Lightweight Design: Construction Methods and Vehicle Concepts

Dipl.-Ing. Marco Münster

Prof. Dr.-Ing. Horst E. Friedrich

Dipl.-Ing. Elmar Beeh

Dipl.-Ing. Gundolf Kopp

03. December 2013

Agenda

- I. DLR
- 1. The growing importance of lightweight design
- 2. Methodical approach in the development process
- 3. Lightweight design strategies
- 4. Concepts for current and future cars
- 5. Summary

DLR – German Aerospace Center

DLR's mission:

- exploration of the Earth and the solar system
- research aimed at protecting the environment
- development of environmentally-friendly technologies to promote mobility, communication and security.

7.700 employee are working at 32 research institutes and facilities in 9 locations and • 7 branch offices.

SECURITY

DLR – German Aerospace Center

Institute of Vehicle Concepts:

72 employee

Vehicle systems and technology assessment

Alternative energy conversion

Vehicle energy concepts

Lightweight and hybrid construction

SECURITY

Megatrends

- We are reaching the limits of oil extraction
- Climate change is taking place
- Growing population, concentrated in big cities and conurbations
- Demographic trend

- Lower energy consumption
- Reduced CO₂ emissions
- Alternative and regenerative energy sources
- Automated driving / connectivity
- ...

Source: www.br.de Jakarta

Source: DLR

Source: DLR

CO₂ emissions in new vehicles in Germany and

Source: KBA; DLR

Driving resistances and consumption

$$\sum \mathbf{F}_{r} = b \cdot (m_{t} + \sum m_{rot}) + m_{t} \cdot g \cdot f_{r} \cdot cos(\alpha) + m_{t} \cdot g \cdot sin(\alpha) + \underbrace{\frac{\rho}{2} \cdot c_{d} \cdot A \cdot v^{2}}_{\mathbf{F}_{acceleration}}$$

$$\mathbf{F}_{acceleration}$$

Total driving resistances

-1 ‰-Point

-0.10 l/100km -2.5 g CO₂/km

-10 c_d-Points

 $-0.04 \text{ l/}100\text{km} -1.0 \text{ g CO}_2\text{/km}$

-0.04 l/100km $-1.0 \text{ g CO}_2\text{/km}$

-100 kg

-0.08 m²

 $-0.30 \text{ l}/100\text{km} -7.5 \text{ g CO}_2/\text{km}$

Extension of range with small electric vehicles

→ 25 % mass reduction can achieve 28 % increase in range

Source: DLR

State of the art vehicle Golf 7

• weight reduced about 100 kg

• Electrics - 6 kg

• Drive train - 40 kg

• Chassis - 26 kg

• Body - 37 kg

Lightweight design measures:

- High-strength and higher-strength types of steel, reduced sheet thickness (TRB)
- Only using material where it is needed
- Optimal geometry of profiles and surfaces
- → Holistic, methodical approach in the product development process to achieve the CO₂ limits

Source: VW

From the chain of effects of the traffic system to the methodical development process

Demand for mobility

- CO₂
- Legislation
- Energy prices

- ...

Transport system

- Requirements
- Target function

- . .

Vehicle concepts and architecture

- Simulation
- Optimization

-

Technology

- Structural components
- Crash components
- Energy converters

. . . .

methodical development process

Lightweight design by requirement for electrical vehicles

Lightweight materials

Lightweight shape

Lightweight design strategies

Methodical Development Process Vehicle lightweight design concept

design and simulation

design-concept

vehicle- and lightweight

CAD- designed spacemodel and topology optimization

vehicle concept/ measure concept / package

requirements/ market/customer

Source: DLR (Münster)

From the chain of effects of the traffic system to the methodical development process

Demand for mobility

- CO₂
- Legislation
- Energy prices

- . .

Transport system

- Requirements
- Target function

-

Vehicle concepts and architecture

- Simulation
- Optimization

-

Technology

- Structural components
- Crash components
- Energy converters

...

methodical development process

Lightweight design by requirement for electrical vehicles

Lightweight concept

Lightweight materials

Lightweight design strategies

Lightweight shape

Source: DLR

Lightweight requirement

Objective:

• light vehicle with high crash performance (L7e)

Solution:

- Body structure in sandwich architecture
 - Skin layers aluminium alloy
 - Foam core polyurethane
- Joining process
 - Crash-stable structural adhesive
 - Welded parts

BIW < approx. 80 kg

Euro-NCAP frontal crash → intrusion approx. 102 mm

Source: DLR (Kriescher, Brückmann)

Lightweight design concept

Objective:

Crash modular, adaptable vehicle front

Solution:

 Energy absorbed through cutting

Approx. 20% lighter than steel reference structure

Three-dimensional, reinforced light front vehicle structure

requirement

Lightweight

concept

Lightweight

Lightweight material design

Objective:

Light CFRP B-pillar

requirement

Lightweight

Lightweight materials

Lightweight

Solution:

- Layer structure $(0/90/\pm 45)$
- Manufacture using VARI procedure
- Internal reinforcement with additional Omega profile

Lightweight shape

Objective:

A lighter and more cost-effective cast A-pillar node

Solution:

New design with magnesium alloy

• Integration of suspension strut slot and A-pillar

Weight saving approx. 50 %

• Component weight 6 kg

requirement

Source: DLR (Beeh)

Lightweight

Summary

- CO₂ limits and gradual electrification are reinforcing the trend towards lightweight construction in vehicle design
 - Compensation for extra weight of new components
- Gradual electrification as a chance for:
 - new vehicle concepts, lightweight design concepts and a push for lighter materials
- Focus for research and development:
 - Holistic, methodical approach in the product development process

Source: DLR

Thank you for your attention!

