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Large-scale three-dimensional aerodynamic shape optimization based on the compressible Euler equations is

considered. Shape calculus is used to derive an exact surface formulation of the gradients, enabling the computation of

shape gradient information for each surfacemesh nodewithout having to calculate furthermesh sensitivities. Special

attention is paid to the applicability to large-scale three dimensional problems like the optimization of an Onera M6

wing or a complete blended-wing–body aircraft. The actual optimization is conducted in a one-shot fashion, in which

the tangential Laplace operator is used as a Hessian approximation, thereby also preserving the regularity of the

shape.

Nomenclature

a = rotation of the coordinate system
Ai = Euler flux Jacobian matrices
B = reduced Hessian
c = vector constraints, e.g., flow solver residual
CD = drag coefficient
CL = lift coefficient
CP = pressure coefficient
Dxz = Jacobian of quantity z with respect to x
~Dxz = reduced Jacobian of quantity z with respect to x
dA = general integration measure for volume integrals
dS = general integration measure for surface integrals
dz�V� = material derivative of quantity z in direction V
E = total energy
f = objective function, standard optimization problem
g = shape gradient
H = enthalpy
Hz1z2 = second partial derivative of the objective with respect to

z1 and z2
I = identity matrix
J = objective function, shape optimization problem
L = Lagrangian
l = scalar constraints, e.g., lift or structural constraints
n = outer normal
p = pressure

q = design vector
t = degree of deformation applied by Tt, baseline design

corresponds to t equals 0
Tt = bijective family of mappings applying the shape

deformation
U = vector of conserved variables
u = velocity vector
UH = conserved variables with enthalpy as last component
V = smooth vector field prescribing the deformation

direction
x1 = coordinate axis, chord direction
x2 = coordinate axis, span direction
x3 = coordinate axis, thickness direction
y = state vector
z 0�V� = shape derivative of quantity z in direction V
α = angle of attack
Γ = unknown boundary to be optimized
γ = adiabatic exponent
Γ0 = Euler slip wall, i.e., the aircraft surface
ΔΓ = Laplace–Beltrami operator
δi;k = Kronecker symbol
ϵ = smoothing parameter
κ = additive mean curvature
λ = adjoint variable
μ = adjoint variable for vector constraints
ν = adjoint variable for scalar constraints
ρ = density
τ = one-shot dampening factor
Ω = domain occupied by the fluid

I. Introduction

A DJOINT-BASED aerodynamic shape optimization, especially
for industry-sized problems, has in the past almost always

followed a parametric approach,meaning that parts of the aircraft like
the wing cross sections are deformed by adding smooth ansatz
functions, such as the popular Hicks–Henne functions [1], to the
geometry. Other approaches frequently encountered for CAD-free
fully three-dimensional (3-D) parameterizations are, for example,
perturbing the control points of spline surfaces or free-form
deformations. All of these approaches have in common that the actual
optimization problem is considered postparameterization, meaning

Presented as Paper 2011-3718 at the 41st AIAA Fluid Dynamics
Conference and Exhibit, Honolulu, HI, 27–30 June 2011; received 30 July
2012; revision received 9 December 2012; accepted for publication 5 March
2013; published online 10 September 2013. Copyright © 2013 by the
American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Copies of this paper may be made for personal or internal use, on condition
that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center,
Inc., 222RosewoodDrive,Danvers,MA01923; include the code 1533-385X/
13 and $10.00 in correspondence with the CCC.

*Lecturer, Department of Aeronautics, South Kensington Campus; s.
schmidt@imperial.ac.uk.

†Research Scientist, Institute of Aerodynamics and Flow Technology,
Lilienthalplatz 7; caslav.ilic@dlr.de.

‡Professor, Department of Mathematics, Universitätsring 15; Volker.
Schulz@uni-trier.de.

§Professor, Computational Mathematics Group, Schinkelstraße 2;
gauger@mathcces.rwth-aachen.de. AIAA Senior Member.

2615

AIAA JOURNAL
Vol. 51, No. 11, November 2013

D
ow

nl
oa

de
d 

by
 D

E
U

T
SC

H
E

S 
Z

E
N

T
R

U
M

 F
U

R
 L

U
FT

-U
N

D
 o

n 
D

ec
em

be
r 

9,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

22
45

 

http://dx.doi.org/10.2514/1.J052245


the gradient is computed according to the standard Lagrange
formula:

dJ

dq
� ∂J

∂q
− λT

∂c
∂q

(1)

where λ is the corresponding adjoint variable solving

�
∂c
∂y

�
T

λ � ∂J
∂y

(2)

The adjoint flow solver is therefore independent of the shape
optimization nature of the problem as only the derivatives with
respect to the flow states are needed. However, in order to construct
the gradient out of the primal and adjoint states, the parameterization
of the shape must be considered. Especially the term ∂c

∂q requires
knowledge of the sensitivity of the flow solver residualwith respect to
mesh nodes positions effected by the parameterization q. Although
this approach is known to be applicable and well working, one is
often forced into finite differencing for these terms [2,3]. This often
makes very fine parameterizations, such as using the mesh node
positions itself, rather impractical if not prohibitive as the time to
compute the adjoint flow solution is indeed independent of the
number of design parameters, but the gradient computation actually
is not. Although it is possible to counter this problem by introducing
another adjoint for the mesh deformation, using, e.g., algorithmic
differentiation on themesh deformation tools in reversemode [4] or a
continuous approach [5], special care must be taken not to run into
memory limitations by considering the entire design chain at once.
These problems arise in part due to the fact that in order to maintain
mesh quality, usually the whole volume mesh, or at least significant
parts of it, need to bemoved and adapted, even for small changes such
as moving a single surface node. Thereby, any locality that might
otherwise be present due to the local finite element or finite volume
stencils is destroyed. Furthermore, most flow solvers, although they
have an adjoint capability, cannot efficiently compute the derivative
of the flow residual with respect to the input mesh. Finally, the
mapping of any other set of design parameters, e.g., CADparameters,
to the actual mesh nodes is frequently hidden within closed source
software environments, and no derivative is available either.
The alternative is to treat the problem in a nonparametric fashion,

while still staying within the framework of the continuous adjoint
approach. This has the additional advantage that some of the standard
infrastructure necessary for adjoint-based optimization can be reused
easily. In the past, nonparametric approaches have been used to
derive optimal shapes for certain flow situations on a theoretical level.
For example, in [6,7], a rugby ball–like shape is shown to be optimal
for creeping Stokes flows, whereas in [8], optimality of the so-called
Sears–Haack body for inviscid compressible flow is shown.
Nonparametric approaches can also be found in [9,10], but they are
hardly used for any actual computations. The idea considered in the
present work is to use shape calculus to differentiate the aerodynamic
forces directly with respect to the input geometry, thereby arriving at
a form of Eq. (1), which is specific for shape optimization problems
and does not need explicit knowledge of the problematic partial
derivatives. Shape calculus or shape sensitivity analysis describes the
mathematical topic when the shape of a domain is the unknown. The
methodology can be used to arrive at exact surface formulations of
the gradients for shape optimization problems, which is often termed
the Hadamard form [11,12]:

dJ�Γ� �
Z
Γ
hV; nig dS (3)

Once g is known, a steepest descent algorithm can easily be
conducted according to

Γk�1 :� fx� τg�x�n�x�∶x ∈ Γkg

where τ is the step length of the algorithm. Therefore, using the
surface mesh node positions is a natural choice, and furthermore, the

deformation of the volume mesh is completely removed from the
derivative chain. Although the volume mesh nodes must of course
still be somehow adapted to the new surface geometry, the derivative
of the mesh deformation and the variation of the flow residual with
respect to the design are not required for an exact gradient evaluation
because they are included in g on an analytic level. Thus, an
advantage of the approach discussed here is that knowledge of the
volume mesh deformation scheme is not required, one can use any
volume mesh generator while conducting the actual optimization.
This is due to the analytic nature of the formulation, and so a one-to-
one correspondence of the surface tessellation and the volume mesh
is not necessary throughout the optimization process, hence the name
nonparametric optimization. Using the surface mesh node positions
as design parameters encompasses any other form of parameter-
ization, as any parameterization can be interpreted as a restriction of
the design space, i.e., a projection of the mesh node movement into a
coarser space. Although there might be frequent occasions in which
engineering restrictions necessitate a restriction of the design space,
being able to efficiently optimize all surface node positions is a strong
indication that any other parameterization is also going to work well,
unless the design space becomes too restrictive. There are previous
works in aerodynamic shape optimization that use all surface mesh
node positions [13], but usually, the considerable overhead in
computing the gradient based on Eq. (1) has made this approach very
inefficient [14].
To summarize the preceding, we present the applicability of a

novel adjoint-based shape optimization algorithm to very-large-scale
3-D problems. The algorithm is very fast because it exploits the
mathematical problem structure and operates on surfaces alone.
Furthermore, it does not require any partial derivatives of the mesh
deformation. A possible downside could be discrepancies between
the continuous and discrete models of the flow solver and
applicability to shapes of a low regularity class.
Here, the shape gradient g is used in a one-shot optimization

strategy similar to [15,16]. Being a reduced Sequential Quadratic
Programming method, one-shot depends on a proper approximation
of the reduced Hessian, for which the surface or tangential Laplace
operator is used. Pseudodifferential operator symbol calculus
conducted in [17,18] suggests that using a Hessian approximation
based on an anisotropic operator with anisotropies in the chord and
span directions would be best, but we found isotropic diffusion to be
working very well also. Sometimes called gradient smoothing or the
Sobolev gradient method, similar techniques have been used in
[19,20] as a means to preserve the regularity of the aircraft shape.
Although the applicability to two-dimensional (2-D) airfoil

optimizations using the compressible Euler equations has been
previously considered in [21,22], the aim of this paper is to study the
applicability to large-scale 3-D problems. To this end, the
optimization of both theOneraM6wing aswell as the optimization of
a complete blended-wing–body aircraft is shown. Special emphasis
also lies on the correct computation of the respective surface
quantities needed for evaluating the shape derivative on triangulated
unstructured surface meshes. We found the combination of the one-
shot approach paired with surface gradients based on shape calculus
extremely efficient, such that a blended-wing–body aircraft could be
optimized conveniently using up to 460,517 individual mesh node
positions as design unknowns. Further considerations for the
incompressible Navier–Stokes equations can be found in [21,23,24].
Potential flow inverse design is considered in [25].

II. Shape Calculus

A. Problem Introduction: Aerodynamic Forces

Avery brief review of shape calculus is given next.More details on
shape sensitivity analysis in general can be found in [11,12]. The
inviscid fluid forces acting on the aircraft surface Γ0 are given by

J�U;Ω� �
Z
Γ0

hp · a; ni dS (4)

whereU :� �ρ; ρu; ρE� are the conservedEuler state variables with ρ
being the density,u � �u1; u2; u3�T is thevelocity vector, andE is the
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total energy of the fluid. Furthermore, the pressure p is linked to the
conserved state variables by the perfect gas law:

p � �γ − 1�ρ
�
E −

1

2
kuk2

�

with γ ≈ 1.4 being the adiabatic exponent of air. The normal to the
aircraft surface is denoted by n, and a is the rotation of the coordinate
system, meaning for an angle of attack α, choosing

aD :� �cos α; 0; sin α�T

leads to J being the aerodynamic inviscid pressure drag force.
Similarly, choosing a as

aL :� �− sin α; 0; cos α�T

will result in J being the lift force. In the following, it is thus sufficient
to consider surface functionals only. Also, the lift and drag forces do
not need to be treated separately.

B. Shape Calculus for Surface Functionals

Afinite deformation of the aircraft surface is thought to be given by

Γt0 :� Tt�Γ0� � fTt�x�∶x ∈ Γ0g (5)

where Tt is a family of bijective mappings usually given by either the
perturbation of identity

Tt�x� � x� tV�x� (6)

or the speed method

∂x
∂t
� V�t; x�; x�0� � x0 ∈ Γ0 (7)

Thus, the actual perturbation direction is given by the vector field V,
which is supposed to be Lipschitz continuous. Sometimes, V is also
called the “design velocity.” For first-order calculus, both the
perturbation of identity and the speed method are known to be
equivalent [11,12]. Assuming enough regularity such that the chain
rule holds, the preliminary shape derivative of Eq. (4) is given by

dJ�U��V� �
�
d

dt

����
t�0

Z
Γt
0

hp · a; ni dSt
�
�
Z
Γ0

hp · a; dn�V�i dS

�
Z
Γ0

hp 0�V� · a; ni dS (8)

Using standard shape differentiation techniques and tangential
calculus [11,12,21,22], one arrives at

d

dt

����
t�0

Z
Γt
0

hp · a; ni dSt �
Z
Γ0

hV; ni
��
∂p
∂n

· a; n

�
� κhp · a; ni

�
dS

(9)

for the first term in Eq. (8). Using the same techniques, one can also
arrive at

Z
Γ0

hp · a; dn�V�i dS �
Z
Γ0

hV; ni�divΓ�p · a� − κhp · a; ni� dS

(10)

where divΓ is the surface or tangential divergence operator.

C. Shape Calculus for the Local Shape Derivative
of the State Equation

Adjoint calculus must now be used to remove the local shape
derivative of the pressure p 0�V� in Eq. (8), which will be conducted

analogously to [26,27]. Let the local shape derivatives of the
conserved variables be given by

U 0�V� � �ρ 0�V�; �ρu� 0�V�; �ρE� 0�V��T

They satisfy the linearized Euler equations given by

∂
∂x1
�A1U

0�V�� � ∂
∂x2
�A2U

0�V�� � ∂
∂x3
�A3U

0�V�� � 0 (11)

inside the flow domain. Letting λ solve the adjoint compressible
Euler equations,

−AT1
∂
∂x1

λ − AT2
∂
∂x2

λ − AT3
∂
∂x3

λ � 0 in Ω (12)

integration by parts in Eq. (11) shows that

0 �
Z
∂Ω

X3
k�1

λnkAkU
0�V� dS

As discussed in [26,27] and given proper far-field adjoint boundary
conditions, the relation

0 �
Z
Γ0

λ
X3
k�1

nkAkU
0�V� dS

�
Z
Γ0

λUHhu 0�V�; ni � �λ2; λ3; λ4�np 0�V� dS (13)

holds, where UH is given by

UH :� �ρ; ρu1; ρu2; ρu3; ρH�T

Because of the fluid velocity satisfying the Euler slip boundary
condition

hu; ni � 0

on the aircraft surface, the local shape derivatives of the velocities are
then correspondingly given by

hu 0�V�; ni � −hV; ni
�
∂u
∂n
; n

�
− hu; dn 0�V�i

For more details, see [21,22]. Inserting this into Eq. (13), one arrives
at

0 �
Z
Γ0

−hV; niλUH
�
∂u
∂n
; n

�
− λUHhu; dn�V�i

� �λ2; λ3; λ4�np 0�V� dS

Adding the preceding to the preliminary gradient Eq. (8) and using
Eq. (9) but not yet Eq. (10), one can see that

dJ�U��V� �
Z
Γ0

hV; ni
�
∂p
∂n
ha; ni � κpha; ni − λUH

�
∂u
∂n
; n

��

� hpa − λUHu; dn�V�i � p 0�V��ha; ni � �λ2; λ3; λ4�n� dS

If the adjoint boundary condition

�λ2; λ3; λ4�n� ha; ni � 0 (14)

is satisfied on the wing, the gradient will further simplify to

dJ�U��V� �
Z
Γ0

hV; ni
�
∂p
∂n
ha; ni � κpha; ni − λUH

�
∂u
∂n
; n

��

� hpa − λUHu; dn�V�i dS (15)

This especially means that existing adjoint flow solvers need not be
modified to be useable for the computation of nonparametric shape
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derivatives, because both the adjoint field equation and the boundary
conditions stay the same as in the classical approach. Using now also
Eq. (10), one arrives at

dJ�U��V� �
Z
Γ0

hV; ni
�
∂p
∂n
ha; ni − λUH

�
∂u
∂n
; n

�

� divΓ�pa − λUHu�
�
dS (16)

which is the final form of the gradient.
Comparing Eq. (15) with Eq. (16), one can see that the final

Hadamard form of the gradient requires the evaluation of the
tangential divergence operator on the unstructured surface mesh of
the aircraft, but this is equivalent to the computation of the mean
curvature κ and thevariation of the normal dn�V�. This transformation
is based on the tangential Stokes theorem, which states for a real
valued differentiable function g and a vector valued function v on Γ0

Z
Γ0

g divΓv� h∇Γg; vi dS �
Z
Γ0

κghv; ni dS

For more information on the required tangential calculus, please see
[11,21]. Because of more literature being available concerning mesh
curvature of unstructured triangulated surfaces and the normal
variation dn�V� being quite easily computable on a discrete level, the
latter approach was chosen.
The following methodology is used for evaluating Eq. (15) within

the discretized framework of flow and adjoint solver.We assume that
V is given by a linear hat function on the curved surface mesh, that is,

Vk�xi� � n�xk�δi;k

with linear interpolation in between. Thus, index k here denotes the
kth component of the discretized gradient vector and at the same time
also the node number of the kth surface node. Index i corresponds to
all nodes adjacent to node k. At a point x that is on the surface but not
part of the mesh, we assume a linear interpolation in between. When
computing the kth gradient component, which is determined by Vk,
the discretized integral (15) has therefore a compact support on the
surface, and the integration reduces to the patch of surface triangles of
which node k is the center. Finally, this integration is conducted using
a standard quadrature rule for triangles. The process is visualized in
Fig. 1. As discussed in [21], the variation dnT �Vk��xk� of the face
normal nT is given by

dnT �Vk��xk� �
nk × �xi − xi�1�

jTj

where T is the surface triangle patch centered around node xk with
vertices xi. The mean curvature κ of the surface mesh is computed as
described in [28] and the necessary normal derivatives are computed
automaticallywithin the flow solver software environment. Although
not the main focus of this work, we also found the preceding
methodology well applicable in less smooth situations. For example,
in [22], we see the automatic formation of sharp leading edges in
supersonic flow. Similarly, the automatic formation of sharp-nosed
bodies of shiplike shapes in incompressible viscous fluids can be seen
in [23,24].

III. One-ShotOptimization andHessianApproximation

A. Overview of the One-Shot Method

To motivate the one-shot method, a standard minimization
problem is considered:

min
�y;q�

f�y; q�

subject to

c�y; q� � 0 l�y; q� � 0

where c�y; q� � 0 refers to the flow solution residual being zero and
l�y; q� � 0 means that additional constraints such as lift, volume,
or bending stiffness are kept. The Lagrangian of the preceding is
given by

L�y; q; μ; ν� � f�y; q� − hμ; ci − hν;li

and using Newton’s method to solve the necessary optimality
conditions of the preceding problem, the system

2
664
Hyy Hyq �Dyc�T �Dyl�T
Hqy Hqq �Dqc�T �Dql�T
Dyc Dqc 0 0

Dyl Dql 0 0

3
775
0
BB@
Δy
Δq
Δμ
Δν

1
CCA �

0
BB@
−∇yL
−∇qL
−c
−l

1
CCA

needs to be solved with the actual design update given by

�yk�1; qk�1; μk�1; νk�1�T � �yk; qk; μk; νk�T � �Δy;Δq;Δμ;Δν�T

Here, L denotes the Lagrangian. Assuming there exists an
approximation of the Hessian of the form

�
Hyy Hyq

Hqy Hqq

�
≈
�
0 0

0 B

�

and further assuming �Dyc�−1 exists, a block Gauss elimination and
replacing Δν with νk�1 � νk � Δν results in the system

�
B ~Dl

� ~Dl�T 0

��
Δq
νk�1

�
�
�

− ~Df
−l� λlc

�
(17)

where λl � �Dyl��Dyc�−1, which is given by the adjoint flow solver.
More details can be found in [15,21]. In the context of a standard
minimization problem, the reduced gradient ~Df of the objective
function is given by

~Df � ∇qf − �Dqc�T�Dyc�−T∇yf

with an analogous definition of the reduced gradient ~Dl of the scalar
constraints. Here, however, the respective shape derivatives will be
used directly for ~D, resulting in a shape one-shot method.
An additional aspect of the one-shot method, not directly visible in

Eq. (17), is the fact that the state and adjoint flow variables are usually
computed by an iterative flow solver. This usually results in any
optimization procedures essentially becoming a two-loop approach:
an outer optimization loopwith several inner loops for the primal and

Fig. 1 Several surface integration patches for evaluating four
components of the discrete gradient vector.
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respective adjoint iterative flow solvers. For the problems considered
here, this two-loop approach is broken up by only performing a
limited number of solver and adjoint iterations to compute the
derivatives needed in Eq. (17). Thus, optimality of the design and
feasibility of the flow state is computed simultaneously, thereby
greatly reducing thewall-clock runtime. Please note that a discussion
of the convergence properties of the one-shot method as well as a
comparison of the discrete and continuous adjoint approaches is
outside the scope of this paper. However, the method presented here
can be both employed within the continuous and discrete adjoint
approaches and also without a one-shot optimization scheme. More
details on the convergence properties of one shot can be found in
[29–31].
Assuming an exact Hessian approximation B, an update based on

Newton’s method as in Eq. (17) requires a step length restriction or
line search only for convergence globalization with respect to the
initial guess q0. However, this does no longer hold when using
inexact quantities within the one-shot context. Therefore, a
dampening factor τ is introduced in Eq. (17) that acts on the direction
of optimality only but not feasibility. This leads to an update of the
design being computed according to

qk�1 � qk − τB−1 ~Df − B−1 ~Dlνk�1 (18)

where τ was chosen manually for each of the applications. More
details can be found in [15].

B. Summary of the Algorithm

The following flow chart is a summary of the optimization
algorithm. In the following, y is used to denote all physical unknowns
of the flow solution, whereas c is the residual of the flow solver.

1) Initialization: k←0, start with initial guess y0, Γ0
0, λ

0, λ0l. Set V as family
of admissible deformations. Initialize dampening τ and Hessian
approximation ϵ.
2) repeat
3) Perform na adjoint iterations to approximate λk�1 the solution to Eqs. (12)
and (14).
4) Compute the shape derivative according to Eq. (15)
~Df � hV; ni

�
∂p
∂n ha; ni � κpha; ni − λUH

D
∂u
∂n ; n

E	
� hpa − λUHu; dn�V�i

5) Perform nl adjoint iterations for all additional (scalar) constraintsl. Obtain
λk�1l .
6) Use λk�1l to compute the Jacobian ~Dl of all additional (scalar) constraints.
7) Discretize B � �ϵΔΓ � I� as an approximation of the reduced Hessian.
8) Solve Eq. (17) for νk�1
~DTlB

−1 ~Dlvk�1 � l − λk�1l c − ~DTlB
−1 ~Df

9) Solve Eq. (18) and update boundary
Γk�10 � fx − τB−1 ~Df − B−1 ~Dlνk�1∶x ∈ Γk0g
10) Adapt volume mesh or remesh by any preferable means.
11) Update state yk by nf steps in the forward solver. Obtain yk�1.
12) until “convergence”

Note that, in our special case here, we set the family of admissible
deformations V to contain a movement of all nodes except for those
that define the planform. The stopping criteria of the algorithm is
adapted from one of the stopping criteria of the flow solver and can be
seen as a form of a Cauchy criterion: the optimization is considered to
have terminated when there is no longer any progress within the
objective.

C. Hessian Approximation

Crucial for the performance of one shot is having a good
approximation of the reduced Hessian operator B. A natural choice
would be the shapeHessian of the problem.However, shapeHessians
are fairly complex objects even for moderate problems. Although
they have been successfully used in solving shape optimization
problems numerically [32,33], it is often much more convenient to
use a suitable approximation, especially in the cases in which the
Hessian is not positive definite away from the optimum.
An analysis of the operator symbol of the Hessian for the Euler

shape optimization problemconducted in [17,18] suggests it is best to
approximate the Hessian by an anisotropic operator in the chord and
span directions, in which chordwise, the Hessian closely resembles a
diffusive operator like the Laplacian. Because of this fact and the
previous successes of gradient smoothing techniques [19,20], we
approximate the Hessian according to

B ≈ −ϵΔΓ � I (19)

whereΔΓ is the tangential Laplace operator on the curved 2-D aircraft
surface mesh and I is the identity. Further studies of shape Hessians
for a variety of other fluid dynamics problems can be found in
[23,25].During computation, the tangential Laplacian is computed as
described in [34]. The effects of this preconditioning on the drag
gradient of the Onera M6 wing can be seen in Fig. 2. The following
test cases were chosen to demonstrate the applicability of the
methodology discussed in the preceding sections to large-scale
complex 3-D problems. Because a direct comparison to more
classical approaches in such a high-dimensional search space is quite
cumbersome, we would like to refer to [22] for more details on how
this methodology compares to Broyden–Fletcher–Goldfarb–Shanno
(BFGS) update formulas and classical Hicks–Henne ansatz
functions. Likewise, the approach discussed here is also very well
applicable in robust or multipoint design problems, and more details
can be found in [35].

IV. Onera M6

A. Overview of the Test Case

The first problem under consideration is the shape optimization of
an Onera M6 wing at a cruise condition of Mach 0.83 and a 3.01 deg
angle of attack, which are being held constant during the
optimization. In this configuration, the computed lift coefficient is
CL � 0.2762, which is to be kept constant. The initial drag
coefficient is computed as CD � 0.01058. The primal and adjoint

Fig. 2 Effects of the Laplace–Beltrami preconditioner (19) on the drag gradient for ε � 0, 10−2, 10−1, 100 on the Onera M6 wing.

SCHMIDT ETAL. 2619

D
ow

nl
oa

de
d 

by
 D

E
U

T
SC

H
E

S 
Z

E
N

T
R

U
M

 F
U

R
 L

U
FT

-U
N

D
 o

n 
D

ec
em

be
r 

9,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

22
45

 



flow states are computed using vertex-centered finite volumes with
the DLR flow solver TAU. More details and validations of TAU can
be found in [36,37]. Themesh consists of 18,285 surfacemesh nodes.
Because the volume mesh is perturbed using the algebraic mesh
deformation tool that is part of the TAU suite, the planform had to be
fixed as otherwise the deformation tool was very often unable to
makevolumemeshes of satisfying quality. Because of this reason, the
surface mesh nodes were also moved in the x3 direction only,
meaning the gradient was evaluated according to Eq. (15) for a
movement of each node in direction of the normal in the current
optimization iteration at that node. However, before any actual mesh
deformation is applied, there is a projection of this gradient with
respect to a movement in the x3 direction only. We therefore expect a
better performance of Eq. (15) when more sophisticated mesh
deformation tools are available. Fixing the planform reduces the
effective number of unknowns for the shape to 16,792. Because most
inviscid meshes feature a numerically sharp trailing edge with
potentially infinite curvature, any possible problems stemming from
this point are therefore also circumvented. Counting the field nodes
also, there are 541,980 unknowns for the Euler fluid state.

B. Gradient Validation

Before the actual nonparametric wing optimization is conducted,
we first confirm the accuracy of the surface gradient by themeans of a
comparison with the classical gradient Eq. (1) evaluated using TAU

adjoint and finite differences for the respective partial derivatives.
Because all 16,792 nonplanform relevant nodes need to be perturbed
in the x3 axis direction, an equal number of deformed meshes and
flow solver residual calculations must be made. The whole process
required 2 days and 7 h on a 3GHz Pentium IV processor. To ease the
computational burden, one-sided finite differences were used with a
perturbation of ϵ � 10−3, multiplied with an approximation of
inscribed circle diameter of the associated dual volume face.
Cuts of the drag gradient for different spanwise positions are

shown in Fig. 3, which uses the same convention as the CP plots do,
meaning the gradients for the upper and lower sides are plottedwithin
the same figure.We found the results obtained using the surface shape
derivative to be surprisingly accurate, especially given the fact that
the derivation and benefits of the surface shape derivatives heavily
rely on the exploitation of the nature of shape optimization problems
in the continuous setting. Although these analytic considerations are
completely independent of the discrete mesh deformation chain,
there are next to no discrepancies between the surface gradient
formulation and the finite differences for all areas of thewing, except
maybe for the singularity of the leading-edge stagnation point in this
inviscid flow.

C. Results and Optimized Wing

Although the lift constraint itself already implies a certain internal
volume, the total volume is to be kept constant as a very rough
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Fig. 3 Comparison between the surface shape derivative and the derivative obtained via finite differences for different cuts through theOneraM6wing.
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Fig. 5 Pressure distributions across airfoil cuts for the initial and optimized Onera M6 wings.

Fig. 4 Initial and optimized Onera M6 wings.
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measure of preserving structural strength in case the shock is strong
enough that the optimizer attempts thinning the wing excessively.
The volume constraint is treated explicitly by the optimizer, and its
gradient has been derived exactly on the discrete level. For the
Laplace–Beltrami Hessian approximation, a value of ϵ � 1 is used.
The planform pressure distribution on the upper surfaces of the

initial and optimized wings is shown in Fig. 4. Respective CP
distributions are shown in Fig. 5 and the initial and optimized airfoil
cuts are shown in Fig. 6. The optimized Onera M6 wing has a drag
coefficient of CD � 0.007567, which corresponds to an improve-
ment of 28.47%. Also, the optimized wing has a lift coefficient of
CL � 0.2723, which means the lift was preserved up to 1.41%. The
optimal solutions were found after 70 one-shot iterations with 10
inner iterations in each adjoint flow solver and 20 iterations in the
primal. The actual design updatewas conducted as given by Eq. (18),
which also contains the typical one-shot step dampening. Looking at
the pressure distributions in Fig. 5, one can see that the optimized
wing is indeed shock free over the complete span. Because the cross-
sectional thickness of each airfoil was not fixed but only the total
volume of the wing, one can see that the optimized wing has become
thinner at the root and thicker towards the tip, which is less than
prefect from a structural point of view. However, there was no
mathematical constraint to account for structural requirements,
making this acceptable for the purpose of the present work.
The convergence of the drag objective during the optimization can

be seen in Fig. 7.

V. Very Efficient Large Aircraft Blended-Wing–Body

A. Standard Mesh

The second test is the optimization of the “Very Efficient Large
Aircraft (VELA),” a blended-wing–body concept [38]. A traditional
optimization of this aircraft can also be found in [39]. The tetrahedral
mesh consists of 115,673 surface mesh points, of which 113,956
remain as design unknowns after fixing the planform. Themesh has a
total number of 1,061,433 nodes in the field. The flow and both the

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.0 0.2 0.4 0.6 0.8 1.0

re
la

tiv
e 

th
ic

kn
es

s

relative chord

initial
optimized

relative half−span = 0.00 −0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.0 0.2 0.4 0.6 0.8 1.0

re
la

tiv
e 

th
ic

kn
es

s

relative chord

initial
optimized

relative half−span = 0.20

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.0 0.2 0.4 0.6 0.8 1.0

re
la

tiv
e 

th
ic

kn
es

s

relative chord

initial
optimized

relative half−span = 0.40 −0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.0 0.2 0.4 0.6 0.8 1.0

re
la

tiv
e 

th
ic

kn
es

s

relative chord

initial
optimized

relative half−span = 0.60

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.0 0.2 0.4 0.6 0.8 1.0

re
la

tiv
e 

th
ic

kn
es

s

relative chord

initial
optimized

relative half−span = 0.80 −0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.0 0.2 0.4 0.6 0.8 1.0

re
la

tiv
e 

th
ic

kn
es

s

relative chord

initial
optimized

relative half−span = 0.97

Fig. 6 Airfoil cuts for the initial and optimized Onera M6 wings.
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Fig. 7 Convergence of the objective function for the M6 test case.
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adjoints for lift and drag are again computed using the DLR flow
solver TAU. As in the OneraM6 case, the gradient is again computed
according to Eq. (15). After one update of the aircraft surface, the new
volume mesh is created by deforming the mesh from the previous

iteration using the algebraic mesh deformation tool that is part of the
TAU software. Because of this tool having difficulties in deforming
the volume mesh for perturbations of the type Vk�xi� � n�xk�δi;k
with linear interpolation in between points, the gradient is again

Fig. 8 Initial and optimized VELA aircraft.
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Fig. 9 Pressure distributions across airfoil cuts for the initial and optimized VELA aircraft.
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projected for a movement in the x3 direction only. For the smoothing
preconditioner, ϵ � 10 is used.
The initial and optimized aircraft are shown in Fig. 8. Some CP

plots are shown in Fig. 9, whereas the respective airfoil cross sections
are presented in Fig. 10. At a 1.8 deg angle of attack and a cruise
condition of Mach 0.85, the initial configuration has a drag
coefficient of CD � 0.004770 and a lift coefficient of CL � 0.1787
(these values are unusually low due to the high reference area of the
wing–body planform). Both the angle of attack and theMach number
are being held constant during the optimization. The optimal solution
is found after 151 one-shot iteration steps with 20 inner iterations for
each of the two adjoint solvers and 40 inner iterations for the primal
flow solver. The optimized design has a drag coefficient of CD �
0.003342 and a lift coefficient of CL � 0.1775. In total, drag was
reduced by 29.93%, whereas lift was almost precisely kept with a
relative loss of only 0.67%. The total amount of time needed for each
shape update is around 390 s including the evaluation of the shape
derivative for all 113,956 design unknowns and one solution of the
surface Laplace gradient smoothing operator. The precise timings are
shown in Table 1. Note that the timings do not exactly add up to 390,
as some servicing steps and the solve with the surface Laplacian are
not accounted for. The flow and adjoint solvers were running on four
cores of an AMD Phenom II 2.8 GHz PC, whereas the other steps
were computed on one core only. A full convergence to a TAU
residual of 10−9 of the primal solution without optimization requires

1552 iterations or roughly 66 min. Thus, given 151 optimization
steps, one can see that the optimal shape for 113,956 design
parameters is found in as little as 15 equivalent flow solutions.

B. Analysis of the Optimized VELA

Looking at Fig. 8 and the CP plots in Fig. 9, one can see that the
shock wave on the upper and lower sides of the wing could be
removed for almost thewhole span, whereas the pressure distribution
of the fuselage is also somewhat improved. Observing the airfoil cuts
in Fig. 10, one can see that during optimization the twist of the wing
fuselage near the root has slightly decreased, whereas the twist of the
wing near the tip as increased, even though there were no design
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Fig. 10 Airfoil cuts for the initial and optimized VELA aircraft.

Table 1 Time spent during each VELA optimization step

Operation Time in seconds

Volume mesh deformation 36
Dual mesh construction and partitioning 49
Curvature computation 4
Primal flow solver (40 iterations) 101
Adjoint flow solver (drag, 20 iterations) 57
Adjoint flow solver (lift, 20 iterations) 57
Shape derivative evaluation 26
Derivative of volume constraint 4
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parameters specifically controlling the twist. However, with such a
fine parameterization available, the optimizer can achieve a shock-
free or almost shock-free aircraft geometry that is very close to the
original layout, which appears to be very beneficial for the actual
design process, because, usually, larger deformations for improving
aerodynamics are often problematic from a structural point of view.
This can also be seen when comparing this optimal solution with the
one from [39], in which the optimizedwing has a substantially higher

sweep and aspect ratio, whereas here, much less dramatic changes
have resulted in an optimal shape with a comparable performance
increase. Thus, there are potential benefits if the actual design process
of the aircraft is already in a more advanced state and major changes
can no longer be incorporated. The actual convergence of the
objective during the optimization can be seen in Fig. 11.
Furthermore, the spanwise lift distribution is shown in Fig. 12.One

can see that the optimized distribution gets closer to the elliptical,
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Fig. 11 Convergence of the VELA optimization.
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Fig. 13 Airfoil cuts for the optimized VELA aircraft based on original and eight-times-adapted meshes.
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whichmeans that part of the drag reduction is also due to reducing the
induced drag. The graph y axis is the local lift coefficient multiplied
by the local chord length divided by the mean aerodynamic chord.
Because the VELA is a blended-wing–body aircraft, the mean
aerodynamic chord is based on the outer wing trapezoidal, as if it
were extended to the root.

C. Mesh Refinement

Next, wewant to check howmuch the optimized shape depends on
the mesh fineness, for the same initial geometry. To this end, we
perform the same optimization on ameshwith eight times the number
of points, derived by pressure-based adaptation from the original
mesh. This adapted mesh contains 462,238 surface mesh points,
giving 460,517 design unknowns, and 8,110,568 points in total. At
the same angle of attack, the initial drag coefficient on this mesh is
CD � 0.004378, which is 8.22% less than on the original mesh;
the optimized value isCD � 0.002862 or 14.36% less than that of the
optimized original mesh. In spite of these significant differences, the
optimized shapes on the original and refined mesh are very close
(Fig. 13), much closer than either is to the original shape.
The flow and adjoint solvers for optimization on the refined mesh

were running on 4 AMD Opteron 2384 2.7 GHz cluster nodes, each
with 8 cores, for 32 processes in total. Two hundred one-shot iteration
steps were performed, with each taking about 2550 s. Twice the
amount of iterations, 80 primal and 40 for each of the adjoint solvers,
were used compared to the original mesh. The smoothing factor was
increased to ϵ � 40.

VI. Outlook: Viscous Fluids

The extension of the shape optimization technique presented here
to also include viscosity is straightforward. and preliminary
theoretical studies for the compressible laminar Navier–Stokes
equations can be found in [21]. The actual application to viscous
compressible fluids is part of current research. The situation becomes
somewhat more delicate when turbulent flows are considered. Most
of the standard turbulence models have elements for which a formal
derivation of the continuous adjoint equation or the partial shape
derivative is not straightforward. A good example would be the wall-
distance functions of the Spalart–Allmaras turbulencemodel or some
of the boundary conditions in the k-ϵ and the k-ω model. Although
these difficulties can easily be circumvented by considering a frozen
the eddy viscosity, there are also reports of successful uses of
analytically adjointed turbulencemodels [40]. Given the fact that, for
example, the partial derivative of the wall-distance functions or even
the complete turbulent flow solver could also be treated efficiently on
a discrete level using, e.g., algorithmic differentiation [41], the shape
optimization method presented here appears to be also applicable to
turbulent flows, although the derivation is probably not
straightforward and might require some form of hybridization.

VII. Conclusions

Large-scale aerodynamic shape optimization for the compressible
Euler equations in three dimensions is considered. By using the
Hadamard form of the shape gradient, a sensitivity information for
the aerodynamic forces can be computed extremely efficiently, such
that each surface mesh node position can be used as a design
parameter. Being an analytic exact surface expression, the partial
derivatives of the mesh deformation tool and the mesh sensitivity
Jacobians are not required. Using these shape gradients as the
reduced gradients in a one-shot optimization strategy creates a shape
one-shot method for which the Hessian is approximated using the
surface or tangential Laplace operator. Feasibility of the method for
large-scale aerodynamic problems is shown through the optimization
of an Onera M6 wing with 16,792 unknowns of the shape and the
optimization of theVeryEfficient LargeAircraft blended-wing–body
concept aircraft using 113,956 coarse mesh and 460,517 fine mesh
surface node positions as design parameters.
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