

Thermischer Speicher für Solarkraftwerke

Master-Thesis

vorgelegt von

Herrn cand.-ing. Julian Barnick

Matrikelnummer: 411189

Technische Universität Clausthal Institut für Energieverfahrenstechnik und Brennstofftechnik

Deutsches Zentrum für Luft- und Raumfahrt e.V.
Institut für Technische Thermodynamik
Abteilung Thermische Prozesstechnik

Datum (Oktober 2013)

Erstgutachter: Dr.-Ing. Marco Mancini Zweitgutachter: Prof. Dr.-Ing. Roman Weber Betreuer: Dipl.-Ing. Christian Odenthal

Eidesstattliche Versicherung						
Hiermit versichere ich, dass ich die die angegebenen Quellen und Hilfst		beit selbständig verfasst und keine anderen als habe.				
Ort	Datum	Unterschrift				

Aufgabenstellung

Hintergrund:

In solarthermischen Kraftwerken neuerer Bauart werden derzeit thermische Speicher basierend auf einer flüssigen Salzmischung eingesetzt. Das eingesetzte Speicherinventar weist hohe Investitionskosten auf und erfordert eine aufwändige Betriebsführung um ein Erstarren des Salzes zu verhindern.

Im Rahmen des von E.ON mit dem Forschungspreis 2010 ausgezeichneten CellFlux-Projekts wird ein neuartiges Speichersystem entwickelt, bei dem die Wärme über einen Wärmeübertrager an ein geeignetes Zwischenwärmeträgermedium (z.B. Luft, CO₂) übertragen wird und die Energie im direkten Kontakt an das Speichermedium abgegeben wird. Die Leistung des Speichers wird somit durch den Wärmeübertrager bestimmt und dessen Kosten skalieren bei gegebener Leistung nur noch mit der Kapazität.

Zur Validierung des Konzeptes soll eine Pilotanlage aufgebaut werden, die eine Leistung von etwa 75kW bei einer Speicherdauer von acht Stunden aufweist. Der Wärmeübertrager wird mit Rippenrohren realisiert, als Speicherbehälter kommt ein 40 Fuß-ISO Container zum Einsatz.

Aufgabenstellung:

Im Einzelnen sollen folgende Aufgaben durchgeführt werden:

- Erarbeitung eines messtechnischen Konzepts für die Komponenten Speicher und Wärmeübertrager. Zunächst soll eine geeignete Verteilung der Thermoelemente und Differenzdruckmessstellen erarbeitet werden. Das Konzept muss in der Lage sein, mögliche Ungleichverteilungen der Temperatur zu erfassen um Rückschlüsse auf mögliche Strömungsungleichverteilung ziehen zu können. Darüber hinaus müssen Wärmeverluste nach außen sorgfältig bilanziert werden können.
- Sämtliche Messstellen sollen hinsichtlich ihrer Messgenauigkeit untersucht werden. Die Ergebnisse sollen in eine detaillierte Fehlerabschätzung einfließen, die die Fehlerfortpflanzung bis hin zu den Wärmebilanzen der Anlage einbezieht.
- Inbetriebnahme des Wärmeübertragers. Anhand des Temperaturfeldes sollen Rückschlüsse auf die Strömungsverteilung im Inneren gezogen werden.
- Eine theoretische Untersuchung der zu erwartenden Verluste der Anlage soll mit den experimentellen Daten der Anlage verglichen und abschließend bewertet werden.

Inhaltsverzeichnis

A	lufgab	enstellung	••••
I	nhalts	verzeichnis	••••
A	bbild	ungsverzeichnis	••••
T	abelle	nverzeichnis	••••
F	'ormel	zeichen	••••
		••••••	
1		bindung regenerative Energien in ein globales Energienetz	
2	Cha	arakteristik des CellFlux-Speichersystems	5
	2.1	Einbindung des CellFlux-Speichersystems in ein bestehendes Solarkraftwerk	5
	2.2	Übertragung des CellFlux-Speichersystems für Solarkraftwerke auf eine Pilotanlage.	6
2.2.1 Ventilator		Ventilator	8
	2.2.2	2 Wärmeübertrager	10
	2.2.3	Rohrsystem	12
	2.2.4	Wärmespeicher und Speichermaterial	12
		S Isolierung	14
		6 Messinstrumente	14
	2.3	Wärmebilanzen	18
3	Aus	slegung der Systemkomponenten der Pilotanlage	. 22
	3.1	Temperaturerfassung der Pilotanlage	22
	3.2	Dimensionierung des Rohrsystems	26
3.2.1 3.2.2 3.2.3		Druckverluste in den Rohrleitungen	27
		Leckage-Berechnung der 2-Wege-Verteiler	29
		Auswahl geeigneter Dichtungen für die 2-Wege-Verteiler	31
		Berechnung der Isolierung	31
	3.4	Strömungsgleichrichter	35

	3.5	Toleranzen und Abweichungen der Messinstrumente	37
	3.5.1	Grundlagen der Fehlerrechnung	37
	3.5.2	2 Fehlerfortpflanzung der Messwerte der Versuchsanlage	41
4	Ber	echnung und numerische Simulation des Wärmeübertragers.	44
	4.1	Grundlagen der Berechnung von Wärmeübertragern	44
	4.1.1	Grenzschichttheorie eines strömenden Fluides	44
	4.2	Wärmeübergangsbeziehungen an Kreisrippenrohren	46
	4.2.1	Druckverlust über den Wärmeübertrager	50
	4.3	Effektivitäts-Beurteilung eines Wärmeübertragers nach der ε-NTU Methode	51
	4.4	Numerische Berechnung	52
5	The	ermische Leistung und Verluste des Wärmeübertragers	54
	5.1	Untersuchung der Strömungsverteilung im Wärmeübertrager	54
	5.1.1	Vergleich der Austrittstemperaturen mit verschiedenen Strömungsprofilen	57
	5.2	Vergleich der gemessenen mit den simulierten Temperaturen	58
	5.3	Druckverlust über die Rohrebenen	61
Z	Zusami	menfassung	62
A	usblic	·k	62
I	iterat	urverzeichnis	63
		j	
П	A1:	Konzentrationsfaktor von Solarkraftwerken	
	A1.	Stoffdaten Fluide und Materialien	
	A2.	Lage der Messinstrumente	
	A3.	Quellcode des Grenzschicht-Tools	
	A5:	Quellcode des Kreisrippen Wärmeübergangskoef-fizienten und Wirkungsgrad-To	
	A5:	Quellcode des Iteration-Tools	
	A0.	Zeichnung und Abmaß des Innencontainers	
	A7:	Messwerte Wärmeübertrager	
	Ao.	Triesswette vvalueuucittagei	A