations

	The Think Aloud Method
	Origin and Approach
	Advantages
	Disadvantages
	Variations of the Approach
	Guidelines for Conducting a Study

	RCE - The Remote Component Environment
	Origin and Current Application
	System Architecture
	GUI Parts

	RCP, JFace and SWT
	Benefits of the Eclipse Rich Client Platform
	UI Toolkits JFace and SWT

	Creativity Method Six Thinking Hats
	Six Colors - Six Attitudes
	Benefits of the Method

	Conception
	Strategy
	Track-Analysis-Tool
	Definition of a Subtask
	Subtask Segmentation
	Interaction Patterns
	Mouse Track
	Analysis Algorithms

	Reference Usability Technique
	Requirements for the Reference Technique
	Comparison of Existing Techniques
	Reasons for the Think Aloud Method

	Usability Metrics
	Between vs. Within Comparisons
	Standardized Metrics
	Application Specific Metrics

	Implementation of the Track-Analysis-Tool
	Technical Infrastructure
	Data Exchange Format
	Capture Tool
	Enable Tracking only when needed
	Implementation-specific Challenges
	SWT Components and Events
	GEF Components and Events
	RCE-specific Patterns
	Mouse Track Events
	Missing Events

	Analysis Tool
	Subtask Detection
	Subtask Rating
	Result Presentation
	Mouse Track

	Usability Study
	Application of the Track-Analysis-Tool and the Think Aloud Method
	Distinction between User and Proband

	Setup
	Infrastructure
	Users

	User Task
	Questionnaires
	Iterative Approach
	Problem Detection Procedure
	Design Improvements
	Open Design Improvements

	Discussion of the Results
	Identified Usability Problems in the First Round
	Realized Design Improvements
	Evaluation
	Comparison between Track-Analysis-Tool and Think Aloud Method
	Comparison of Identified Usability Problems
	Comparison of Metrics

	Influences of the Previous Knowledge
	Limitations of the Results and Possible Bias

	Related Work
	Interaction Capturing Approaches
	Mouse Tracking
	Eye Tracking
	Subtask Recognition
	From Problems to Solutions
	Relation of Eye Movement to Mouse Movement

	Conclusion and Future Work
	What has been done?
	What are the Discoveries?
	What remains open for Future Work?

	Bibliography
	Glossary
	Appendix
	Beginning and End Conditions of the Subtasks
	List of Typical GUI Elements and Interaction Patterns
	Excerpt from Example Results Of the Analysis
	User Task Sheet
	Questionnaire about Satisfaction
	Questionnaire about Foreknowledge
	General Information About User Task
	List of Frequent and Severe Usability Problems

