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Abstract 

This paper introduces a new method ‒ the Rank M-Estimator (RME) ‒ for robust covariance matrix estimation of 
distributed scatterers (DSs) in SAR image stacks, or more general for complex multivariate with multiplicative 
and non-stationay phase signal. The RME can work without the assumption of samples’ stationarity, which is 
seldom addressed in the SAR community. In other words, no flattening/estimation of the interferometric phase is 
required. The robustness of RME is achieved by using an M-estimator, i.e. amplitude-based weighing function in 
covariance estimation. 

1 Introduction 

Monitoring volcanic regions using InSAR methods en-
counters multiple challenges: 1. limited number of per-
sistent scatterer (PS), 2. low number of images, and 3. 
sometimes the precipitous topography causes height de-
pendent tropospheric delay (TD) which correlates the 
deformation signal. 

To cope with the low PS density, distributed scatterers 
(DSs) are usually exploited, such as algorithms like 
SqueeSAR [1] and so on [2]–[4]. They perform a statis-
tical test on the amplitude of the neighbourhood of a 
target pixel, in order to identify its “brother pixels” real-
ized from the same distribution. The mean of these 
brother pixels is then taken, and treated as a PS in the 
subsequent processing. Slightly different in [2], the 
phase history parameters of each single-look DS pixel is 
retrieved by the optimal maximum likelihood estimator 
(MLE) assuming complex circular Gaussian (CCG) dis-
tributed DS. 

Nevertheless, all the aforementioned algorithms rely on 
the statistical test on the amplitude time series of the 
neighbouring pixels. The detection rate (different distri-
bution detected as different distribution) of the test de-
grades with decreasing number of images. According to 
[5], under the assumption of Rayleigh distributed ampli-
tude time series, the detection rate (at constant 5% false 
alarm rate) is only 20% using 10 images for two DSs 
with an expected intensity ratio of 3 dB using the Kol-
mogorov-Smirnov (KS) test employed in SqueeSAR. 
As the detection rate goes down, pixels of different 
distributions including non-Gaussian ones are includ-
ed in the covariance matrix estimation. This in turn 
affects the final parameter estimation. 

The purpose of this paper is to introduce a robust and 
adaptive covariance matrix estimator when the select-
ed neighbourhood is contaminated. We consider two 

types of contamination: 1. non-Gaussian samples, and 
2. non-stationary (N-S) samples. For the first type, an 
M-estimator with amplitude-based weighting is em-
ployed, and for the second type we use higher order 
moments to cancel the effect of multiplicative mean. 
The combination of these two aspects leads to our 
proposal of the Rank M-Estimator (RME). 

2 Robust covariance matrix esti-
mation 

2.1 MLE under complex circular Gaussi-
an distribution 

The covariance of two single-look complex observa-
tions ng and kg in image n and k is defined as the ex-

pectation of the product of one with the complex conju-

gate of the other:  ,
*

nn k kE g gc  . The MLE of the covar-

iance matrix of N-variate CCG vector g  is: 
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2.2 M-estimator of covariance 

The M-estimator is a generalization of the MLE that can 
be designed to, e.g., resist outliers [6]. It minimizes a 
customized loss function  x  w.r.t. the residual x. The 

M-estimator of a covariance matrix is [7]: 
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general by an iteratively reweighted approach [8]: 
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where the real-valued weighting function w(x) is 
 ' x x . 

The MLE of CCG multivariate corresponds to an M-
estimator with a loss function   2x x  , i.e.: 
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It is evident, for CCG MLE, a single outlier in the sam-
ples will steer the estimator towards the outlier, and can 
considerably bias the estimation. However, the M-
estimator down-weights the highly deviating samples 
according to the weighting function.  

In application to SAR image, instead of CCG, one can 
model a time series of pixel as complex circular t-
distribution (CCT) with a degree of freedom  . The 
CCT approaches CCG as   approaches +∞, and be-
come more heavily tailed as   approaches 0. [9] used 
the weighting function      22 2w x N x    , 

which corresponds to the MLE of the covariance under 
CCT. 

Unfortunately, the sample distribution is always varying 
and unknown, i.e.   is unknown. In addition, with real 
data when the number of images is low, mixture of dis-
tributions among samples can occur even with the adap-
tive sample selection. Therefore, without knowledge of 
the sample distribution, one can assume   approaches 
0, and the multivariate g is i.i.d., i.e. IC I  where I

is the expected intensity and I  is the identity matrix. 
This literally assumes the samples are very heavily 
tailed, and contain no correlation between different im-
ages. It leads to an interesting weighting function: 
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which is the ratio of the expected intensity in space (as-
sumed constant) and time (depends on sample). Finally, 
the covariance matrix estimate is: 
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This specific M-estimator is also known as the sign co-
variance matrix (SCM) [10], where only the “sign” or 
“direction” of g is considered. Therefore, the real covar-
iance is lost, yet the shape and orientation of the joint 
distribution of g is preserved. If the exact covariance 
shall be retrieved, one could always estimate it from the 
eigenvectors of ˆ

SCMC  and the samples. Experiment 

found ˆ
SCMC  is very stable for TerraSAR-X (TS-X) 

high resolution spotlight data. 

2.3 The Rank M-estimator for non-
stationary samples 

So far, all the aforementioned estimators are all based 
on spatially stationary samples, i.e. identical expected 
interferometric phase. For N-S samples, it is a joint es-

timation of the expected interferometric phase and the 
covariance [11], i.e.: 
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where  ˆ mΦ is the diagonal matrix containing the esti-

mated phase values of  mg . 

The estimation of interferometric phase is usually done 
by spatial filtering. The performance greatly depends on 
the filter itself. And it can be challenging in urban area. 
In [2], it is dealt by a multi-resolution defringe algo-
rithm. Nevertheless, the phase estimation requires addi-
tional effort and bad estimates largely affect the covari-
ance matrix estimation. 

Therefore, we need an estimator that is invariant of the 
multiplicative phase signal. Inspired by the rank covari-
ance matrix (RCM) for additive noise explained in [10], 
we introduce the RCM for complex multivariate with 
multiplicative phase signal, which is: 
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can be regarded as the rank vector of g in multiplicative. 
 jg  is the neighbourhood of  mg , and the  denotes 

the element-wise product. RCM is a fourth order de-
scriptor of g, where the multiplicative mean has disap-
peared due to the complex conjugate. And it can be 

proven under CCG that  ˆabs RCMC  approaches   2
ˆabs



C  

asymptotically, where 2  is the element-wise square.  

Based on this, we define the Rank M-Estimator with 
weighting function w(x) analogous to Equation (3): 
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3 Experiments 

3.1 Simulations 

In this section, the MLE for CCG, the M-Estimator, and 
the RME are compared under three different scenarios: 
1. multivariate CCG, 2. multivariate CCT with degree 
of freedom 1, and 3. N-S multivariate CCT, i.e. samples 
contain phase fringes. 

For each scenario, the same predefined exponentially 
delaying coherence matrix is used for DS samples simu-
lation. We simulated ten acquisitions, with each acquisi-
tion having 500 samples. In the last scenario, ten con-
stant fringe frequencies within [0 π/100] are randomly 
picked for the ten acquisitions, respectively. 

The results comparison are shown in Figure 1. Each row 
represents one of the aforementioned three scenarios, 
and each column represents one of the three covariance 
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