
Simultaneous 2D
Localization and
3D Mapping on a
mobile Robot with
Time-of-Flight
Sensors

 Maximilian Eck

D
ru

ck
sa

ch
en

ka
te

g
o

ri
e

Simultaneous 2D Localization and 3D
Mapping on a Mobile Robot with

Time-of-Flight Sensors

Master’s thesis

Master of Mathematics in Finance and Life Science
University of Applied Sciences Koblenz, RheinAhrCampus Remagen

presented by
Maximilian Eck

born on April 18th, 1988 in Lindlar

performed at
German Aerospace Center, Oberpfaffenhofen, Germany

First referee: Prof. Dr. Maik Kschischo
Second referee: Prof. Dr. Uwe Jaekel
External referees: Dipl.-Math. techn. Daniel Seth

Dipl.-Math. Christian Rink

Munich, October 29, 2013

Abstract

The problem of building consistent maps of unknown environments is one greatest
importance within the mobile robot community. Since the first successful attempts,
the variety of solutions has grown larger. One of the most famous approaches, namely
the use of a Rao-Blackwellized Particle Filter(RBPF), was introduced by Murphy et
al. It relies on sampling from the distribution over robot poses and map parameters.
Amongst the large number of succeeding publications, a couple of them teamed the
RBPF with some scan matching procedure. Acting on that idea, this thesis describes
an algorithm, which is based upon the combination of the RBPF and a form of
the Iterative Closest Point(ICP) algorithm. In different way from most established
methods, this procedure manages with a much smaller number of samples. It aims
to calculate a 3D grid-based map of environments with planar floors, using Time-
of-Flight cameras. This kind of sensors allows to extract 3 dimensional information
of the environment efficiently, measuring ranges to obstacles. The robustness of the
resulting algorithm was proved by virtual experimental mapping of a laboratory,
using an “omniRob” platform.

Zusammenfassung

Das Problem, konsistente Karten zu erstellen ist eines von größter Wichtigkeit in
der Geimeinschaft der mobilen Robotik. Seit den ersten erfolgreichen Versuchen,
ist die Anzahl an Lösungen deutlich gewachsen. Einer der populärsten Ansätze,
die Benutzung eines Rao-Blackwellized Particle Filter(RBPF), wurde von Murphy
et al. entwickelt. Die Grundidee ist es, aus der gemeinsamen Verteilung der Ro-
boterlagen und den Kartenparametern zu samplen. Unter der Vielzahl der darauf
folgenden Veröffentlichungen befinden sich einige, die den RBPF mit einer sogenann-
ten Scan-Matching-Prozedur kombinieren. Diese Idee aufgreifend, beschreibt diese
Thesis einen Algorithmus, der auf der Kombination des RBPFs und einer Form
des Iterative-Closest-Point(ICP)-Algorithmus. Anders als die meisten bestehenden
Methoden, kommt dieser Ansatz mit einer kleinen Anzahl an Samples aus. Das
Ziel ist es, eine 3 dimensionale voxel-basierte Karte einer Umgebung zu erstellen,
die einen ebenen Untergrund besitzt. Sensorischer Input soll dabei durch Time-of-
Flight-cameras generiert werden. Diese Art von Sensoren erlaubt es, 3 dimensionale
Informationen über die Umgebung effizient zu gewinnen, indem sie die Enfernung
zu Hindernissen messen. Die Stabilität des resultierenden Algorithmus wurde in vir-
tuellen Experimenten demonstriert. Dabei wurde ein virtuelles Labor mittels einer
“omniRob” Plattform kartiert.

Contents

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Related Work 5

3 Overall structure of probabilistic SLAM 7
3.1 Notation and assumptions . 7
3.2 Mathematical formulation . 10

4 Mapping environments 13
4.1 EKF-SLAM . 13
4.2 Graph-based SLAM . 14
4.3 Mapping with Rao-Blackwellized Particle filter 16

5 Initial settings 21
5.1 Hardware and Environment . 21
5.2 Software . 23

6 The algorithm 27
6.1 ICP-algorithm . 27
6.2 Robot Motion . 30
6.3 Particle weighting and resampling . 31
6.4 Navigation . 33

7 Implementation Structure 35
7.1 Overall structure . 35
7.2 Important implementational aspects 37

8 Results 41
8.1 Mapping results . 41
8.2 Misalignments caused by ICP . 46
8.3 Performance . 46

ix

Contents

9 Review and Outlook 49

Appendix 51

Bibliography 53

x

List of Figures

List of Figures

1.1 Noisy map and good reference map 2

3.1 Illustration of the pose variables . 8
3.2 SLAM process as Dynamic Bayesian Network 9
3.3 Exact and approximative motion model 12

4.1 Schematic representation of graphSLAM 15
4.2 Strong and weak links in graphSLAM 15
4.3 Illustration of Sampling Importance Resampling 18

5.1 OmniRob-platform and Time-of-Flight camera 22
5.2 Environment to be mapped . 24
5.3 Storage of space inside an octree . 26

6.1 Pose correction via ICP registration 28
6.2 Scheme of “Low Variance Sampling” 32
6.3 Overview on exploration process . 34

7.1 UML-class diagram . 36

8.1 Best possible Outcome . 42
8.2 Result without pose correction . 43
8.3 Result with moderate odometry and sensor measurement noise 44
8.4 Result with moderate odometry- and strong sensor-noise 44
8.5 Result with strong odometry- and moderate sensor-noise 45
8.6 Result with strong odometry- and sensor-noise 46
8.7 Misaligned map, caused by ICP-failure 47

xi

List of Tables

List of Tables

6.1 Parameters of the ICP-algorithm . 30

8.1 Variance parameters . 41

xiii

Chapter 1. Introduction

1 Introduction

Biologist, author and former Harvard Professor Edward O. Wilson once stated in
an interview: “Our brain is mapping the world. Often that map is distorted, but it’s
a map with constant immediate sensory input.” Whether this is an attestation of
the brilliance of the human brain shall be discussed elsewhere, but it is remarkable,
that it requires a robot’s best efforts to manage the same task.
Robots today receive positions of great importance in several areas of society.

They are used as highly efficient or precise tools for industrial purposes, but are
unable to perform some of the easiest tasks we can imagine. However, to enable a
robot to master at least some of those challenges, it has to be qualified to process
information, relying on which it is able to make a decision on what to do next.
This thesis deals with the problem, known as Simultaneous Localization and Map-

ping (SLAM) [5,9,14,30,33,44]. It is the task of placing a mobile robot in an unknown
environment and to enable it to build a consistent map of its surroundings [9, 14].
Building maps is one of the most fundamental challenges in modern robotics, since
it provides important means to make a robot truely autonomous [1, 41]. According
to [14] and [9] a solution has even been seen as the “holy grail” for the mobile robot
community. Potential applications would include search and rescue operations, as
well as space, underwater and subterranean exploration [2, 15].
The high complexity of SLAM arises from its concurrent structure, which is some-

times compared to a chicken-egg problem [43]. More in detail, an accurate map
is needed for precise localization, while, at the same time, a good pose estimate is
neccessary to build a consistent map. Probably for that reason, SLAM is also known
as Concurrent Mapping and Localization [2, 6, 44].
Actually, a robot, that performed perfectly noise free motion, could easily map its

environment by putting together a sequence of scans. Basically, since the robot’s
global position estimate becomes increasingly uncertain, due to accumulating motion
errors, the resulting map will do so, too [33]. Figure 1.1 clarifies the problem in
form of an example. The map on the left side was constructed from pure odometry
measurements, that is measurements of the executed motions. In absence of any
pose correction, the result is a highly inconsistent representation of the environment.
Alongside, a map is shown as a reference, which was constructed under favorable
conditions, using a working SLAM implementation.
For solving the given task, the robot has to be equipped with some kind of sensorial

1

Chapter 1. Introduction

Figure 1.1: Left: Map, constructed from pure odometry measurements. The misalign-
ments, that result from accumulating motion errors are highly visible and clear
shapes are unrecognizable.
Right: Good map, which was constructed with a working SLAM-algorithm.

system, by which it extracts information about its environment. Most commonly,
those systems are either laser-based, sonar-based or vision-based and are sources of
certain errors [2]. Since control actions are often executed with a substantial amount
of noise and sensor precision is limited by resolution and scope, it is nesseccary to
take uncertainty into account [44]. Additional noise usually occurs by unmodeled
effects of the robot and its environment. Probabilistic methods are therefore often
involved in the solution of certain robotic challenges and so they are in SLAM.
The aim of this thesis is to overview the problem of Simultaneous Localization

and Mapping and state-of-the-art approaches on the first hand, and to adapt and
implement a robust 3D-indoor application on the other hand. Since the robot is
suspected to move on a planar floor, the localization task shall be restricted to two
dimensions. Extraction of 3 dimensional environment data is performed by so-called
Time-of-Flight cameras. Such sensors observe their surrounding by measuring the
range to obstacles at different points and hence allow for recording of 3 dimensional
data structure.
To date, the question of how to handle the SLAM problem has been answered in

a number of different approaches. Chapter 3 introduces the general mathematical
formulation of the SLAM problem, that forms the basis of most working probabilistic
methods. Afterwards, chapter 4 deals with some established solution statements,
which have proved to be successful in this context. Special attention will be given to

2

Chapter 1. Introduction

a method called Rao-Blackwellized Particle Filter [36], which will be the technique of
choice in the later algorithm. The subsequent chapter aims to give a general survey
over the initial situation. This involves parts of the hardware, including its motion
components and sensors, as well as some crucial elements of the software library.
Unfortunately, the solid robot did not get fit for service in time. For that reason,
results were generated by a virtual reproduction within a virtual environment. Robot
motion will be concretized and the most important algorithmic elements explained in
detail. Putting the previously depicted theories into practice was certainly the most
time-consuming part of this thesis. In chapter 7 the program structure is clarified
at the level of the overall class interactions and important implementational details
respectively. Finally the section “Results” gives a demonstration of the softwares
reliability. Next to consistent maps as the main results, there will be some statement
on performance, too. This work concludes with a short review and outlook on future
challenges.

3

Chapter 2. Related Work

2 Related Work

In 1987 Cheeseman et al. [7] were the first who presented a solution to the SLAM-
problem, that is based upon the use of the Extended Kalman Filter(EKF) [48].
They represented the map by a finite number of landmarks, that is to say significant
points in space, that are easy to identify and have to be extracted from observations
first. Their general idea was to store robot poses and landmark locations in a
combined, Gaussian distributed vector and perform EKF updates at each time step.
Weingarten et al. [46] developed an extension to that approach, that can even build 3-
dimensional landmark-based maps. In 2001 Dissayanake et al. [9] proved important
convergence properties of the EKF-SLAM algorithm for the 2D case of linear motion
and measurement models. Later, Huang et Dissayanake [24] were able to generalize
some of these convergence evidences to the non-linear case.
Lu et Milos [30] presented an iterative approach, in which a number of spatial con-

straints between the robot poses is derived and summarized in an objective function.
Their general idea was to define weak constraints, whenever motion measurements
between two poses are present and strong constraints, where two poses observe a
common part of the environment [30]. Maximization of the objective function can
be done efficiently and special procedures exist for graph construction and opti-
mization respectively(see e.g. [17]). Later publications refered to this proceeding as
Graph-based SLAM [17, 26] or graphSLAM [44].
In 2002, Montemerlo et al. presented FastSLAM [34], an algorithm, that is based

on a Monte-Carlo method, known as Rao-Blackwellized Particle Filter(RBPF) [36].
As will be shown in chapter 4, this technique reduces the sample space dimension
by the amount of map parameters, making the use of an ordinary particle filter
tractable. Later, the authors extended their previous work by developing an im-
proved proposal distribution, that allows for a more effective use of Importance
Sampling [16] and named the new version of the algorithm FastSLAM 2.0 [33]. Un-
fortunately they restricted their work on landmark-based SLAM and did not face
the problem of grid mapping. Furthermore, their approach refers to the building of
2D-maps.
Eliazar et Pall [15] were the first, who overcame the former restriction of a

landmark-based map representation, but resumed the idea of Rao-Blackwellized par-
ticle filtering. They even presented their own extension of the FastSLAM-algorithm
and called their solution Distributed Particle Mapping. Their approach however, was

5

Chapter 2. Related Work

outperformed by Haehnel et al. [21], who combined laser-based FastSLAM with a
2D scan matching procedure. The registration algorithm they used was previously
described in [22]. A similar proceeding was performed by Grisetti et al. [18, 19],
who faced the task of reducing the number of samples additionally. Moreover they
introduced a variant of so-called Selective Resampling [12] to reduce the problem of
particle depletion [45]. Their considerations, relies on the assumption, that sensor in-
formation is significantly more precise than odometry measurements. The challenge
of 3D mapping remains unfaced in each of those works.
Nüchter et al. presented a non-probabilistic approach, using 3D laser range images,

computed from sequential 2D observations [37]. The work focuses on the matter
of accurate relocalization via a variant of the Iterative Closest Point algorithm.
However, their approach is limited for the application in SLAM with 6 degrees
of freedom and can not be applied to robots in planar environments. May et al.
adapted that approach for the use of Time-of-Flight cameras, but did not refer to
2D-localization either [31]. None of them tried to combine the ICP-algorithm with
the use of a RBPF, as it will be the case in this work.

6

Chapter 3. Overall structure of probabilistic SLAM

3 Overall structure of probabilistic SLAM

This chapter deals with the principles, being at the basis of a variety of SLAM-
approaches. Its common probabilistic form traces back to the IEEE Robotics and
Automation Conference in 1986, where it became subject to intensive research for the
first time [14]. One noticed, that the SLAM problem could be faced by modelling
some sources of noise, that cause inconsistent mapping results, explicitely. The
resulting algorithms tend to be more robust, as one knows today [44].
In the next subsection the notation is introduced and general assumptions will

be explained and justified. Afterwards, the mathematical backgrounds and require-
ments will be stated.

3.1 Notation and assumptions

The underlying situation is the one of a mobile robot, that explores a room and
comes to a halt at discrete time steps t1, . . . , tk. After reaching a particular pose, an
observation is made, what requires the robot to be equipped with at least one kind
of sensory system. Subsequently, some kind of control action causes the platform
to move further on, aiming for a new pose. Depending on the type of algorithm,
that is used, map building occurs either incrementally during the movement or by
processing a batch of collected data afterwards. Remembering this, the designations
of variables can now be introduced. One usually distinguishes between data variables
and hidden states [15,17], where the latter ones are not measureable and have to be
estimated therefore. For reasons of traceability, the notation in this work conforms
with the one used in most of the papers, that refer to SLAM.

Hidden states

xk is a vector, that represents the robot pose at time k relative to a global external
coordinate frame. In general, such poses comprise 6 degrees of freedom, namely
the 3 cartesian coordinates, and 3 angular orientation quantities, called pitch,
roll and yaw [44]. Naturally, for robots in planar environments, it is sufficient
to have 2 coordinates and one single angle. Since this case is the one to deal
with in this thesis, the reference frame, as it is used, is shown in Figure 3.1.
Denoting the cartesian coordinates with x and y, the robot’s heading direction

7

Chapter 3. Overall structure of probabilistic SLAM

Figure 3.1: Reference frame for the robot’s pose. The cartesian coordinates are denoted by
x and y. The heading direction of the robot is measured in terms of an angle
Θ, that describes the rotational difference to the x-axis.

is described as an angle Θ, which is measured with respect to the x-axis. The
pose xk can be considered as the vector (x, y,Θ) then.

m is a finite vector, representing the map in a reasonable way. Estimating this
variable as accurate as possible is the actual aim of any SLAM approach.
The concret representation of the map depends on the sensor, the specific
problem and the algorithm, that is used [17]. This work aims to represent the
environment in form of a three-dimensional probabilistic Grid Map [44], what
means to discretize the mapping space into equally sized voxels and label each
voxel with its probability to be occupied.

Observable variables

uk refers to some kind of control, executed at time step k to move the robot and
resulting in a new pose xk`1. It is also common, to consider uk to be an odom-
etry measurement. Odometers register the revolution of the robot’s wheels
and, in so doing, provide information about the change of the pose [44]. In the
following uk will exclusively denote odometry measurements of the form [44]:

uk “

˜

x̄k

x̄k`1

¸

, (3.1)

where x̄k and x̄k`1 refer to poses before and after the movement, respectively,
measured in the same robot internal coordinate frame.

8

Chapter 3. Overall structure of probabilistic SLAM

Figure 3.2: The SLAM process, considered as Dynamic Bayesian network(DBN). Hidden
states are highlighted in dark red, while observations and controls are marked
in light yellow. The conditional dependencies are represented by solid arrows.
Thus, poses xk depend on their precursor pose xk´1 and the control uk´1, as
described by the motion model. Observations zk depend on the map m and
the pose xk, what is declared by the observation model.

zk represents an observation, taken by the robot’s sensory system at time k. Often
those measurements are laser- or vision-based and, depending on the sensor,
refer to two- or three-dimensional data. In the algorithm used here, zk will be
refered to a collection of 8 depth images, taken with Time-of-Flight cameras.

In the context of the underlying problem, it is often useful to have a short notation
for a sequence of poses. Therefore

xt1:t2 “ txt1 , xt1`1, . . . , xt2´1, xt2u

shall serve as shortcut. The variables ut1:t2 and zt1:t2 are defined in this way as well.
A sequence of the form x1:k will be called a trajectory in the following.
A common way to describe the dependencies of the variables in SLAM is to con-

sider its structure as a Dynamic Bayesian Network(DBN) as depicted in Figure 3.2.
The graphical illustration chosen here expresses conditional dependecies between
nodes as solid arrows. Hidden states are distinguished in dark red, while observa-
tions and controls are marked in light yellow. For a start, this graphic shall serve as
an overview, but it will be refered to later in this chapter.
For the purpose of SLAM, the hidden state xk is mostly assumed to be complete.

This means, according to [44], that no additional information from past states,
observations or control actions, provokes any improvement in future pose predictions,

9

Chapter 3. Overall structure of probabilistic SLAM

given xk. In other words, xk unifies the information, that can be used to make
inferences on future poses. Temporal processes, that achieve this requirement are
called Markov chains [44]. The most meaningful consequence of that presumption,
as will become clear in section 3.2, can be expressed as follows:

ppxk|xk´1, z0:k´1, u0:k´1q “ ppxk|x1:k´1, uk´1q (3.2)

It is essential to notice, that zk´1 provides information to specify xk´1, while uk´1 is
executed after the specification of xk´1 and therefore provides additional information
about xk very well.
One more assumption, namely the static world assumption [17] shall be made

here. It expects the environment to stay unchanged during mapping. Actually,
this excludes moving people to be in the room as well. Graphic 3.2 includes this
assumption, thus, in contradiction to the other states, m is stated only once. The
problem of SLAM with non-static environments is faced e.g. in [38] and [40].

3.2 Mathematical formulation

Having introduced the notation and done the assumptions, the SLAM problem can
now be formulated. Next to the overall formulation, this subsection introduces the
motion- and measurement model.

3.2.1 Full- and Online-SLAM

In probabilistic form, SLAM occurs in one of the following two alternatives [44].

Online SLAM: Estimate the joined posterior over the map, along with the robots
current pose at time k:

ppxk,m|z0:k, u0:k´1, x0q

Full SLAM: Estimate the joined posterior over the map, along with all past poses:

ppx1:k,m|z0:k, u0:k´1, x0q

Many online SLAM algorithms work incrementally and abolish observations and
controls, that have already been processed [44]. By contrast, full SLAM solutions
usually do not integrate sensor data permanently or incrementally, but re-estimate
the whole map in each iteration step [30] and have to store the overall data for that
reason. Both forms are of practical relevance and are connected via [44]:

ppxk,m|z0:k, u0:k, x0q “

ż ż

. . .

ż

ppx1:k,m|z0:k, u0:k´1, x0qdx1 dx2 . . . dxk´1

10

Chapter 3. Overall structure of probabilistic SLAM

Having at least one of these distributions allows to recover the map, using e.g.
maximum likelihood techniques. However, adressing the problem analytically usu-
ally ends up in intractable integrals [11]. Further serious problems arise from the
high dimensionality of the parameter space, from which the map is described [44].

3.2.2 Motion- and Measurement Model

The SLAM-problem to be well-defined requires the specification of two more ele-
ments, as becomes clear by the factorizations

ppxk,m|z0:k, u0:k´1q “η ¨ ppzk|x1:k, z0:k´1, u0:k´1,mq

Measurement Model

¨

ż

ppxk|xk´1, uk´1,mq

Motion Model

¨ppxk´1,m|z0:k´1, u0:k´1q dxk´1

and

ppx1:k,m|z0:k, u0:k´1q “η ¨ ppx1:k´1,m|z0:k´1, u0:k´2q

¨ ppzk|x1:k, z0:k´1, u0:k´1,mq

Measurement Model

¨ ppxk|xk´1, uk´1,mq

Motion Model

respectively. Both equations take use of the Markov assumption and equation (3.2)
in particular. The constant value η serves as normalizer. These recursive formula-
tions of the SLAM problem reveal the lack of concreteness and itemize the missing
probabilities.

1. The term ppxk|xk´1, uk´1,mq, is refered to the so-called motion model [14, 34,
44]. It represents the probability of being at pose xk after executing control uk´1
at the starting pose xk´1. Obviously, the motion model comprises knowledge
about the map. Analytical computation of such a probability distribution is
quite complex, since it has to take the robot’s path into account. Neglecting
the path leads to an approximative model, in which the robot is allowed to
pass through walls [44], as is demonstrated by Figure 3.3. Thus, information
about the map is usually ignored totally [44] and collision avoidance performed
by different means. Expressing this assumption in formula leads to

ppxk|xk´1, uk´1,mq “ ppxk|xk´1, uk´1q.

This map independent motion model will be used subsequently. It matches the
case, that is illustrated in Figure 3.2, since the poses are not supposed to be
conditionally dependend on m. Because mapping takes place relative to the
robots start pose x0, the latter one can be chosen arbitrarily and a suitable

11

Chapter 3. Overall structure of probabilistic SLAM

Figure 3.3: Motion model without the map information(left) and conditioned on the map
(right). Dark shading implies high likelihood of the robots next pose. The
white bar on the right-hand side represents an obstacle, as it could be encoded
by a map. Since the area marked with (˚) is blocked, all likeli poses should be
located on the other side of the obstacle. Computing a closed form respecting
that issue is difficult, thus the approximative model allows the robot to pass
through walls(source: [44]).

representation for ppx0q would be given by a Dirac-distribution therefore [17].
In the following, the start pose will be neglected in the formulation.

2. The probability ppzk|x1:k, z0:k´1, u0:k´1,mq describes the likelihood of a certain
observation zk, given the vehicle state and available informations on the map. It
is easily seen from Figure 3.2, that observations are assumed to be independent
from all other variables but the current pose and the map. Intuitively this
seem reasonable and, expressed mathematically, leads to the following useful
simplification.

ppzk|x1:k, z0:k´1, u0:k´1,mq “ ppzk|xk,mq,

which is spoken of as observation model [9,14] ormeasurement model [34]. Once
the pose and map are defined, observations are assumed to be independent
additionally [14].

Motion- and sensor- models are robot and sensor specific respectively. Suggestions
for practical implementations are submitted e.g. in [44].

12

Chapter 4. Mapping environments

4 Mapping environments

To date, a large number of publications describe methods to adress and solve the
SLAM problem successfully. Most commonly, they are either based on the use
of the Extended Kalman Filter, Rao-Blackwellized Particle Filter or are refered
to a Maximum Likelihood technique, called graph-based SLAM. Therefore, this
chapter aims to give a short overview of the general ideas at the basis of these three
approaches. Special attention will be given to the Rao-Blackwellized Particle Filter,
since it plays a decisive role in the algorithm developed in this thesis.

4.1 EKF-SLAM

The use of Extended Kalman Filters to solve the SLAM problem traces back to a
paper of Smith, Self and Cheeseman [7]. Due to the incremental nature of the map
building process, it is refered to a solution of the online SLAM problem. Its appli-
cation is restricted to landmark-based maps, where landmarks refer to significant
shapes, that may be artificial flags or natural obstacles, like trees or rocks. Knowl-
edge about these landmarks locations enables the robot to localize itself within its
previously unknown environment. In EKF-SLAM, the map is therefore represented
by a collection of landmark positions and their features when indicated, and denoted
by m “ tm1, . . . ,mNu. The well-known Bayes-Filter [44] then provides the general
framework for the solution [14]

belpxk,mq – ppxk,m|z0:k´1, u0:k´1q

“

ż

ppxk|uk´1, xk´1q ¨ belpxk´1,mq dxk´1

belpxk,mq – ppxk,m|z0:k, u0:k´1q

“ η ¨ ppzk|xk,mq ¨ belpxk,mq,

where η serves as a normalizing constant again.

An easy implementation is given by the Kalman Filter [48], that assumes both
probability distributions to be Gaussian. In addition, it requires to have observation-

13

Chapter 4. Mapping environments

and motion- models of the following form:

ppxk|uk, xk´1q ô xk “ gpxk´1, ukq ` εk εk „ N p0, Rkq

ppzk|xkq ô zk “ hpxkq ` δk δk „ N p0, Qkq

with linear functions g and h. However, SLAM is a non-linear problem in general
and the Kalman Filter not applicable therefore. To overcome this restriction, one
usually enforces g and h to be linear by first order Taylor expansion, resulting in
the Extended Kalman Filter -algorithm for SLAM(EKF-SLAM) [14, 44]. The math-
ematical formulation is space wasting, but the basic update step can be looked up
in the appendix.
Unfortunately, the computational effort in EKF-SLAM grows quadratically with

the number of landmarks, since the covariance matrix does so [14]. Its application is
therefore restricted to environments with a few hundred of landmarks at most [34].
The overall algorithm has to cope with additional challenges, such as correctly iden-
tifying observed landmarks, or how to deal with newly observed features. However,
the aim of this thesis is to put the general idea across, thus it shall be pointed to [7]
and [44] for more detailed information.

4.2 Graph-based SLAM

A popular technique for the solution of the full SLAM problem is refered to a
Maximum-Likelihood approach, in which the robot’s trajectory is optimized iter-
atively. It is based on a graph, in which each node is labeled with a robot pose
and the corresponding observation [17], hence the name graph-based SLAM. An
exemplaric situation is illustrated in Figure 4.1, in which equally shaped figures,
labeled with zk, represent observations of the very same feature. The criterion to
measure the quality of a pose configuration can be derived by a number of spatial
constraints between poses, which are represented as edges inside the graph. One
usually subdivides those links between poses into weak and strong links [30]:

Weak links occur between successive poses and represent information, that was
extracted from odometry readings or control variables. In Figure 4.1 a weak
link is available, wherever a solid arrow connects two poses.

Strong links arise, where parts of the environment have been observed from at
least two different poses. In this particular example, poses from whom the
same landmark was observed, are linked in this way.

The existance of weak and strong constraints in the particular example from Fig-
ure 4.1 is shown in Figure 4.2.

14

Chapter 4. Mapping environments

Figure 4.1: Schematic representation of a graph and the resulting constraints. Solid ar-
rows occur between successive poses and indicate a weak link. Equally shaped
measurements zk are refered to an observation of the same landmark. Those
common observation indicate a strong link between the corresponding poses.

Figure 4.2: Strong and weak links, as they occur in the example above. Green marks
refer to a strong link, red ones to a weak link. Weak links occur only between
succeding poses, strong links, whenever a common part of the environment has
been observed from two different poses. Each pose is linked to itself via a strong
and a weak link.

15

Chapter 4. Mapping environments

In general, graph-based SLAM is refered to a recursive two-step procedure. Defin-
ing and integrating the constraints is subject to the so-called front-end [17, 26] and
leads to an objective function of the following form:

F px1, . . . , xkq “
ÿ

pi,jq

eTijΩijeij (4.1)

where Ωij is a known information matrix and eij some difference between estimated
and observed relative pose values. Optimization of equation (4.1) is adressed by
the back-end step [17, 26]. A number of special algorithms exist for both steps
[17,26,30,44].
Due to the fact, that graph-based SLAM re-estimates the map in each step, it

overcomes the restriction of updating individual parts of the map independently,
what is particularly beneficial in the context of loop-closure [30]. A major disad-
vantages lies in its high memory allocation, that occurs because observations have
to be stored and can not be rejected, as it is the case e.g. in EKF-SLAM [44].
Furthermore, a bad initial trajectory estimate may cause the algorithm to converge
slow and to stuck in local minima [39].
For purposes of easier visualization and explanation, the map representation has

been chosen to be landmark-based here. Basically, graphSLAM is able to deal with
different kinds of maps as well. Examples on how to use it on grid-based maps can
be find, amongs others in [26] and [30].

4.3 Mapping with Rao-Blackwellized Particle filter

Amongst the different approaches, that have been developed so far to solve the
SLAM-problem, the use of a Rao-Blackwellized Particle Filter is probably the most
common proceeding to generate an accurate and consistent map of an unknown
environment. In contradiction to other popular proceedings like EKF-SLAM, the
RBPF neither depends on the existence of predefined landmarks, nor on linear or
linearized motion or measurement models [44]. As the name suggests, the proposed
technique is a special application of ordinary particle filters, which will be described
in short in the next section. An explanation of the difficulties and characteristics,
when using it on the SLAM problem, will be given afterwards.

4.3.1 Particle Filter and Sampling

In contradiction to a variety of popular filters, the particle filter approximates a
target distribution not by a different distribution, but in form of a number of samples
px1, . . . , xkq drawn from that distribution [44]. Important inferences can be made
on the basis of a number of those so-called particles [16, 44] then.

16

Chapter 4. Mapping environments

Unfortunately, a sampling procedure may not be available for a particular dis-
tribution p. One often uses the service of a method called Importance Sampling
therefore [13, 16, 44]. It allows to compute e.g. the expectation of p, by sampling
from a different distribution π, which fulfills some requirements. π is called a pro-
posal distribution [13,18,19,44] or an envelope [16]. The crucial step is to associate
a weight wpiq to each sample xi via [13]:

wpiq “
ppxiq

πpxiq
.

Particles, that are likeli according to p receive high weights, what provides informa-
tion about the target distribution.

Although Importance Sampling is sufficient to estimate important properties of
p, it is not a proper representation of the distribution p itself [13]. One therefore
performs a resampling step, what means re-drawing the samples with replacement
and with probabilities proportional to their weights. The resulting procedure is
known as Sampling Importance Resampling(SIR) [16]. According to [16], samples,
that have been drawn via the SIR procedure are distributed according to the target
distribution p. An illustration of the SIR algorithm is shown in Figure 4.3.

A well known procedure for sampling sequences of values px1, . . . , xkq is given by
the so-called Sequential Importance Sampling(SIS) [13, 16]. It relies on the factor-
ization

πpx1, . . . , xkq “ πpxk|xk´1, . . . , x1q ¨ πpxk´1|xk´2, . . . , x1q ¨ ¨ ¨ ¨ ¨ πpx1q

and allows for more effective drawing, since each sequence pxpiq1 , . . . , x
piq
k´1q can be

extended by simply drawing [13,16]

x
piq
k „ πpxk|x

piq
k´1, . . . , x

piq
1 q.

The time complexity is therefore assured to be constant at each time step and does
not grow linearly, as it would be the case for drawing whole sequences [13]. SIR and
SIS can be integrated easily, when a particle filter is used.

4.3.2 SLAM with RBPF

In general, particle filters could be applied in a straight forward way to solve the
SLAM problem, by sampling from the full-SLAM distribution

ppx1:k,m|z0:k, u0:k´1, x0q

17

Chapter 4. Mapping environments

Figure 4.3: Illustration of Sampling Importance Resampling. The aim is to get samples,
that are distributed according to f , what is shown exemplarily by blue dashes
in (a). Since there is no way to sample from f directly, g is used as a proposal
distribution. The weighted and unweighted samples are shown in (b) and (c).
Resampling the particles in (c), with a probability proportional to the weights,
leads to a sample set similar to the one in (a).(source: [44])

18

Chapter 4. Mapping environments

at each time step k. Unfortunately, this proceeding is intractable, due to the high
dimensionality of the sample space and the limited computational capacities [14]. In
particular the amount of variables, that are neccessary to describe the map is likely
to reach extremely high numbers. Even the moderate case of an occupancy grid
map with a resolution of 10cm leads to a binary map space of the dimension 1000

per m3, that is to say 21000 possible samples. To overcome this important limitation,
Murphy and colleagues [35] utilized so-called Rao-Blackwellization [16] to improve
particle filtering. In the underlying context of SLAM, this technique relies on the
following factorization:

ppx1:k,m|z1:k, u1:k´1q “ ppx1:k|z1:k, u1:k´1q

particle filter

ppm|x1:k, z1:kq

analytical computation

. (4.2)

The essential thought is, that the map distribution can be estimated analytically,
once the robot poses are known. Thus, the problem reduces to sampling trajectories,
what can be done with reasonable computational effort. The resulting algorithm is
known as Rao-Blackwellized particle filter [35, 36].

Due to the step-by-step progression of the robot, it seems reasonable to adopt the
SIS principle for generating new trajectories. Let

πpx1:k|z0:k, u0:k´1q

the proposal distribution, that refers to the first term on the right side of equation
(4.2). Following the suggestion in [45] it shall be assumed, that each particular pose
estimate is independent on successive observations and controls. This allows for the
recursive formulation

πpx1:k|z0:k, u0:k´1, x0q “ πpxk|zk, xk´1, uk´1qπpx1:k´1|z0:k, u0:k´1, x0q
assum.
“ πpxk|zk, xk´1, uk´1qπpx1:k´1|z0:k´1, u0:k´2, x0q

and provides an efficient sampling procedure, since established trajectories can be
reused. Thus, it is sufficient to draw a single value

x
piq
k „ πpxk|zk, x

piq
k´1, uk´1q

to extend the i-th trajectory and get xpiq1:k. This special structure makes SLAM
with RBPF the only known SLAM approach, which solves both, the online- and
full- SLAM problem [44]. Defining a suitable proposal distribution π, which allows
proceeding like this, is non-trivial and therefore subject to a plenty of publications
[19,20,33].

It was stated before, that importance weights are calculated as the quotient of

19

Chapter 4. Mapping environments

the target distribution p and the proposal distribution π, evaluated at the sampled
value. Given the motion- and measurement- model, the weight for the i-th particle
may be updated via the following recursion [19]:

w
piq
k “

ppx
piq
1:k|z1:k, u1:k´1q

πpx
piq
1:k|z1:k, u1:k´1q

“
η ¨ ppzk|x

piq
1:k, z1:k´1q ¨ ppx

piq
k |x

piq
k´1, uk´1q

πpx
piq
k |x

piq
1:k´1, z1:k, u1:k´1q

¨
ppx

piq
1:k´1|z1:k´1, u1:k´2q

πpx
piq
1:k´1|z1:k´1, u1:k´2q

9
ppzk|x

piq
1:k, z1:k´1q ¨ ppx

piq
k |x

piq
k´1, uk´1q

πpx
piq
k |x

piq
1:k´1, z1:k, u1:k´1q

¨ w
piq
k´1 (4.3)

Resampling has to be performed with care, since it causes loss of information and
reduction of sample variety. In particular the loss of particles, that are close to the
true solution, is known to cause divergence and is famous as the particle depletion
problem [18,19,41].
So far, the question of how to update a map when using this method has not been

answered. In [34] and [14] single landmarks of feature maps were updated by means
of the Extended Kalman Filter. Many published implementations of RBPF-based
SLAM however, associate a seperate map to each particle, resulting in a number of
candidate maps [18–21,40,42,50].

20

Chapter 5. Initial settings

5 Initial settings

The aim of this section is to overview the situation that is at the basis of this
work. It will treat of the robot and its hardware and environment, as experimental
backgrounds, as well as the software foundations, upon which the algorithm was
build.

5.1 Hardware and Environment

First of all, the characteristics of the mobile platform will be pointed out and the
most important equipment explained. Its Time-of-Flight sensors will be dealt with
seperately afterwards, due to their importance in this matter. Finally, the environ-
ment, which was used to generate maps, will be introduced.

5.1.1 The “omniRob” platform

It already mentioned at the very beginning of this work, the robot, that was sup-
posed to execute the SLAM-algorithm was indispensable. The virtual reproduction
however, aims to get as close as possible to the real robot performance. “omniRob”,
as the platform is called, is a product of the Kuka Roboter GmbH. It has a size of
1.20m ˆ 0.71m ˆ 0.65m, weights about 270kg and reaches a speed up to 1.5m

s
. A

picture of it is attached by Figure 5.1.
The platform offers omnidirectional wheels and is equipped with several sensor

systems [10]. Most importantly to mention, in the context of this work, are the 8
Time-of-Flight(ToF) cameras, which have been installed by the DLR-RM-institute.
These allow for an almost panoramic view and perceive the environment in depth
values. Its equipment further embraces four I7 processor boards, which allow for on
board computation and makes the robot independent from any infrastructure [10].

5.1.2 Time-of-Flight sensors

It is obvious, that building 3D map requires the extraction of 3-dimensional data
structures. In the past, several 3D-SLAM applications have collected data by means
of rotating 2D-laser-scanners or stereo cameras, what comes at the price of slow
performance [25, 27, 28, 37]. Nowadays, cheap Time-of-Flight cameras are available

21

Chapter 5. Initial settings

Figure 5.1: Left: The “omniRob”-platform, as it is used at the DLR-Institute Oberpfaffen-
hofen. Some of its ToF cameras are visible alongside its top and in its front.
In addition it carries a light weight robot(LWR) arm and a pan-tilt unit.
Right: A Time-of-Flight camera of the type IFM O3D100, as it is used by the
robot. (source: DLR-intern)

22

Chapter 5. Initial settings

and offer the possibility to record 3D images with reasonable speed, which makes it
attractive in the matter of real-time tasks [47].
Lange and Seitz explained the general idea of the operating mode by comparing

it with a bat’s ultrasonic system, applied on light waves [28]. The performance,
however suffer from large systematic and non-systematic errors, what requires data-
preprocession and camera calibrationen to make ToF-cameras suitable for robotic
applications. [31, 32].
In general, cameras with resolutions up to 20 tsd. pixels are available by now [32].

However, in this work sensors with relatively low resolution of 50 ˆ 64 pixels were
used.

5.1.3 Environment

The object to be mapped is the mobile robot laboratory of the DLR-institute in
Oberpfaffenhofen, which is about 11.7mˆ 5m in length and width. More precisely,
it is about a virtual analog of that room, stored in form of a grid map. An adjacent
hallway, that is reachable through 2 doors shall be mapped as well and provides
additional area of around 13.7m ˆ 1.8m. The floor of the whole complex is flat, as
it is required for 2D mobile robotic applications. Two different views of the scene
are shown in Figure 5.2.

5.2 Software

At the beginning of that work a remarkable amount of software was already avail-
able and has allocated useful functionality, without whom the implementation of
a SLAM algorithm would not have been possible, given the short time span. In
the following some information about the initial software situation will be provided.
Most importantly, the MRE-project will be introduced and the DynamOctreeSpace-
representation explained.

5.2.1 Lib3D and MRE-project

The software basis, upon which the SLAM-implementation has been established,
is given by an intern C++-library called Lib3D(L3D). This library comprises a
multitude of functions, used in two and three dimensional robotic applications and
comprises about 525 classes. Amongst others, it embraces a class for representing a
robot, that allows to perform the most basic steps, like moving or measuring, with
little effort.
Also important to mention in the context of this work is the MRE -project, which

is based upon Lib3D. It includes several implementations of mobile robot tasks,
some of the most important ones listed above.

23

Chapter 5. Initial settings

Figure 5.2: Virtual replication of the mobile robot laboratory and the adjacent hallway,
which were used as experimental environment. The path, that was used to
generate the maps is also shown.

24

Chapter 5. Initial settings

active localization is the task of determining the robot’s pose by means of sensor
observations and concerted movements

passive updating improves the robot’s pose believe via an additional observation,
but without moving autonomous

passing obstacle localizes the robot, computes a path to a given destination and
moves to the aim along that path

exploration guides the robot through unknown environment and computes the most
promising aim for mapping at each step in time (still incomplete)

These operations are connected to SLAM in some way, since they could be inserted
as useful tools. The implementation of a mapping algorithm forms an additional
feature, that expands the functionality of the MRE-project.
In addition, Lib3D embraces the corresponding project MREVisualization, which

allows for a graphical display during the execution of the listed applications. The
virtual environment from Figure 5.2 was visualized with the functionality of this
project.

5.2.2 DynamOctreeSpace

A particlar important part of the Lib3D-library refers to the map storage. Since
SLAM is a complex task, it makes high representational demands, from which the
most crucial ones are listed in the following:

Compactness: The environment should be memorized parsimoniously. In partic-
ular applications in large scale environments, or those, that require the gener-
ation of multiple maps are dependend on that property.

Flexibility: Extension of the space to be observed is unknown in general. Thus,
the space should be able to grow automatially.

Completeness: Decisions have to be make not just between occupied cells and
those who are free. There also has to be a label for cells, who are still unknown.
This is, not at last, important to plan the robots path efficiently [23].

An obvious way to model environments is discretizing the mapping space, using a
grid of equally sized voxels. The demand for completeness is easily fulfilled, since
each voxel allows even for a probabilistic representation of occupancy. However, the
consumption of memory resources is unneccessarily high within such models [23,49].
Wurm et al. described a structure, named OctoMap, to face the challenges listed
above [49]. Their approach is based on the use of octrees, which represent cubical
spaces, able to subdevide recursively into 8 equally spaced subvolumes, until a pre-
defined minimum voxel size is reached [23, 49]. Economy in memory is achieved by

25

Chapter 5. Initial settings

Figure 5.3: Schematic representation of the storage of space via an octree. Grey-marked
cubes store a single value. Volumes which are supposed to represent multi-
ple values subdivide, as indicated by the right upper cube in the front level.
On the right-hand side, the tree structure that arises from such an octree is
illustrated.(source: [23])

saving large voxels, whenever all its subvolumes exhibit the same value. A graphical
demonstration of that proceeding is given by Figure 5.3. Finally, flexibility is reached
by techniques, applied at the DLR-Institute, which arrange multiple octrees within
a grid, to form a, in general non-cubic, space. Extension of that map is perfectly
possible by inserting additional octrees. Such a representation is internally known
as DynamOctreeSpace. An efficient implementation is part of the Lib3d-library and
was used for integrating mapping result.

26

Chapter 6. The algorithm

6 The algorithm

It was mentioned before, that the algorithm, whose implementation was a major
subject to this thesis, is based upon a Rao-Blackwellized Particle Filter. The draw-
backs of EKF-SLAM are obvious, given the restriction to landmark-based maps,
which might not be sufficient for future tasks of the robot. Graph-based SLAM on
the other hand needs an initial trajectory estimate and can only be applied after
recording the data. Hence it needs a full exploration of the environment, before
a different task can be executed. What is more, the best initial estimate, that
would be available, is given by the relatively uncertain odometry readings. It was
stated in [39], that the algorithm is likely to converge slow and to a local minimum
therefore. That is why the decision was to use a Rao-Blackwellized Particle Filter.
Following the suggestion of most implementations on grid-based maps, a seperate

map shall be associtated to each particle. A crucial point in this algorithm is the
additional application of the so-called Iterative Closest Point(ICP) algorithm [4] on
each particle. Nüchter et al. [37] presented the ICP algorithm as a non-probabilistic
approach for solving the SLAM problem with 6 degrees of freedom. Their idea was
to compute and apply a linear transformation and align each new measurement to
the map, build so far. In so doing they received an estimate on the localization
mismatch, what is illustrated in Figure 6.1. The process of matching point clouds
is commonly known as registration [29]. According to [31], this proceeding lacks
of robustness, since it is likeli to converge to local minima. Indeed, as will be
shown in chapter 8, using ICP-registration in the case of 2D-localization showed
significant misalignments in some of the maps. The general idea of combining ICP
alignment with a small number of particles was to develope a robust algorithm, that
removes errors in registration through the resampling step. In the broader sense, this
proceeding has to be seen as a 3-dimensional generalization of the work presented
in [21], since it combines the use of Rao-Blackwellized particles with a scan matching
procedure. However, the algorithm presented there still requires up to 100 particles.
In the following, the different elements, that were used will be described in detail.

6.1 ICP-algorithm

The accuracy of the map and the preciseness of the robot’s pose estimate are highly
interdependend. The ICP algorithm is therefore used to find a linear transfor-

27

Chapter 6. The algorithm

Figure 6.1: Pose correction, performed by ICP registration. The red shapes represent noisy
measurements of the environment. Aligning the red curves allows to estimate
the localization mismatch and integrate new data at the correct place, that is,
the green colored obstacle.

mation, that aligns two given point sets best and in so doing, estimates the lo-
calization mismatch. Denoting these two point sets by M “ tm1, . . . ,mNmu and
D “ td1, . . . , dNd

u, the quantity of this mismatch can be expressed by the following
cost function E:

EpR, tq “
Nm
ÿ

i“1

Nd
ÿ

j“1

wi,j}mi ´ pRdj ` tq}2.

Here, the linear transformation is represented in terms of a rotation matrix R and
a translation vector t. Additionally,

wi,j “

#

1 if mi
^
“ dj

0 else

indicates, whether mi and dj are supposed to represent the same point in space.
Following the approach in [37], the search for corresponding points is reduced to
the problem of searching closest points. More precisely, each point in D is asso-
ciated to the nearest point from M within a maximum search radius. Let C “

txm1
1, d

1
1y, . . . , xm

1
N , d

1
Ny denote the set of correspondences, thus the cost function

reduces to

EpR, tq “
N
ÿ

i“1

}m1
i ´ pRd1i ` tq}2

28

Chapter 6. The algorithm

and refers to an ordinary Least Square(LS) approach obviously. The minimization
step requires the definition of the matrix

H “

N
ÿ

i“1

pm1
i ´ m̄qpd1i ´ d̄q

T
“

¨

˚

˝

Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

˛

‹

‚

where m̄ and d̄ denote the centroids of the data setsM and D, respectively. Let now
H “ UΛVT the singular value decomposition(SVD) of H. U and V therefore fulfill
the property of orthonormality, while Λ is diagonal with non-negative elements [8].
As prooved e.g in [37], the optimal transformation arises out of that factorization
and is given by:

R “ VUT t “ m̄´Rd̄

Under the circumstances of this thesis, the common ICP-registration requires a slight
modification. More precisely, since the case of only 3 degrees of freedom is considered
here, the fixation of the remaining ones has to be ensured. In terms of the rotation
R, it is restricted to an occurance within the x-y-plane. To reach this aim, the
matrix H was modified and any dependencies with the third cartesian coordinate,
denoted by z, set to 0:

H “

¨

˚

˝

Sxx Sxy 0

Syx Syy 0

0 0 Szz

˛

‹

‚

. (6.1)

This step seems reasonable, since H represents covariances and the underlying situ-
ation suggests independence to the z-component. Application of the ICP, as stated
above results in a valid transformation then, what is proved with the following the-
orem.

Theorem 1. Let H be the matrix from equation (6.1) and H “ UΛV T its singular
value decomposition. The matrix R “ V UT is orthogonal and of the form

R “

¨

˚

˝

˚ ˚ 0

˚ ˚ 0

0 0 1

˛

‹

‚

what adds up to a linear rotation, that does not change the z-coordinate.

Proof. First of all, the orthogonality follows from the general proof in [37]. Let now

H “

¨

˚

˝

Sxx Sxy 0

Syx Syy 0

0 0 Szz

˛

‹

‚

—

¨

˚

˝

B 0

0

0 0 Szz

˛

‹

‚

.

29

Chapter 6. The algorithm

parameter meaning value
maxRad initial maximum radius, in which a closest point will

be searched
200mm

radFac scaling factor, that is used to scale down maxRad un-
der specified conditions

20

maxIterNum maximum number of iteration steps 500

convErrRatio treshold, that defines a stop criterion and refers to the
quotient of two succeeding error terms

0.9999

convErrTh treshold, that defines a stop criterion and refers to the
absolute error term

1

Table 6.1: Parameter explanation and the chosen values for the ICP registration

Since a singular value decomposition exists for any arbitrary real matrix [8], it is

B “ Ũ Λ̃Ṽ T

in particular, where Ũ and Ṽ are othogonal matrices and Λ̃ is diagonal with non-
negative elements. Since Szz ě 0 it follows

H “

¨

˚

˝

B
0

0

0 0 Szz

˛

‹

‚

“

¨

˚

˝

Ũ
0

0

0 0 1

˛

‹

‚

U

¨

¨

˚

˝

Λ̃
0

0

0 0 Szz

˛

‹

‚

Λ

¨

¨

˚

˝

Ṽ
0

0

0 0 1

˛

‹

‚

T

V T

.

Obviously H “ UΛV T is a valid singular value decomposition, thus the statement
follows by calculating R

R “ V UT
“

¨

˚

˝

Ṽ ŨT 0

0

0 0 1

˛

‹

‚

,

which has the form of a rotation matrix, that does not manipulate the z-component.

In practical application a number of parameters are required for ICP registration.
Table 6.1 explains these parameters and specifies the values, that were chosen here.

6.2 Robot Motion

In [44] there are two different models specified, namely the velocity model, which
assumes, that the robot can be controlled by a translational and a rotational veloc-

30

Chapter 6. The algorithm

ity, and the odometry model, which involves odometry readings instead of control
commands. In this work, the latter one will be described, since the robot, that was
employed, provides odometry measurements, that are usually more accurate [44].
The input is of the form, that was stated in equation (3.1) and describes a rela-
tive state inside a robot-intern coordinate frame, from which a 3 step sequence of
movement uniquely can be derived [44].

1. an initial turn by a specific angle, denoted by δrot1

2. a translational component, describing a straight on movement δtrans

3. a final rotation, aligning the robot towards its new heading direction δrot2

The motion model used for the “omnirob” platform is close to the one described
above. A difference originates from the omnidirectional wheels, which redundantize
an initial rotation. Furthermore, the remaining rotation (now denoted by δrot) and
translation are executed simultaneously, resuming the movement along a straight
line. Experiments with a former platform indicated, that proceeding like this yields
to more accurate movements. For reasons of simplicity, errors for translation and
rotation are assumed to be independent. Let δ̂trans and δ̂rot denote the measured val-
ues for translation and rotation, respectively. The following error model is supposed
to be at the basis of the odometry measurements:

δ̂trans “ α ¨ p|0.05 ¨ δtrans| ` 1q ¨X X „ N p0, I2q
δ̂rot “ β ¨ pδrot ` 1q ¨ U U „ Upr´0.5; 0.5sq,

where I2 denotes the 2 ˆ 2 identity matrix. The model provides errors with de-
pendence to the degree of the movement, but involves an offset as minimal error.
In the end, the values of the model were chosen heuristically, but have never been
estimated properly.

6.3 Particle weighting and resampling

A straightforward way to evaluate particles recursively was given in equation (4.3).
Following the suggestion in [34], the proposal distribution π was chosen as the motion
model

πpxk|x1:k´1, z1:k, u1:k´1q “ ppxk|xk´1, uk´1q,

what leads to a compact weight update:

w
piq
k “ ppzk|xkq ¨ w

piq
k´1

31

Chapter 6. The algorithm

Figure 6.2: Scheme of “Low Variance Sampling”. By sampling a random number r and
adding M´1 repeatedly, one gets M samples again, each corresponding to a
single particle.

Assuming Gaussian measurement noise and taking independence between mea-
surements into account, this would lead to an expression like the following one:

w
piq
k “ w

piq
k´1 ¨

ź

i

exptpz
piq
k ´ ẑk

piq
q
TQ´1k pz

piq
k ´ ẑ

piq
k qu (6.2)

“ w
piq
k´1 ¨ expt

ÿ

i

pz
piq
k ´ ẑk

piq
q
TQ´1k pz

piq
k ´ ẑ

piq
k qu

with some covariance matrices Qk and estimated observation ẑkpiq. However, imple-
menting weighting this way has proved to be extremely difficult, since incomplete-
nesses within the partially build map made an observation estimate ẑkpiq a complex
task. To keep the implementational effort small, an approximative alternative had to
be used. The sum in the latter term of equation (6.2) has therefore been substituted
by the error, that results from the ICP registration. The new update recursion is
given by:

wk “ wk´1 ¨ exptEpR, tqu

“ wk´1 ¨ expt
ÿ

i

}m1
i ´Rd

1
i}u

Since misalignments often appear, because the ICP algorithm converges to a local
minimum instead of the global one, this substitution is meaningful in terms of the
map’s quality. Proceeding like this makes the whole algorithm come along without
the need for a measurement model.

The resampling procedure follows a Quasi Monte Carlo approach, called Low Vari-
ance Sampling [44]. It aims to cover the sample space in a more systematic way,
by generating a single random number and computing the remaining ones deter-
ministically. Without loss of generality, the sample weights sum up to 1. Let M
the absolute number of particles and r a random number generated from a uniform
distribution Upr0;M´1sq. By refering each weight to a specific range inside the in-
terval r0; 1s, one gets M samples again. The proceeding is illustrated in Figure 6.2.
Using Low Variance Sampling conserves particle variety better than sampling in-

32

Chapter 6. The algorithm

dependently [44]. This is of particular importance, since the number of samples is
small. In addition, maps with above average weight are guaranteed to remain in the
set.

6.4 Navigation

Autonomeous navigation of robots is a feature, that might be of good use in SLAM.
As shown e.g. in [42], the choice of an adequate destination, potentially raises the
map quality significantly. Several algorithms for efficient exploration of unknown
environments exist. However, most of them aim to explore the environment as fast
as possible and do not face the problem of consistent mapping [3]. On the other
hand, common SLAM approaches do not deal with the problem of sensor placement.
Combining both, exploration and SLAM-techniques, leads to the so-called integrated
approaches [42]. The subject of this thesis however, was not to implement such an
algorithm, but to adapt an already existing exploration implementation for the use
in SLAM. The general procedure, which is at the basis of the implementation, is
close to the Next-Best-View(NBV) algorithm presented in [3] and can be subsumed
into 2 steps.

calculate potential aims: Since the aim of an exploration strategie is to discover
its environment as fast and efficiently as possible, the general idea is to look for
destination points, where the expected amount of newly observable voxels is
large. On the other hand, navigation has to be save and each new destination
has to be in known area. Thus potential aims turn out to be the collection
of reachable and already observed points. In general such a set could look
like the one in Figure 6.3(b), with border voxels, as potential destinations,
marked in red. However, because the robots own prolongation has to be taken
into account as well, the set of reachable points is reduced by those voxels,
that are close to an obstacle or unknown area. The reduced set is shown in
Figure 6.3(c). Finally, a single destination per border is determined, as is also
shown in (c).

evaluate potential aims: After discovering several candidate positions, the most
promising one has to be figured out. Exploration strategies pursue the two
conflicting objectives of detecting as many unknown voxels as possible on the
one hand and of keeping the costs in time and distance low on the other hand. It
is therefore common proceeding to calculate a score that reflects a compromise
between the costs and benefits. Let q denote an arbitrary potential destination,
Apqq the maximal number of unobserved but from q observable voxels and Bpqq
the distance to travel. Following the approach in [3], the formula for the score

33

Chapter 6. The algorithm

Figure 6.3: Exploration process as it is implemented.
(a) The solid lines represent obstacles, that have been observed, the dashed
lines borders between known and unknown terrain.
(b) Reachable voxels are grey marked, two borders exist and are colored in red.
(c) The set of reachable voxels has been reduced to consider the robots own
prolongation and a potential aim was determined per border.

of a pose q can be specified through

Spqq “ Apqq ¨ e´λ¨Bpqq

The parameter λ determines the meaning of the costs. The higher λ, the more
expensive it is to move the robot.

Having this, the new pose can be determined easily as the potential aim with the
highest score. Similar to the approach in [42], only the particle with the highest
weight is used for planning the next destination.
However, the implemented version can not be considered to be working, since it

does calculate a new point of destination, but does not provide a reasonable path
planning tool to get to that point. What is more, the proceeding as stated here
neglects the subject of revisiting areas actively, what might reduce the maps quality
especially in cyclic environments [41]. Finally, the use of exploration techniques in
a SLAM-approach as the one provided here, requires sufficient overlap between two
subsequent scans, since the scan matching tends to fail otherwise. Although there
exist methods to ensure mutual ranges of the required size [3, 42], the established
implementation does not provide that functionality. Thus the results of this thesis
were generated via predefined poses. This poses were won via a path planning
algorithm, that requires a given map. Figure 5.2 includes a graphical representation
of the path, that was used.

34

Chapter 7. Implementation Structure

7 Implementation Structure

Certainly the most challenging and time-consuming part of this thesis was the prac-
tical realization of the algorithm described previously. Before presenting the final
results, this section therefore takes a look at some implementational aspects. Like
all applications in the L3D-library, the SLAM procedure was realized within the pro-
gramming language C++. The first step in explaining the structure will be a bird’s
eye view of the overall design, which aims to highlight the most important classes
and the way, they are linked to each other. Afterwards some important elements
will be explained more detailed to point out some of the challenges, that had to be
overcome.

7.1 Overall structure

A summary of the program design is given by Figure 7.1. The UML-class-diagram
shown there demonstrates the most important classes and highlights new established
classes in green color, while already existing classes are blue- or red-marked, depend-
ing on whether they have been modified or not. At the root of the application is
the MRE-project, which provides the main-method and comes with an object of
the class CommandLoop. Instances of that class serve as steering elements of the
MRE-functionality and as such are at the basis of the SLAM-application as well.
For better understanding, it is helpful to have the diagram in mind while reading
this section.
It seems reasonable to start the explanation with the representation of a sin-

gle Rao-Blackwellized particle, which is given by an object of the class MapSam-
ple. These MapSample objects provide per-particle functionality and each holds
its seperate map in form of a ProbabilisticSpace, which is, as a matter of fact,
a DynamOctreeSpace object, that stores probabilistic values. Furthermore, it
contains an object, to represent the current robot pose and a weight, that represents
its likelihood. The collection of MapSample objects is administrated by the SLAM
class, which has to be seen as the core of the program, since it provides the superior
functionality of the algorithm.
A representation of the robot is given by the GenericMobileRobot(GMR) class.

This class executes some of the most basic tasks inside the algorithm, like moving,
observing or delivering information about the robots states and properties. It shall

35

Chapter 7. Implementation Structure

Figure 7.1: UML-class diagram. New classes are green colored, blue classes were modified
and red ones were used without modification. The central classes are the Slam
class, which executes the superior functionality of the SLAM algorithm and the
class MapSample, that represents a particle within each object.

36

Chapter 7. Implementation Structure

be pointed out, that SLAM objects hold a GMR object, that was already created
in the MRE-project before and passed by reference. Both GenericMobileRobot
objects used here are therefore memorized at the same adress in memory. This is
important, since changes of its states or additional knowledge, are supposed to be
known or might even be essential in different functions of the MRE-project.
Special attention has to be given to the Exploration-class. Although most of its

functionality was already implemented, it was stored in the CommandLoop class,
which lost its slimness and clearness due to the excessive accommodation of source
code. The elements of exploration have therefore been split up into small subroutines
and outsourced, following the principles of object-orientated programming. To plan
the best next position, an exploration object requires a GMR object, which again is
the same as the one in the Slam class and a map, that is taken from the most likely
MapSample object.
Furthermore, attention shall be given to the class ICPRegistration, that is used

to determine a transformation, consisting of a translation and a rotation and de-
scribing the suggested pose correction in scan matching.

7.2 Important implementational aspects

The description of the most important implementation details will now be done in
top down action. The major control loop of the algorithm, as most superior unit,
is shown as algorithm 1. This short piece of pseudo source code summarizes the
algorithm in terms of the most crucial steps and is implemented in this way in the
routine doSlam() of the CommandLoop class.
The initial poses were chosen to be px, y,Θq “ p0, 0, 0q, what means location at

the origin and heading in x-direction.

7.2.1 Matching frames

When searching for an optimal alignment in a grid-based map one comes across
the problem of discretization errors. Additional to the noise, that is caused by the
sensors, the accuracy in voxel representation is limited by the resolution. There-
fore, there is need for an alternative representation, which is fulfilled by storing the
measurements into point clouds. Lib3D allocates those point clouds in form of a con-
tainer class called PointStorage. Each particle comprises a permanent PointStorage
object, containing past measurements, and a temporal point cloud, storing the actual
measurement in form of points in space. However, while depth values declare dis-
tances relative to the camera, point storages need to be known in global coordinates
for registration. Hence, conversion of measurements into PointStorage objects re-
quires the comprehension of an appropriate transformation. Given two global point

37

Chapter 7. Implementation Structure

set initial poses;
while true do

if not at start pose anymore then
for each MapSample object do

update robot position;
end

end
for each MapSample object do

update map;
update weight;

end
resample according to the weights;
calc new destination;
if no reasonable destination available then

STOP;
end
move robot to destination;
for each MapSample object do

sample new position;
end

end
Algorithm 1: Control loop of the Slam-algorithm

storages, application of scan-matching can be done in a straight-forward fashion.
The modification of the procedure was described in 6.1 and did not require high
implementational effort.

7.2.2 Updating maps

Most of the former implemented functionings of the MRE-project take use of a
construct, known as the local map, which reproduces the immediate vicinity of the
robot. The established function updateLocalMap() for integrating new observations
into that formation has much in common with the procedure, that is nessessary to
build a general global map incrementally. Since avoidance of redundant code is a
principles of object-orientated programming, the established routine has been split
up and a common usable part was outsourced in the novel and more general function
updateMap(...). The newly defined function updateWorldMap(...) was equipped
with some more specific source code and, this way, enabled to update an arbitrary
map based on an arbitrary pose. The general operating mode is made clear in the
following few lines of source code.

1 updateLocalMap (){
2 specific code
3 updateMap(local map)
4 specific code

38

Chapter 7. Implementation Structure

5 }

1 updateWorldMap(global map){
2 specific code
3 updateMap(global map)
4 specific code
5 }

Listing 7.1: Updating local and global map after the modification. The established method
has been split up and a common usable part was outsourced as the function
’updateMap()’

For reasons of higher accuracy, the robot turns by 26 degrees to its left and right
respectively and updates the map at three different poses, taking new camera mea-
surements at each pose.
Early versions of this implementation were bound to choose an initial size for the

environment to be mapped. In practice one might find situations where a parsimo-
nious estimation of this quantity is not available. Later implementations overcame
this restriction by using the point cloud, that was already used for ICP registration
and simply extended the space sufficiently to embrace each of the corrected points.
Recently the update procedure itself was enabled to extend the map while inserting
new measurements, what provokes the step just described to be redundant.

7.2.3 Exploring the environment

It has already been stated before, that the exploration-functionality in the MRE-
project can not be regarded as fully developed. A major drawback occurs from map
building, where the previously introduced local map has been enlarged sufficiently
to cover the entire mapping area and has been updating incrementally then. This
proceeding is neither elegant, nor suitable for application in the SLAM algorithm,
since the size of a room has to be known initially. Thus, this nuisance was revised
and the Exploration object enabled to deal with arbitrary maps, which are dynamic
in their size.
In addition, a change within the evaluation of potential destinations was carried

out. More precisely, the calculation of the benefit component was substituted, since
the established one was unrealistic in a sense. The old version as well as the mod-
ernised one based on sending beams through the space and count the number of
intersecting unobserved voxels. However, while originally the beams all based in a
single point and there direction was determined via spherical coordinates, the recent
version is somehow more realistic. It calculates the camera positions of the potential
poses and therefore can simulate beams in a more accurate manner.

39

Chapter 7. Implementation Structure

Whether this modification effects better results has not been prooved, but it can’t
be denied, that the reengineered version is closer to reality.

40

Chapter 8. Results

8 Results

This section finally presents the results, that were produced by the implemented
algorithm. The number of particles was chosen by 5, what resulted in 5 different
maps, from which the best one was taken. Each map was supposed to have a
minimum voxel size of 40mm. The noise in measurements was supposed to be
Gaussian and to grow stronger with increasing distances d, following the model

varpdq “ pγ ¨ dnq2,

where var denotes the variance.
First of all, the outcome of the algorithm shall be examined carefully. This will

offer the opportunity to demonstrate, why it is useful to combine ICP-based SLAM
with the use of a Rao-Blackwellized particle filter, afterwards. Both subjects will be
adressed in the following.

8.1 Mapping results

For checking the robustness of the algorithm, it was executed with moderate and
strong variance in odometry- and sensor measurements in combination. For the
purpose of simulation, the measurement depth values were provided with some zero
mean Gaussian noise. The parameter values, that were chosen for the model intro-
duced in section 6.2 and for the measurement variance, are summarized in Table 8.1.
It shall be pointed out, that the parameters were chosen in the way, that strong noise
in odometry and measurement has four times the variance of moderate noise.
For the purpose of better comparison, two reference maps were created. On the

one hand, the environment was mapped in the absence of any odometry or mea-
surement error. The result is pictured by Figure 8.1. On the other hand a map
was produced without application of any pose correction technique. A similar result

α β γ n

moderate noise 1 0.1 0.2 1
strong noise 2 0.2 0.4 1

Table 8.1: Parameters chosen for moderate and strong noise

41

Chapter 8. Results

Figure 8.1: Noise-free map, constructed by turning off any odometry- or measurement error.
This is the best possible outcome of a SLAM-algorithm. Comparison with
Figure 5.2 shows, that table boards have not been mapped properly, since
sensors were not able to detect them.

42

Chapter 8. Results

Figure 8.2: Mapping result with moderate noise, but without pose correction. The map is
badly misaligned, similar to the one shown in Figure 8.2. The right-hand side
shows the divergence of the sample poses.

was already shown in Figure 1.1 to introduce the general problem, that occurs with
robotic mapping. Figure 8.2 states the same problem, but the map was created with
the particle filter and pictures the sample poses along with the settled robot path
additionally.
These two cases can be considered as extremely contradictive, since they result in

one perfect and one highly inconsistent map respectively.
The first achievement was computed under the condition of moderate error vari-

ance in both, odometry and sensor measurements. In addition to map building, the
trajectories were recorded and the position beliefs summarized in a graphic. The
results are shown in Figure 8.3. The shapes have clearly been reconstructed from
the environment, that is shown in Figure 5.2. Marginal inaccuracies occur at the
positions of tables, since those are easy to overlook for visual sensors. In comparison
to Figure 8.1, walls look more expanded in some way. That is due to measurement
variance, that affects uncertainties about the location of objects. Facing the second
graphic, the effect of ICP pose correction becomes obvious. In contradiction to the
original distribution from Figure 8.2, most of the position beliefs are close to the
robot’s true path. This result is particularly suitable to demonstrate the effect of
resampling, since one of the sampled trajectories seems to drift away from the true
robot path in the beginning. Its sudden disappearance is an obvious sign, that the
corresponding particle has been eliminated by resampling.
The second case to consider is the one with increased measurement variance,

which is shown in Figure 8.4. Similar to the result before, the environment’s shapes

43

Chapter 8. Results

Figure 8.3: Mapping result, constructed under moderate odometry and measurement noise.
The scans have been aligned and the map is consistent. Most of the sample
poses are focused along the true robot path.

Figure 8.4: Mapping result with moderate odometry- and strong measurement-noise. Al-
though the effects of stronger sensor noise are clearly visible through the dark
floor, the alignment worked well. The sample poses on the right-hand side
confirm that impression.

44

Chapter 8. Results

Figure 8.5: Mapping result, computed with strong odometry- and moderate measurement-
noise. The map is consistent, although the fraction of samples, that drift away
from the true path is significantly higher, than it was with moderate odometry
noise.

are recognizable, although the effect of strong noise is clearly visible. The darker
appearance of the map is due to the noise, that affects the smoothness of the floor.
In path planning, this might lead to problems, when the robot recognizes too many
obstacles. However, the alignment of the scans seems to have worked very well. A
look at the trajectories registers, that most of the robot poses reside close to the true
path again, by chance even better than it was the case with normal measurement
noise.

More interesting than increased measurement variances is the case, where the
odometry noise is enlarged, since the accumulation of motion error increases the
risk of divergence. As can be seen in Figure 8.5, the algorithm proved to be robust
even here. However, considering the sample poses clarifies the effect of the increased
odometry uncertainty. While at least some of the samples approximate the true
path, a significant amount of poses deviate from it, what highlights the necessity for
a proper resampling even more.

Finally, the result with increased variance in both, odometry- and sensor- noise,
confirms the robustness of the algorithm again. Although the map itself looks quite
consistent, it has to be figured out, that even the best poses differ from the true
trajectory by the end, as can be seen at the right hand side of Figure 8.6. This
indicates slight misalignments during the mapping process, what might be a hint,
that the algorithm reaches the limit of its robustness within this scenario.

45

Chapter 8. Results

Figure 8.6: Mapping result, where odometry- and sensor- noise are increased. The map
looks still consistent, but the sample poses indicate small misalignments at the
end of the path.

8.2 Misalignments caused by ICP

Finally, the procedure of combining Rao-Blackwellized particles with utilization of
the ICP algorithm is justified. The reader might have noticed from the results,
that some of the trajectories differ significantly from the true path. Figure 8.7
shows one particular map, which is subject to such a false trajectory. Even without
comparison to the true environment from Figure 5.2, it gets clear, that the map is
badly misaligned. Those inconsistencies are caused by registration errors, that have
its source in the failure of at least one ICP-step. The use of a small number of Rao-
Blackwellized particles in combination with the ICP-algorithm avoids the final result
from suffering from misalignments. Scan matching from a slightly different pose
might avoid a registration error and resampling removes inconsistent and therefore
unlikely particles.

8.3 Performance

The major drawback of the implementation is given by its time consumption. Build-
ing a consistent map with the given configurations leads to an expanditure of time
up to half an hour, using a single CPU. The operative point is the complex search
for corresponding points within the ICP algorithm. Since this search has to be done
not once, but once in each iteration step and in each time step, it sums up to large
computation times. A second, but less significantly time-consuming part is the map
update step.

46

Chapter 8. Results

Figure 8.7: Misaligned map, computed by the algorithm with a single sample. The absence
of further particles avoided the elimination of the consequence from a failed ICP
registration.

All computation have been performed on a Quad Core PC, equipped with the
Linux-distribution CentOS 6.4.

47

Chapter 9. Review and Outlook

9 Review and Outlook

The aim of this thesis was to overview the problem of Simultaneous Localization and
Mapping and develope and implement a robust algorithm for indoor application.
Next to the general mathematical formulation, three popular approaches to solve
the SLAM problem were presented, namely EKF-SLAM, graph-based SLAM and
Rao-Blackwellized Particle filter. The latter one was combined with a registration
technique, to build the centerpiece of the indoor algorithm. Furthermore, an explo-
ration technique was integrated, but not applied, since it transpired not to be fully
developed. The implemented algorithm performed well and prooved to be robust,
even under the influence of generous amount of odometry- and measurement- noise.
As the most distracting disadvantage, the time performance has to be mentioned,
since it takes up to half an hour to compute a consistent map with 5 samples.
Further works, based on the hitherto existing results should, amongst others, con-

centrate on improving the exploration. The existing one lacks a good path planning
procedure, what makes the algorithm practically infeasible. In addition, it does
face the problem of finding a reasonable new position, but neglects the question of
the best new facing direction. Secondly, the computationally expensive correspon-
dence search within the ICP-algorithm yields to the high expenditure of time. Since
the quality of the results turned out to be very well, an approximative but faster
searching procedure might still produce sufficiently accurate results. Moreover, the
particle weighting procedure is based on the error result from the ICP-algorithm at
present. Although this works very well, it is just an approximation, in that errors
are assumed to be distributed according to the measurement model. Embracing this
into the implementation might lead to a better performance with even less particles
neccessary. Finally, the very difficult topic of loop detection was neglected com-
pletely in this work, but has to be taken into account, especially for the use in cyclic
environments.
Including all those points might lead to a robost and likewise fast SLAM-algorithm.

To prove that speculation is up to subsequent researchers.

49

Chapter 9. Review and Outlook

Appendix

Update step in EKF-SLAM

yk´1 –

¨

˚

˚

˚

˝

xk´1
m1
...

mN

˛

‹

‹

‹

‚

Fx –

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0
0 1 0
0 0 1
0 0 0
...

...
...

0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

g̃pyk´1, ukq – yk´1 ` Fx ¨ gpxk´1, uk´1q `

¨

˚

˚

˚

˝

N p0, Gkq
0
...
0

˛

‹

‹

‹

‚

gk “
Bg

Bxk´1
pµk´1, uk´1q

Gk “
Bg̃

Byk´1
puk, µk´1q “ I ` F Tx gkFx

µ̄k “ g̃pµk´1, uk´1q

Σ̄k “ GkΣk´1G
T
k ` F

T
x RkFx

ẑik “ hpµ̄k, c
i
kq

Hk “
Bh

Byk
pµ̄k, jq

Ck “ Σ̄kH
T
k pHkΣ̄k ¨H

T
k `Qkq

´1

µ̄k “ µ̄k ` Ckpzk ´ hpµkqq

Σ̄k “ pI ´ Ck ¨Hkq ¨ Σ̄

Algorithm 2: Extended Kalman Filter for SLAM

51

Bibliography

Bibliography

[1] Vazha Amiranashvili. Robust Real-Time Localization and Mapping in Single
and Multi-Robot Systems. PhD thesis, Universität Müenchen, 2007.

[2] Josep Aulinas, Yvan Petillot, Joaquim Salvi, and Xavier Lladó. The slam prob-
lem: a survey. In Proceeding of the 2008 conference on Artificial Intelligence
Research and Development, pages 363–371, 2008.

[3] Nicola Basilico, Francesco Amigoni, Letizia Tanca, and Barbara Pernici. Nav-
igation Strategies for Exploration and Patrolling with Autonomous Mobile
Robots. PhD thesis, Politecnico di Milano, 2010.

[4] Paul J. Besl and Neil D. Mckay. A method for registration of 3-d shapes. IEEE
Transactions PAMI, 14(2):239–256, February 1992.

[5] José A. Castellanos, JMM Montiel, José Neira, and Juan D. Tardós. The
spmap: A probabilistic framework for simultaneous localization and map build-
ing. Robotics and Automation, IEEE Transactions on, 15(5):948–952, 1999.

[6] José A. Castellanos, José Neira, and Juan D. Tardós. Limits to the consistency
of ekf-based slam 1. In Proceedings of the 5th IFAC Symposium on Intelligent
Autonomous Vehicles. Citeseer, 2004.

[7] Randall Smith Matthew Self Peter Cheeseman, R. Smith, and M. Self. A
stochastic map for uncertain spatial relationships. In 4th International Sympo-
sium on Robotic Research, pages 467–474, 1987.

[8] Peter Deuflhard and Hohmann Andreas. Numerische Mathematik 1, volume 2.
de Gruyter, 1993.

[9] MWM Gamini Dissanayake, Paul Newman, Steve Clark, Hugh F Durrant-
Whyte, and Michael Csorba. A solution to the simultaneous localization and
map building (slam) problem. Robotics and Automation, IEEE Transactions
on, 17(3):229–241, 2001.

[10] Andreas Dömel, Simon Kriegel, Manuel Brucker, and Michael Suppa. Au-
tonomous pick and place operations in industrial production environments. In
IEEE ICRA, Hongkong, China, May 2014. Submitted.

53

Bibliography

[11] Arnaud Doucet, Nando De Freitas, Kevin Murphy, and Stuart Russell. Rao-
blackwellised particle filtering for dynamic bayesian networks. In Proceedings of
the Sixteenth conference on Uncertainty in artificial intelligence, pages 176–183.
Morgan Kaufmann Publishers Inc., 2000.

[12] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequential
monte carlo sampling methods for bayesian filtering. Statistics and comput-
ing, 10(3):197–208, 2000.

[13] Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and
smoothing: Fifteen years later. Handbook of Nonlinear Filtering, 12:656–704,
2009.

[14] Hugh Durrant-Whyte and Tim Bailey. Simultaneous Localization and Mapping
(SLAM): Part I the essential algorithm. Robotics & Automation Magazine,
13(2):99–110, 2006.

[15] Austin Eliazar and Ronald Parr. Dp-slam: Fast, robust simultaneous local-
ization and mapping without predetermined landmarks. In IJCAI, volume 3,
pages 1135–1142, 2003.

[16] G. H. Givens and J. A. Hoeting. Computational Statistics. Wiley, 2005.

[17] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, and Wolfram Burgard.
A tutorial on graph-based slam. Intelligent Transportation Systems Magazine,
IEEE, 2(4):31–43, 2010.

[18] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improving grid-based
slam with rao-blackwellized particle filters by adaptive proposals and selec-
tive resampling. In Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, ICRA 2005, pages 2432–2437. IEEE, 2005.

[19] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved techniques
for grid mapping with rao-blackwellized particle filters. IEEE Transactions on
Robotics, 23:34–46, 2007.

[20] Giorgio Grisetti, Gian Diego Tipaldi, Cyrill Stachniss, Wolfram Burgard, and
Daniele Nardi. Fast and accurate slam with rao-blackwellized particle filters.
Robotics and Autonomous Systems, 55:30–38, 2006.

[21] Dirk Hahnel, Wolfram Burgard, Dieter Fox, and Sebastian Thrun. An efficient
fastslam algorithm for generating maps of large-scale cyclic environments from
raw laser range measurements. In Intelligent Robots and Systems, 2003.(IROS
2003). Proceedings. 2003 IEEE/RSJ International Conference on, volume 1,
pages 206–211. IEEE, 2003.

54

Bibliography

[22] Dirk Hahnel, Dirk Schulz, and Wolfram Burgard. Map building with mobile
robots in populated environments. In Intelligent Robots and Systems, 2002.
IEEE/RSJ International Conference on, volume 1, pages 496–501. IEEE, 2002.

[23] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wol-
fram Burgard. OctoMap: An efficient probabilistic 3D mapping framework
based on octrees. Autonomous Robots, 34(3):189–206, February 2013.

[24] Shoudong Huang and Gamini Dissanayake. Convergence and consistency anal-
ysis for extended kalman filter based slam. Robotics, IEEE Transactions on,
23(5):1036–1049, 2007.

[25] Fumio Kanehiro, Takahashi Yoshimi, Shuuji Kajita, Mitsuharu Morisawa,
Kiyoshi Fujiwara, Kaneko Harada, Kenji Kaneko, Hirohisa Hirukawa, and Fu-
miaki Tomita. Whole body locomotion planning of humanoid robots based on
a 3d grid map. In Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, ICRA 2005, pages 1072–1078. IEEE, 2005.

[26] Henrik Kretzschmar, Giorgio Grisetti, and Cyrill Stachniss. Lifelong map learn-
ing for graph-based slam in static environments. KI-Künstliche Intelligenz,
24(3):199–206, 2010.

[27] Nosan Kwak, Olivier Stasse, Torea Foissotte, and Kazuhito Yokoi. 3d grid
and particle based slam for a humanoid robot. In Humanoid Robots, 2009.
Humanoids 2009. 9th IEEE-RAS International Conference on, pages 62–67.
IEEE, 2009.

[28] Robert Lange and Peter Seitz. Solid-state time-of-flight range camera. Quantum
Electronics, IEEE Journal of, 37(3):390–397, 2001.

[29] N. Li, P. Cheng, M.A. Sutton, and S.R. McNeill. Three-dimensional point
cloud registration by matching surface features with relaxation labeling method.
Experimental Mechanics, 45(1):71–82, 2005.

[30] Feng Lu and Evangelos Milios. Globally consistent range scan alignment for
environment mapping. Autonomous robots, 4(4):333–349, 1997.

[31] Stefan May, David Dröschel, Stefan Fuchs, Dirk Holz, and A Nuchter. Robust
3d-mapping with time-of-flight cameras. In Intelligent Robots and Systems,
2009. IROS 2009. IEEE/RSJ International Conference on, pages 1673–1678.
IEEE, 2009.

[32] Stefan May, Bjorn Werner, Hartmut Surmann, and Kai Pervölz. 3d time-of-
flight cameras for mobile robotics. In IROS, pages 790–795. IEEE, 2006.

55

Bibliography

[33] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM 2.0: An
improved particle filtering algorithm for simultaneous localization and mapping
that provably converges. In Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico, 2003. IJCAI.

[34] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. Fast-
slam: A factored solution to the simultaneous localization and mapping prob-
lem. In AAAI/IAAI, pages 593–598, 2002.

[35] Kevin Murphy. Bayesian map learning in dynamic environments. Advances in
Neural Information Processing Systems (NIPS), 12:1015–1021, 1999.

[36] Kevin Murphy and Stuart Russell. Rao-blackwellised particle filtering for dy-
namic bayesian networks. In Sequential Monte Carlo methods in practice, pages
499–515. Springer, 2001.

[37] Andreas Nüchter, Kai Lingemann, Joachim Hertzberg, and Hartmut Sur-
mann. 6D SLAM with approximate data association. In Advanced Robotics,
2005. ICAR’05. Proceedings., 12th International Conference on, pages 242–249.
IEEE, 2005.

[38] John G Rogers, Alexander JB Trevor, Carlos Nieto-Granda, and Henrik Iskov
Christensen. Slam with expectation maximization for moveable object track-
ing. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, pages 2077–2082. IEEE, 2010.

[39] Hagit Shatkay and Leslie Pack Kaelbling. Learning topological maps with weak
local odometric information. In IJCAI (2), pages 920–929, 1997.

[40] Cyrill Stachniss. Exploration and mapping with mobile robots. PhD thesis,
Universität Freiburg, 2006.

[41] Cyrill Stachniss, Giorgio Grisetti, and Wolfram Burgard. Recovering particle
diversity in a rao-blackwellized particle filter for slam after actively closing loops.
In Proceedings of the 2005 IEEE International Conference on Robotics and
Automation, pages 655–660. IEEE, 2005.

[42] Cyrill Stachniss, Dirk Hahnel, and Wolfram Burgard. Exploration with active
loop-closing for FastSLAM. In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, 2004.(IROS 2004). Proceedings., volume 2, pages
1505–1510. IEEE, 2004.

[43] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. A real-time algorithm
for mobile robot mapping with applications to multi-robot and 3d mapping.

56

Bibliography

In Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International
Conference on, volume 1, pages 321–328. IEEE, 2000.

[44] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics.
MIT Press, MA, 2005.

[45] Rudolph Van Der Merwe, Arnaud Doucet, Nando De Freitas, and Eric Wan.
The unscented particle filter. In NIPS, pages 584–590, 2000.

[46] Jan Weingarten and Roland Siegwart. Ekf-based 3d slam for structured envi-
ronment reconstruction. In Intelligent Robots and Systems, 2005.(IROS 2005).
2005 IEEE/RSJ International Conference on, pages 3834–3839. IEEE, 2005.

[47] Jan W Weingarten, Gabriel Gruener, and Roland Siegwart. A state-of-the-art
3d sensor for robot navigation. In Intelligent Robots and Systems, 2004.(IROS
2004). Proceedings. 2004 IEEE/RSJ International Conference on, volume 3,
pages 2155–2160. IEEE, 2004.

[48] Greg Welch and Gary Bishop. An introduction to the kalman filter, 1995.

[49] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard. Oc-
toMap: A probabilistic, flexible, and compact 3D map representation for robotic
systems. In Proc. of the ICRA 2010 Workshop on Best Practice in 3D Percep-
tion and Modeling for Mobile Manipulation, Anchorage, AK, USA, May 2010.
Software available at http://octomap.sf.net/.

[50] Kai M Wurm, Cyrill Stachniss, Giorgio Grisetti, and Wolfram Burgard. Im-
proved simultaneous localization and mapping using a dual representation of
the environment. In EMCR, 2007.

57

http://octomap.sf.net/

Bibliography

DECLARATION

Herewith I declare that I wrote my Master’s Thesis without external support and
that I did not use other than the quoted sources and auxiliary means.

Munich, October 29, 2013 Maximilian Eck

58

	List of Figures
	List of Tables
	Introduction
	Related Work
	Overall structure of probabilistic SLAM
	Notation and assumptions
	Mathematical formulation

	Mapping environments
	EKF-SLAM
	Graph-based SLAM
	Mapping with Rao-Blackwellized Particle filter

	Initial settings
	Hardware and Environment
	Software

	The algorithm
	ICP-algorithm
	Robot Motion
	Particle weighting and resampling
	Navigation

	Implementation Structure
	Overall structure
	Important implementational aspects

	Results
	Mapping results
	Misalignments caused by ICP
	Performance

	Review and Outlook
	Appendix
	Bibliography

