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Abstract

This paper introduces a new method — the Rank M-Estimator (RME) — for robust covariance matrix estimation of
distributed scatterers (DSs) in SAR image stacks, or more general for complex multivariate with multiplicative
and non-stationay phase signal. The RME can work without the assumption of samples’ stationarity, which is
seldom addressed in the SAR community. In other words, no flattening/estimation of the interferometric phase is
required. The robustness of RME is achieved by using an M-estimator, i.e. amplitude-based weighing function in

covariance estimation.

1 Introduction

Monitoring volcanic regions using InSAR methods en-
counters multiple challenges: 1. limited number of per-
sistent scatterer (PS), 2. low number of images, and 3.
sometimes the precipitous topography causes height de-
pendent tropospheric delay (TD) which correlates the
deformation signal.

To cope with the low PS density, distributed scatterers
(DSs) are usually exploited, such as algorithms like
SqueeSAR [1] and so on [2]-{4]. They perform a statis-
tical test on the amplitude of the neighbourhood of a
target pixel, in order to identify its “brother pixels” real-
ized from the same distribution. The mean of these
brother pixels is then taken, and treated as a PS in the
subsequent processing. Slightly different in [2], the
phase history parameters of each single-look DS pixel is
retrieved by the optimal maximum likelihood estimator
(MLE) assuming complex circular Gaussian (CCG) dis-
tributed DS.

Nevertheless, all the aforementioned algorithms rely on
the statistical test on the amplitude time series of the
neighbouring pixels. The detection rate (different distri-
bution detected as different distribution) of the test de-
grades with decreasing number of images. According to
[5], under the assumption of Rayleigh distributed ampli-
tude time series, the detection rate (at constant 5% false
alarm rate) is only 20% using 10 images for two DSs
with an expected intensity ratio of 3 dB using the Kol-
mogorov-Smirnov (KS) test employed in SqueeSAR.
As the detection rate goes down, pixels of different
distributions including non-Gaussian ones are includ-
ed in the covariance matrix estimation. This in turn
affects the final parameter estimation.

The purpose of this paper is to introduce a robust and
adaptive covariance matrix estimator when the select-
ed neighbourhood is contaminated. We consider two

types of contamination: 1. non-Gaussian samples, and
2. non-stationary (N-S) samples. For the first type, an
M-estimator with amplitude-based weighting is em-
ployed, and for the second type we use higher order
moments to cancel the effect of multiplicative mean.
The combination of these two aspects leads to our
proposal of the Rank M-Estimator (RME).

2 Rob}lst covariance matrix esti-
mation

2.1 MLE under complex circular Gaussi-
an distribution

The covariance of two single-look complex observa-
tions g, and g, in image n and k is defined as the ex-
pectation of the product of one with the complex conju-
gate of the other: ¢,, =E ( g”gZ) . The MLE of the covar-
iance matrix of N-variate CCG vector g is:
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where g(m) is [gl (m) g,(m) gy (m)]r , and the
M samples are assumed to be spatially stationary.

2.2 M-estimator of covariance

The M-estimator is a generalization of the MLE that can
be designed to, e.g., resist outliers [6]. It minimizes a
customized loss function p(x) w.r.t. the residual x. The

M-estimator of a covariance matrix is [7]:
M
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where x?(C,m)=g(m)" C'g(m). This can be solved in
general by an iteratively reweighted approach [8]:
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where the real-valued weighting function w(x) is
p'(x)/x.

The MLE of CCG multivariate corresponds to an M-
estimator with a loss function p(x)=x*,ie.

M
C,.= argmcinZg(m)H C'g(m).
m=1

It is evident, for CCG MLE, a single outlier in the sam-
ples will steer the estimator towards the outlier, and can
considerably bias the estimation. However, the M-
estimator down-weights the highly deviating samples
according to the weighting function.

In application to SAR image, instead of CCG, one can
model a time series of pixel as complex circular t-
distribution (CCT) with a degree of freedom v . The
CCT approaches CCG as v approaches +co, and be-
come more heavily tailed as v approaches 0. [9] used

the weighting function w(x)=(2N+v)/(v+2x’) ,

which corresponds to the MLE of the covariance under
CCT.

Unfortunately, the sample distribution is always varying
and unknown, i.e. v is unknown. In addition, with real
data when the number of images is low, mixture of dis-
tributions among samples can occur even with the adap-
tive sample selection. Therefore, without knowledge of
the sample distribution, one can assume v approaches
0, and the multivariate g is i.i.d.,i.e. C =7 I where I
is the expected intensity and I is the identity matrix.
This literally assumes the samples are very heavily
tailed, and contain no correlation between different im-
ages. It leads to an interesting weighting function:
NI
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which is the ratio of the expected intensity in space (as-
sumed constant) and time (depends on sample). Finally,
the covariance matrix estimate is:
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This specific M-estimator is also known as the sign co-
variance matrix (SCM) [10], where only the “sign” or
“direction” of g is considered. Therefore, the real covar-
iance is lost, yet the shape and orientation of the joint
distribution of g is preserved. If the exact covariance
shall be retrieved, one could always estimate it from the

eigenvectors of C,., and the samples. Experiment

found C,.,, is very stable for TerraSAR-X (TS-X)
high resolution spotlight data.

2.3 The Rank M-estimator for non-
stationary samples

So far, all the aforementioned estimators are all based
on spatially stationary samples, i.e. identical expected
interferometric phase. For N-S samples, it is a joint es-

timation of the expected interferometric phase and the
covariance [11], i.e.:
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where @(m) is the diagonal matrix containing the esti-

mated phase values of g(m).

The estimation of interferometric phase is usually done
by spatial filtering. The performance greatly depends on
the filter itself. And it can be challenging in urban area.
In [2], it is dealt by a multi-resolution defringe algo-
rithm. Nevertheless, the phase estimation requires addi-
tional effort and bad estimates largely affect the covari-
ance matrix estimation.

Therefore, we need an estimator that is invariant of the
multiplicative phase signal. Inspired by the rank covari-
ance matrix (RCM) for additive noise explained in [10],
we introduce the RCM for complex multivariate with

multiplicative phase signal, which is:
M
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can be regarded as the rank vector of g in multiplicative.
g(/) is the neighbourhood of g(m), and the e denotes
the element-wise product. RCM is a fourth order de-

scriptor of g, where the multiplicative mean has disap-
peared due to the complex conjugate. And it can be

proven under CCG that abs(é,w) approaches abs(é).2
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asymptotically, where * is the element-wise square.

Based on this, we define the Rank M-Estimator with
weighting function w(x) analogous to Equation (3):
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3 Experiments

3.1 Simulations

In this section, the MLE for CCG, the M-Estimator, and
the RME are compared under three different scenarios:
1. multivariate CCG, 2. multivariate CCT with degree
of freedom 1, and 3. N-S multivariate CCT, i.e. samples
contain phase fringes.

For each scenario, the same predefined exponentially
delaying coherence matrix is used for DS samples simu-
lation. We simulated ten acquisitions, with each acquisi-
tion having 500 samples. In the last scenario, ten con-
stant fringe frequencies within [0 7z/100] are randomly
picked for the ten acquisitions, respectively.

The results comparison are shown in Figure 1. Each row
represents one of the aforementioned three scenarios,
and each column represents one of the three covariance



estimators. Subplot (1, 1) shall be regarded as the refer-
ence coherence matrix, because the MLE is the optimal
estimator under CCG, and asymptotically unbiased
when the number of samples are large.

All the three estimators are successful under CCG, ex-
cept the minor fluctuation of RME at very low coher-
ence due to the square root operation. The MLE fails
when the samples are contaminated by outliers, e.g.
heavily tailed t-distribution. Yet the M-estimator and
RME remain a correct estimation. However, the M-
estimator is not capable of dealing with N-S samples.
Heavy underestimation occurs. The RME is mean invar-
iant, and keeps good performance at all conditions.
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Figure 1. Comparison of covariance matrix estimation using
1* column: MLE (under Gaussian), 2" column: M-estimator
(amplitude-based weighting), and 3™ column: rank M-
estimator; under three different cases: 1% row: complex circu-
lar Gaussian, 2™ row: complex circular t-distribution with de-
gree of freedom 1, and 3™ column: non-stationary complex
circular t-distribution.

3.2 Real data

Two test sites are selected in the super volcano region
Campi Flegrei in Italy. We compare the linear defor-

mation rate of the two areas estimated using C,,,, and

A
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estimated using:
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where s and v are the elevation and linear deformation
rate, ®(s,v) is the diagonal matrix containing the

respectively. The DS pixel’s deformation rate is

modelled phase, and C is the covariance matrix (either
C,,; orC,,, ). More details can be found in [2]. For
each DS pixel, we perform once the adaptively sample
selection using the KS test with zen TS-X high resolu-

tion spotlight images. And the same samples are used
for estimating both covariance matrices.

The comparison is plotted in Figure 2, where the upper
row corresponds to the results of the first test area, and
the second row is the second area. Images on the left

column are the results using C,,, , and right ones are

from C,,, . The coloured deformation rates w.r.t. a local
reference point are overlaid on the SAR intensity image.
Since the spans of both two areas are around a few hun-
dreds of meters, homogeneous deformation rates are
expected. The first test area contains some buildings and
vegetation. And thus, their stationarity is not guaran-
teed. Therefore, many bad estimates appears like salt
and pepper noise if using the conventional C,,, . The
second area is mostly vegetation, except in the center a
road which usually appears as DS in X-band images.
The C,,, also in general outperforms C,,, .

For quantitative comparison, the histograms of the de-
formation rates enclosed in the two dashed red rectan-
gles in Figure 2 are plotted in the corresponding posi-

tions in Figure 3. When using C,,, , many local peaks
of deformation rate almost umiformly appear in the

search range. These peaks should not correspond to de-
formation signal, except extremely conditions. While

using C,,,. , the result is much more homogenous, and
thus, more reasonable.
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Figure 2. Comparison of deformation rate estimates (overlaid
on SAR intensity images) w.r.t. a local reference point of two
test areas in the super volcano region Campi Flegrei. Homog-
enous deformation rate is expected due to the small size of the

two areas. The left column is the results using C,,, , and the

right column is using the robust C,,, . The samples are identi-

cal for both covariance matrices estimation, and they are adap-
tively selected (KS test) using fen images.
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Figure 3. Corresponding histograms of the deformation rates
[mm/y] enclosed in the two dashed red rectangles in . Left:
For the left fig-

ure, many local peaks almost uniformly appear in the search
range. Most of them should not correspond to deformation

signals. While using C,,, , the result is much more homoge-

result from C,,, ; and right: result from C

MLE > RME *

nous, and thus, more reasonable.

The proposed algorithm has been integrated into the
DLR’S PSI-GENESIS system. It is applied on the whole
area of the image stack of volcano Campi Flegrei. The
stack contains 34 TS-X high resolution spotlight imag-
es, spanning from Dec. 2009 to Mar. 2012. The result of
using only the PS is shown as the upper plot of Figure 4.
The lower one is the result using the proposed RME on
DS, combined with the PS result. It retrieves 15 times
more scatterers than using the PS only. For good visual-
ization, only 10% of the points from either method are
plotted in Figure 4, and the point size is kept the same
for both subplots.
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