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Abstract

A synthetic aperture radar (SAR) is an active microwave instrument capable of imag-
ing the surface of the earth at specific wavelengths and polarizations in day/night and
all-weather conditions. In its basic configuration, a small airborne/spaceborne antenna
traveling along a straight-line trajectory is pointed perpendicular to the flight track in
a side-looking fashion. This results in the synthesis of a virtual along-track antenna
aperture that enables the formation of a high-resolution 2-D image of the illuminated
area. Moreover, when multiple parallel trajectories—with cross-track and/or elevation
displacements—are considered, the resulting sensing geometry enables the synthesis
of two virtual antenna apertures that allow for 3-D backscatter profiling. This imaging
modality is known as SAR tomography and is commonly approached by first obtain-
ing multiple 2-D coregistered SAR images—such that each image corresponds with a
parallel pass—followed by 1-D standard spectral estimation techniques. A typical ap-
plication is the 3-D imaging of vegetated areas which, due to the high-penetration ca-
pabilities of radiation at long wavelengths, has proven to be of great value for the esti-
mation of forest structure and, in turn, for the quantification of above ground biomass.
In addition, with the anticipated advent of long-wavelength spaceborne radars, tomo-
graphic SAR techniques will become of considerable interest, as tomographic data sets
will be available on a large scale. However, ideal sampling conditions are known to
require a large number of dense regular acquisitions, which are not only limited and
expensive but can also lead to temporal decorrelation.

This dissertation explores the possibility of reducing the number of passes required for
3-D SAR imaging of forested areas by formulating the problem in a sparsity-driven
framework usually referred to as compressed sensing (CS). To this end, the afore-
mentioned 1-D spectral estimation step—which basically yields a vertical backscatter
profile—will be regarded as the process of singling out a solution to an underdeter-
mined linear system. In this regard, the criterion will be based on choosing a backscat-
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ter profile such that it can be sparsely represented in an alternative domain. In partic-
ular, the use of a wavelet basis will prove to be a suitable choice. The method will be
formulated for both single-channel and polarimetric sensors and will be shown to be
robust to nonideal acquisitions as well as to be able to ensure physical validity. Also,
these sparsity-based techniques will be evaluated as a function of sensor-to-target dis-
tance, required a priori knowledge, and computation time. Furthermore, a convex op-
timization approach to separation of forest scattering mechanisms will be introduced.
In essence, the method aims to pre-filter tomographic data sets so that canopy and
ground contributions can be separately reconstructed. Finally, a thorough validation
will be provided by using polarimetric L- and P-band data acquired by the Experimen-
tal SAR (E-SAR) sensor of the German Aerospace Center (DLR).



Zusammenfassung

Ein Radar mit synthetischer Apertur (SAR) ist ein aktiver Sensor, der es ermöglicht
die Erdoberfläche in unterschiedlichen Wellenlängen und Polarisationen unabhängig
von Helligkeits- und Wetterverhältnissen abzubilden. In der Basiskonfiguration ist
eine kleine Radarantenne senkrecht zu der—idealisiert gesehen—geraden Flugtrajek-
torie der zugrundeliegenden Plattform montiert. Diese kann entweder ein Satellit oder
ein Flugzeug sein und ist so um die Rollachse geneigt, dass das Radar seitlich auf
das zu vermessende Areal blickt. Durch die wiederholte Datenaufnahme in Flugrich-
tung (engl. “along track”) wird eine Along-Track-Apertur synthetisiert, wodurch sich
hochaufgelöste 2-D Bilder generieren lassen. Liegen darüber hinaus mehrere parallele,
quer zur Fluglinie versetzte Trajektorien vor, ergeben sich zwei synthetische Aperturen
mit denen sich 3-D Rückstrahlprofile erstellen lassen. Diese zuletzt genannte Abbil-
dungsmodalität bezeichnet man als SAR Tomographie. Sie wird üblicherweise real-
isiert, indem zunächst ein Stapel von zueinander registrierten 2-D SAR-Bildern erstellt
wird, wovon jeweils ein Bild zu einem der parallelen Trajektorien gehört. Die dritte
Dimension erhält man dann durch 1-D Standardspektralabschätzungsverfahren. Eine
typische Anwendung ist die 3-D Abbildung von Vegetationsgebieten. Durch das hohe
Durchdringungsvermögen der vergleichsweise langen Radarwellen hat sich SAR To-
mographie als ein wertvolles Instrument für die Schätzung von Waldstrukturen und
der Quantifizierung von Biomasse herausgestellt. In Hinblick auf geplante Satelliten-
missionen mit langwelligen Radarsensoren und Ausrichtung auf eine globale Abdeck-
ung der Erdoberfläche gewinnen tomographische SAR Verfahren zunehmend an Be-
deutung. Ein Problem der klassischen idealen 3-D Abbildung anhand solcher Bild-
stapel ist die Anforderung einer hohen Anzahl dichter, regelmäßiger Datenaufnah-
men, welche nicht nur begrenzt verfügbar und teuer sind, sondern auch signifikante
zeitliche Dekorrelation mit sich bringen.

Diese Dissertation untersucht das Potential einer Verringerung der Anzahl von Auf-
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nahmen für die 3-D SAR Abbildung von Waldgebieten durch die Formulierung des
Problems mittels der auf dem Prinzip der Dünnbesetztheit (engl. “sparsity”) basieren-
den Theorie des “compressed sensing” (CS). Konkret wird der o.g. Schritt der 1-D
Spektralabschätzung so modelliert, dass sich das zu bestimmende vertikale Rückstreu-
ungsprofil als eine dünnbesetzte Lösung eines unterbestimmten linearen Gleichungs-
system in einem alternativen Raum berechnen lässt. Waveletbasen stellen sich dabei
als eine geeignete Wahl heraus. Die Formulierung der vorgeschlagenen Methode er-
folgt sowohl für Einkanal- als auch polarimetrische Sensoren. Es wird dabei nicht nur
die physikalische Gültigkeit des Modells, sondern auch dessen Robustheit gegenüber
nichtidealen Aufnahmen gezeigt. Diese Verfahren werden anhand der Distanz zwis-
chen Sensor und dem abzubildenden Ziel, notwendiger Vorkenntnisse, und benötigter
Rechenzeit bewertet. Des Weiteren wird in dieser Dissertation ein auf konvexer Op-
timierung basierendes Verfahren zur Separation von Rückstreuklassen vorgeschlagen.
Dieser Schritt dient als Vorfilter tomographischer Datensets und bewirkt eine Tren-
nung der zwei Rückstreuungsanteile Schirm—also die Oberschicht des Waldes—und
Boden, wonach sich diese Anteile separat rekonstruieren lassen. Abschließend wird
das vorgestellte Gesamtkonzept anhand von vom Deutschen Zentrum für Luft- und
Raumfahrt (DLR) zur Verfügung gestellten, durch den experimentellen SAR (E-SAR)
Sensor aufgenommenen L- und P-Band Daten vollständig validiert.
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fen Peter, Claas Grohnfeldt, Marc Jäger, Marc Rodrı́guez, Ralf Horn, Martin Keller, and
Stefan Sauer. I also want to express my gratitude to my colleagues from the Technical
University of Berlin: Olivier D’Hondt, Stéphane Guillaso, and Marion Dennert.
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1 Introduction

1.1 Motivation

A synthetic aperture radar (SAR) is a pulsed imaging system which is able to measure
the electromagnetic response of an ensemble of scatterers by active microwave illumi-
nation. In its basic form, this is achieved by means of a coherent airborne/spaceborne
radar pointing perpendicular to the direction of flight, which ideally follows a lin-
ear path [Curl 91, Cumm 05]. The resulting monostatic side-looking configuration,
known as stripmap mode, and the corresponding antenna’s illumination footprint, are
illustrated in Figure 1.1. In order to characterize this sensing geometry, five axes are
typically considered, as listed below:

x : azimuth (along-track direction)

y : ground-range

z : elevation

ρ : range (line-of-sight direction with look angle θ)

η : cross-range

These axes form the coordinate systems x y z and x ρ η. Subsequent processing of the
return echoes [Curl 91,Baml 92,Cumm 05,Elac 06,Wood 06] leads to the formation of a
high-resolution 2-D complex-valued image, where each pixel corresponds to a patch of
the illuminated area. A typical case is that of a bare surface, for which the electromag-
netic response can be expressed—effectively—as a function of either azimuth–range
(x, ρ) or azimuth–ground-range (x, y) coordinates, i.e., in two dimensions regardless
of a scatterer’s location along the η-axis [Clou 10]. As a result, the scattering process
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Figure 1.1: Side-looking acquisition geometry in stripmap mode.

can be fully characterized by a single 2-D azimuth–range SAR image, albeit with a level
of detail determined by the resolution cell. Specifically, the azimuth ϱx and range ϱρ
resolutions can be shown to be given by:

ϱx =
Laz

2
(1.1)

ϱρ =
c

2W
(1.2)

where Laz denotes the physical azimuth antenna length, c is the speed of light, and W

is the bandwidth of the illuminating waveform [Curl 91, Cumm 05].

Very often, however, the region under consideration presents more complex structures.
Cases in point are urban and forested areas, in which scattering processes are likely to
spread along the cross-range η-axis. As a consequence, all dimensions (i.e., azimuth,
range, and cross-range) are required for an unambiguous characterization of the elec-
tromagnetic response. In this respect, a single SAR image is of limited use, in that—
by assuming a plane electromagnetic wave [Baml 98]—scatterers located at the same
azimuth–range position (x, ρ), albeit at different cross-range coordinates η, are bound
to be mapped to the same SAR pixel. More formally, let g1 be a specific azimuth–range
SAR pixel. Then, the mapping of n targets—distributed along η—into g1 can be written
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Figure 1.2: Simplified short-wavelength acquisition geometry for an urban area. Contributions
from the roads, walls, and rooftops are indicated by the red boxes.

as:

g1 = a1

n∑
l=1

fl (1.3)

where fl is the electromagnetic reflectivity (and hence |fl|2 is the backscattered power)
of the lth target and a1 is a mapping coefficient that is related to the wavelength of
the system and the range position of the scatterer [Baml 98]. From (1.3), it is clear
that a single SAR pixel carries only aggregated information about the cross-range re-
flectivity and hence its spatial distribution cannot be resolved. This is depicted in
Figures 1.2 and 1.3 for an urban and a forested region, respectively. Note that, since
short wavelengths are usually preferred for urban areas [Lomb 09b,Zhu 10a,Zhu 10b],
only a few targets are expected to contribute to the radar returns [Zhu 10a]. As il-
lustrated in Figure 1.2, the main contributions along the η-axis will be mainly due to
roads, walls, and rooftops. On the contrary, the analysis of vegetated areas is gener-
ally conducted at long wavelengths in order to exploit their high-penetration capabili-
ties [Reig 00,Frey 08,Teba 09,Nann 11,Frey 11b,Teba 12,dAle 12]. Figure 1.3 illustrates
the respective volumetric contributions along the η-axis, which can be assumed to orig-
inate from the ground and the canopies.
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Figure 1.3: Simplified long-wavelength acquisition geometry for a forested area. Contributions
from the ground and the canopies are indicated by the red boxes.

When multiple parallel acquisitions—with cross-track and/or elevation displacements
—are available (see Figure 1.4), multiple 2-D SAR images can be obtained. By letting
m be the number of acquisitions, it is possible to form an m-element vector g (i.e., a
stack of m pixels) that corresponds to a specific azimuth–range position. Incidentally,
this set of measurements can be shown to be related to the cross-range electromagnetic
reflectivity by means of the following linear projection:

g = Af (1.4)

where f is an n-element vector that represents the reflectivity along the η-axis (note that
f may have zero-valued elements, thus being able to capture n scatterers at most); and
A is an m-by-n partial Fourier matrix that depends on the operating wavelength and
the closest radar-to-target distance for each parallel pass [Reig 00,Nann 11]. As a result,
equation (1.4) provides a system of equations from which the unknown reflectivity f
and, in turn, the cross-range spatial distribution can be estimated. Accordingly, the
resolution cell is not only defined by ϱx and ϱρ but also by the cross-range resolution
ϱη which, assuming a linear inversion of (1.4) [Reig 00], is given by:

ϱη =
λρ

2Ltom
(1.5)
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Figure 1.4: Multiple parallel acquisitions with cross-track and elevation displacements.

where λ is the operating wavelength, ρ is the range distance under consideration, and
Ltom is the effective coverage achieved by the multiple parallel passes (see Figure 1.4).
[Reig 00, Forn 03, Nann 11].

Note that the previously described imaging modality, which will be referred to as SAR
tomography, is ruled by standard sampling conditions [Reig 00, Nann 11] and thus re-
quires a large number of dense regular acquisitions—whereas a larger cross-track cov-
erage Ltom provides a better cross-range resolution, a closer spacing between adjacent
passes enlarges the unambiguous range of heights dictated by the Nyquist rate. Thus,
a standard linear inversion of (1.4) is not only limited by the sensor’s capacity but
can also lead to temporal decorrelation [Zebk 92, Hans 01]. As a result, the ability to
deal with sparse SAR constellations has become of increasing importance, especially
with the anticipated advent of long-wavelength spaceborne radars, such as BIOMASS
(P-band) [Toan 11] and Tandem-L (L-band) [More 11].
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1.2 Previous Work

Subsequent to the first demonstration of SAR tomography [Pasq 95,Home 96,Reig 00],
several extensions and alternatives have been put forward in order to attain low side-
lobe and ambiguity levels with a reduced number of irregular passes. The use of adap-
tive spectral estimators was introduced in [Gini 02,Lomb 03,Lomb 09a,Lomb 09b] and
further developed in [Saue 11, Frey 11a] (see also [Frey 11b]). In addition, subspace-
based spectral estimators, such as the multiple signal classification (MUSIC) algorithm,
have been recently employed [Guil 05,Nann 09,Frey 11a,Frey 11b,Huan 12,Lomb 13].
In [Forn 03], the authors formulated the tomographic inversion under the framework
of linear inverse problems, thus exploiting the truncated singular-value decomposi-
tion (TSVD). Also, a maximum a posteriori estimator was developed in [Zhu 10b].
Other publications have addressed irregular geometries by means of interpolation
techniques (see, for example, [Lomb 08a, dAle 12]). Alternatively, an extension of SAR
interferometry [Baml 98] from a parametric perspective was proposed in [Teba 10a].
In a nutshell, this last work employs covariance matching estimation techniques in
order to estimate the effective scattering center of different scattering mechanisms
(SMs), along with their backscattered power (see also [Lomb 98a, Cors 99, Bess 00]).
Moreover, the author in [Clou 06] introduced the concept of polarization coherence
tomography (PCT). Basically, the method exploits the variation of the interferomet-
ric coherence with polarization to estimate ground topography and height of vege-
tation layers. Then, it uses these parameters to represent a backscatter profile as a
Fourier–Legendre series. Finally, sparsity-based inversion techniques were introduced
in [Budi 09, Zhu 10a, Budi 11, Zhu 12, Agui 12a]. In essence, the authors applied and
further developed the relatively new compressed sensing (CS) theory to achieve super-
resolution imaging of vertically-sparse targets.

Among the aforementioned tomographic methodologies, CS stands out for its ability to
mitigate reconstruction artifacts due to unfavorable sampling conditions (i.e., nonideal
acquisition geometries) by exploiting sparse representations. Nevertheless, much of
the mainstream [Budi 09, Zhu 10a, Budi 11, Agui 11, Agui 12a, Zhu 12, Schm 13] has
focused on spatially-sparse profiles since, as previously pointed out and illustrated in
Figure 1.2, this is a reasonable assumption for urban areas, where cross-range profiles
generally include only 1–4 targets [Zhu 12]. Accordingly, a common approach is to
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formulate the CS inversion of (1.4) as follows [Zhu 10a, Budi 11] (see also [Zhu 12]):

find the sparsest f̃

subject to: g = Af̃
(1.6)

In other words, this method singles out a solution f̃ with the least number of nonzero
elements from among the infinitely many solutions to the system of equations g =

Af̃ , which is hence assumed to be underdetermined (i.e., m < n). Interestingly, un-
der suitable assumptions on the matrix A, (1.6) allows for perfect reconstruction of
f [Budi 09, Zhu 10a, Budi 11, Agui 13c]. In addition, the authors in [Agui 11, Agui 12a]
extended this standard CS technique so as to exploit the structural homogeneity com-
monly exhibited by neighboring cross-range profiles [Agui 11, Agui 12a, Schm 13]. In
order to address this case, let L be an arbitrary number of adjacent azimuth–range po-
sitions and f (i) be the ith profile to be recovered from g (i), with 1 ≤ i ≤ L. Then, the
joint CS formulation can be written as [Agui 11, Agui 12a]:

find the sparsest f̃ (i) for all 1 ≤ i ≤ L

subject to: g (i) = Af̃ (i)

such that: the ensemble f̃ (i) exhibits common support

(1.7)

Thus, this method singles out an ensemble of solutions such that all vectors f̃ (i) have a
common set of few nonzero entries. As a result of exploiting this specific joint-sparsity
pattern, this approach has been shown to perform better than L independent instances
of (1.6) [Elda 09, Elda 10, Agui 12a].

1.3 Contribution

This section summarizes the main contributions of this thesis, which are the result of
the doctoral research conducted at the Microwaves and Radar Institute (HR), German
Aerospace Center (DLR). The aforementioned assumption of sparsity is reconsidered
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(a) (b)

Figure 1.5: (a) Power (as a function of height with n = 128) of a typical cross-range profile
encountered over forested terrain. (b) Sorted magnitudes of the transform coefficients using a
Daubechies Symmlet wavelet with 4 vanishing moments and 3 levels of decomposition.

first, followed by simple mathematical formulations of the tomographic methodolo-
gies proposed in this work. Furthermore, a quick preview of the achieved results is
provided. For this purpose, high-quality L- and P-band tomographic datasets have
been considered, which were obtained by the Experimental SAR (E-SAR) airborne sen-
sor of DLR near Dornstetten, Germany, in 2006 [Nann 09, Nann 11], and near Umeå,
Sweden, in 2008 [Hajn 09], respectively.

From Figure 1.3, it is easy to see that the presence of canopies of moderate extent are
bound to render the assumption of sparsity invalid. In fact, to all intents and purposes,
cross-range sparsity is rarely the case when it comes to vegetated areas [Agui 13c].
By way of illustration, Figure 1.5(a) shows a typical backscattered-power profile over
forested terrain where two components can be readily identified. Whereas the right-
hand side component accounts for the canopy, the left-hand side one accounts for con-
tributions located at ground level. Incidentally, their respective power distributions
are considerably regular [Agui 13c], which suggests the existence of a basis in which
these components can be sparsely represented [Mall 09]. In light of previous work
in the context of SAR [Bhat 08, Sama 09, Pott 10, Wu 11] and other fields (see, for ex-
ample, [Lust 07, Lori 07]), this thesis explores the tomographic problem in the context
of wavelet bases [Daub 88, Daub 92, Mall 09]. As a motivating example, Figure 1.5(b)
shows the rapid decay of the sorted magnitudes of the transform coefficients corre-
sponding to Figure 1.5(a), obtained using a Daubechies Symmlet wavelet with 4 van-
ishing moments and 3 levels of decomposition [Mall 09]. Thus, it might seem as if
sparse-reconstruction techniques could be similarly applied for forested areas. In ef-
fect, while equation (1.4) provides an underdetermined system of equations, the as-
sumption of sparsity in the wavelet domain provides a means of singling out the right
solution. There is, however, a glitch: the linear model given by (1.4) is formulated in
terms of the (complex-valued) reflectivity f and not in terms of its (nonnegative real-
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valued) intensity/power, hereinafter denoted by p. Interestingly, as will be elaborated
on in subsequent chapters, it is also possible to obtain a system of equations based on
p, which can be formulated as follows:

k = Φp (1.8)

where k is an m2-element vector estimated from an ensemble of observations g (i) of
arbitrary size as previously considered; and Φ is an m2-by-n matrix constructed from
A in (1.4). Accordingly, the tomographic reconstruction can be written as [Agui 13c]:

find the sparsest p̃ in the wavelet domain

subject to: k = Φp̃

such that: p̃ is physically valid

(1.9)

where the constraint of physical validity can be simply ensured by enforcing nonneg-
ativity of p̃. In order to demonstrate the potential of this wavelet-based approach,
Figure 1.6 shows a comparison of tomographic slices along azimuth as a function of
height. The reconstruction has been carried out using widely-used nonparametric
methods, namely, the Fourier (FB) and Capon (CB) beamformers [Lomb 03, Saue 11],
which will be reviewed in Section 2.4. Figure 1.6(a) has been obtained by FB with 21

regular acquisitions and will therefore be considered as a reference. The approximately
horizontal line at the bottom of each image corresponds to the terrain (relative height
∼= 10m). Most of the vertical canopy distribution lies between 20–33m. Additionally,
Figures 1.6(b)–(d) present FB, CB, and CS slices, respectively, corresponding to 6 irreg-
ular parallel passes. Unlike FB and CB, the CS reconstruction bears comparison with
the 21-pass FB one and thus shows its robustness to nonideal acquisition geometries.
In this respect, detailed comparisons will be reported toward the end of this work.

Note that the previously outlined wavelet-based methodology can also be extended so
as to exploit wave polarization. As will be developed in the chapters to come, fully-
polarimetric acquisitions result in nine n-element vectors of unknowns to be estimated.
By arranging these vectors side-by-side, it is possible to form an n-by-9 matrix as fol-
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(a)

(b)

(c)

(d)

Figure 1.6: Tomographic slices at L-band (normalized at every position) obtained as a function
of azimuth and height (300m by 40m). (a) FB reconstruction with 21 passes. (b) FB reconstruc-
tion with 6 passes (c) CB reconstruction with 6 passes. (d) CS reconstruction with 6 passes.
Range distance: 4816.30m.

lows:

P pol =
[
p1 p2 · · · p9

]
(1.10)
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Consequently, the corresponding nine systems of equations can be compactly written
as:

Kpol = ΦP pol (1.11)

where Φ is the same m2-by-n matrix given in (1.8); and Kpol is an m2-by-9 matrix. Since
the ensemble pi, with 1 ≤ i ≤ 9, is expected to have common support in the wavelet
domain [Agui 13a], (1.7) and (1.9) can be combined to formulate the tomographic re-
construction as follows:

find the sparsest p̃i in the wavelet domain for all 1 ≤ i ≤ 9

subject to: Kpol = ΦP̃ pol

such that: the ensemble p̃i exhibits common support in

the wavelet domain and is physically valid

(1.12)

where the property of physical validity can be enforced by constraining each row of
P̃ pol (when rearranged in a 3-by-3 matrix) to be positive-semidefinite [Agui 13a]. As a
consequence, this approach enables a complete 3-D electromagnetic characterization,
which is an essential input to various applications, such as image segmentation, clas-
sification [Lee 09], and soil moisture estimation [Lee 09, Reig 13, Jagd 13].

An additional contribution of this dissertation is the development of a methodology
for separation of SMs. Figure 1.7(a) illustrates an alternative example of the power
distributions of the two SMs previously mentioned and illustrated in Figure 1.5. The
ground-level contributions appear in red, while the canopy or volume component
is shown in green. As originally devised in [Teba 09], it is possible to use multi-
ple acquisitions and wave polarization to filter these two SMs—prior to tomographic
processing—by exploiting their uncorrelated polarimetric responses. As a result, tech-
niques such as FB, CB, and/or CS can be eventually applied on these components
separately. In this regard, this thesis introduces an optimization-based technique to ac-
complish this filtering/separation. As presented by Figure 1.7(b), this separation has
been achieved and subsequently used for recovering two independent tomographic
slices by means of CB with 9 passes. Again, the ground-level contributions appear in
red, while the volume contributions are depicted in green. Note that some volume
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(a)

(b)

Figure 1.7: Two SMs (red: ground-level SM; green: volume SM). (a) Illustration of power dis-
tributions for a specific azimuth–range position. (b) Tomographic slice at P-band obtained by
CB using 9 passes.

components also manifest at ground level, thus suggesting the presence of understory
or ground–canopy interactions [Teba 12].

1.4 Synopsis

The primary objective of this work is to explore new directions for the development of
SAR tomography for natural distributed scenes in the context of sparse reconstruction
and optimization. With this in mind, emphasis is placed on the mathematical formu-
lation of the proposed techniques. As a result, once the formal definition of a specific
problem is covered, the reader is expected to proceed from a digital signal processing
perspective. The remainder of this thesis can be summarized as follows:

– Chapter 2 provides a detailed introduction to the fundamentals of SAR and SAR to-
mography. The tomographic sensing operator and standard sampling requirements
are derived first, followed by a review of two well-known tomographic techniques
for forested areas, namely, FB and CB.
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– Chapter 3 forms the basis for subsequent chapters by introducing the basics of radar
polarimetry and widely-used covariance matrix models for forest scattering. In
essence, these models are able to relate the second-order statistics of radar observ-
ables to structural and electromagnetic properties of forested areas. In addition,
eigendecomposition-based polarimetric parameters are defined.

– Chapter 4 revisits the concept of sparse recovery by providing a review of CS sam-
pling strategies and reconstruction guarantees. In addition, the case of multiple
jointly-sparse signals is reviewed. Then, the tomographic problem is regarded as
an instance of CS—by considering both single-channel and polarimetric measure-
ments—with additional physical constraints. Finally, an introduction to wavelets is
provided together with the motivation for their application to SAR tomography.

– Chapter 5 reviews the concept of algebraic separation of ground and volume SMs
and introduces a convex optimization approach to achieving such separation.

– Chapter 6 introduces a set of sufficient, but not necessary, conditions for ensuring
convexity of optimization problems. Then, it breaks down all the relevant tomograph-
ic-related optimizations so as to show how these conditions are verified.

– Chapter 7 presents experimental results obtained using polarimetric L- and P-band
data acquired by the E-SAR sensor of DLR. First, the methods proposed in this
work are evaluated in terms of range distance, acquisition geometry, required a priori
knowledge, and computation time. Subsequently, polarimetric analyses are carried
out for assessing the physical validity of the tomographic reconstructions. Finally,
various tomographic slices demonstrating the algebraic separation of SMs are pre-
sented.

– Lastly, Chapter 8 provides some final considerations and concludes this thesis.





2 SAR Tomography Fundamentals

Airborne/spaceborne SAR sensors are microwave instruments capable of producing
high-resolution 2-D reflectivity maps by synthesizing a very large virtual antenna. In
essence, this is accomplished by illuminating an area while physically moving a small
antenna, followed by a processing step that coherently combines the received echoes.
As will be shown, a key aspect is that the achieved resolution does not depend on the
radar-to-target distance or operating wavelength, but rather on the system bandwidth
and the real antenna size. In addition, when multiple parallel trajectories are consid-
ered, a further combination of the resulting set of 2-D images allows for 3-D backscatter
profiling with a vertical resolution that depends on the cross-track/elevation coverage.
This chapter presents a detailed review of this 3-D image formation process. First, the
single-pass 2-D impulse response is derived. Then, multiple SAR-image pixels cor-
responding to parallel acquisitions are shown to be related to the 3-D reflectivity via
a Fourier transform. Finally, standard Nyquist conditions are reviewed along with
widely-used tomographic techniques for forested areas.

2.1 SAR Basics

The first step in the SAR imaging process consists of scanning an area, such as a
forest or a city, by means of a side-looking airborne/spaceborne radar. As the plat-
form moves along its—ideally straight—path, microwave pulses are transmitted at
equispaced along-track positions according to the system’s pulse repetition frequency
(PRF) [Curl 91, Cumm 05]. Each pulse transmission is followed by a receive window
during which return echoes are recorded. Figure 2.1 depicts a typical imaging config-
uration, referred to as stripmap mode [Baml 98, Cumm 05, More 13], where the radar
is assumed to point perpendicular to the direction of flight. Two coordinate systems

15
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Figure 2.1: 3-D side-looking acquisition geometry in stripmap mode.

have been considered, namely, x y z and x ρ η, which originate from the following axes:

x : azimuth (along-track direction)

y : ground-range

z : elevation

ρ : range (line-of-sight direction with look angle θ)

η : cross-range

Due to the inherent cylindrical symmetry of monostatic acquisitions, and under the
assumption of a plane electromagnetic wave [Baml 98], the dependence on the η co-
ordinate is usually made implicit, as illustrated in Figure 2.2. In order to further de-
scribe this data acquisition step, the response of a single point scatterer will be consid-
ered. Let a (x′, ρ′) be the complex-valued reflectivity of a stationary scatterer located
at (x′, ρ′). Then, after quadrature demodulation, the received signal can be modeled
as [Baml 98, More 13]:

s (x, t) =

a (x
′, ρ′)× exp

(
−j 4π

λ
r (x)

)
× g

(
t− 2r (x)

c

)
if |x− x′| ≤ Lsa/2

0 otherwise
(2.1)
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Figure 2.2: 2-D geometry obtained by making the dependence on the η coordinate implicit.

where r (x) is the distance from the scatterer to the radar at azimuth position x; λ
is the pulse carrier wavelength; Lsa = λρ′/Laz is the so-called synthetic aperture (see
Figure 2.2), where Laz denotes the physical azimuth antenna length; and gT (t) repre-
sents the modulating waveform, assumed to be given by:

gT (t) = sinc (tW ) with sinc (ς) =
sinπς

πς
(2.2)

where t is the range time and W is the signal bandwidth 1.

The next step is that of SAR image formation or focusing [Curl 91, Baml 92, Cumm 05,
Elac 06, Wood 06] and will be assumed to be comprised of two parts, namely, a time-
shift correction and the application of a matched filter [Klau 60, Curl 91]. Thus, first
note that, as is clear from the rightmost factor in equation (2.1), the varying distance
r (x) introduces a time shift 2r (x) /c. The resulting deviation, which is referred to as
range cell migration (RCM) [Brow 69,Leit 73], is given by 2(r (x)− ρ′)/c. Once this effect

1Note that chirp signals are used in practice [Klau 60, Curl 91, Cumm 05].
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has been corrected [Curl 91, More 13], the scatterer’s response can be written as:

sRCM (x, t) = a (x′, ρ′)× exp

(
−j 4π

λ
r (x)

)
× gT

(
t− 2ρ′

c

)
(2.3)

where the dependence on the illumination footprint has been, and will hereinafter be,
made implicit. For the sake of interpretation, an equivalent expression as a function of
azimuth and range can be found as follows:

sRCM (x, ρ) = sRCM

(
x,

2ρ

c

)
(2.4)

= a (x′, ρ′)× exp

(
−j 4π

λ
r (x)

)
× gT

(
2ρ

c
− 2ρ′

c

)
(2.5)

= a (x′, ρ′)× exp

(
−j 4π

λ
r (x)

)
× gT

(
2

c
(ρ− ρ′)

)
(2.6)

which, by letting

hρ (ρ) = gT

(
2ρ

c

)
(2.7)

= sinc

(
2ρ

c
W

)
(2.8)

denote the range impulse response, leads to:

sRCM (x, ρ) = a (x′, ρ′)× exp

(
−j 4π

λ
r (x)

)
× hρ (ρ− ρ′) (2.9)

Also, note that it follows from Figure 2.2 that the varying radar-to-target distance is
given by:

r (x) =

√
ρ′2 + (x− x′)2 (2.10)

which, provided (x− x′) /ρ′ ≪ 1, can be approximated as follows:

r (x) ∼= ρ′ +
(x− x′)2

2ρ′
(2.11)
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Consequently, (2.9) can be written as:

sRCM (x, ρ) = a (x′, ρ′)× exp

(
−j 4π

λ
ρ′
)
× exp

(
−j 4π

λ

(x− x′)2

2ρ′

)
× hρ (ρ− ρ′) (2.12)

= a (x′, ρ′)× exp

(
−j 4π

λ
ρ′
)
× exp

(
−jπ 2

λρ′
(x− x′)

2

)
× hρ (ρ− ρ′)(2.13)

where the third factor gives rise to a chirp signal along azimuth with chirp rate 2/ (λρ′)

[Klau 60]. The second part of the focusing step is then to exploit this azimuth-dependent
phase history by applying a matched filter [Klau 60,Curl 91]. Specifically, the final SAR
image u (x, ρ) is obtained as follows:

u (x, ρ) = sRCM (x, ρ) ⋆ exp

(
jπ

2

λρ′
x2
)

(2.14)

= a(x′, ρ′)× exp

(
−j 4π

λ
ρ′
)
× hx (x− x′)× hρ (ρ− ρ′) (2.15)

where ⋆ denotes the convolution operator; the filter kernel is assumed to be zero out-
side the interval [−Lsa/2,+Lsa/2]; and hx (x) is the azimuth impulse response given by
(omitting constant factors):

hx (x) = sinc

(
x
2Lsa

λρ′

)
(2.16)

Furthermore, by considering hρ (ρ) in (2.8) and hx (x) in (2.16), the 2-D azimuth–range
impulse response can be written as (see Figure 2.3):

h2-D (x, ρ) = hx (x)× hρ (ρ) (2.17)

and hence u (x, ρ) simplifies to:

u (x, ρ) = a(x′, ρ′)× exp

(
−j 4π

λ
ρ′
)
× h2-D (x− x′, ρ− ρ′) (2.18)

As an example of what u (x, ρ) typically looks like, Figure 2.4 shows the amplitude
of an X-band SAR image of Traunstein, Germany, which has been projected onto the
ground-range y-axis.
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Figure 2.3: Illustration of the 2-D impulse response.

Finally, by considering the distance from the peak to the first null for hx (x) and hρ (ρ), it
is possible to define the maximum achievable azimuth and range resolutions as follows
[Curl 91]:

ϱx =
λ

2Lsa
ρ′ (2.19)

ϱρ =
c

2W
(2.20)

In this respect, it is important to note that, while the azimuth resolution of a real-
aperture system would be given by ϱreal = λρ′/Laz [Huyg 90], the previously outlined
focusing step allows for synthesizing an azimuth resolution equivalent to that provided
by a real aperture of 2Lsa—and hence the name SAR [Curl 91]. In addition, since Lsa =

λρ′/Laz, it follows that:

ϱx =
λ

2λρ′/Laz
ρ′ (2.21)

=
Laz

2
(2.22)

which shows its invariance with respect to wavelength and range distance. Conse-
quently, the space-invariant 2-D impulse response is more conveniently formulated as
follows [Forn 03]:

h2-D (x, ρ) = sinc

(
x

ϱx

)
× sinc

(
ρ

ϱρ

)
(2.23)
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Figure 2.4: Amplitude of SAR image (X-Band / HH channel) of Traunstein, Germany. Range
projected to ground-range.

2.2 SAR Tomography

As a result of the previous derivations, it is possible to model the SAR image of a
general complex reflectivity a (x, ρ) as follows [Baml 98, Forn 03, Teba 10a]:

u (x, ρ) =

∫∫
a (x′, ρ′)× exp

(
−j 4π

λ
ρ′
)
× h2-D (x− x′, ρ− ρ′) dx′dρ′ (2.24)

That is, as the result of applying a low-pass filter h2-D (x, ρ) to a (x, ρ). Nonetheless, in
the presence of complex structures—targets distributed along the η-axis—it is helpful
to expand equation (2.24) so as to explicitly account for the cross-range distribution of
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the scene. Since, due to cylindrical symmetry, it had been assumed that:

a (x, ρ) =

∫
a (x, ρ, η′) dη′ (2.25)

where a (x, ρ, η) represents the reflectivity of a scatterer located at (x, ρ, η), it follows
that the SAR image can also be expressed as [Baml 98, Forn 03, Teba 10a]:

u (x, ρ) =

∫∫∫
a (x′, ρ′, η′)× exp

(
−j 4π

λ
ρ′
)
× h2-D (x− x′, ρ− ρ′) dx′dρ′dη′ (2.26)

which, in turn, gives:

u (x, ρ) =

∫∫∫
a (x′, ρ′, η′)× exp

(
−j 4π

λ
R (ρ′, η′)

)
× h2-D (x− x′, ρ− ρ′) dx′dρ′dη′ (2.27)

where R (ρ, η) is the closest distance from the scatterer to the radar. As is clear from
equation (2.26), targets distributed along the cross-range axis cannot be resolved.

When multiple parallel acquisitions—with cross-track and/or elevation displacements
referred to as baselines—are available (see Figure 2.5), a stack of 2-D SAR images can be
obtained and subsequently coregistered 2 with respect to a reference coordinate system
x ρ η [Reig 00, Forn 03, Teba 10a]. Since the closest radar-to-target distance varies as a
function of baseline extent, the resulting ith SAR image can be modeled as follows:

ui (x, ρ)

=

∫∫∫
a (x′, ρ′, η′)× exp

(
−j 4π

λ
Ri (ρ

′, η′)

)
× h2-D (x− x′, ρ− ρ′) dx′dρ′dη′ (2.28)

∼=
∫∫∫

a (x′, ρ′, η′)× exp

(
−j 4π

λ
Ri (ρ, η

′)

)
× h2-D (x− x′, ρ− ρ′) dx′dρ′dη′ (2.29)

=

∫(∫∫
a (x′, ρ′, η′)× h2-D (x− x′, ρ− ρ′) dx′dρ′

)
× exp

(
−j 4π

λ
Ri (ρ, η

′)

)
dη′ (2.30)

2 Note that, in the case of large baselines and/or high range resolution, a height-dependent coregis-
tration could be required (see, for example, [Nann 07]).
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Figure 2.5: Multi-baseline acquisition geometry.

where Ri (ρ, η) denotes the closest radar-to-target distance for the ith pass. By letting

γ (x, ρ, η′) =

∫∫
a (x′, ρ′, η′)× h2-D (x− x′, ρ− ρ′) dx′dρ′ (2.31)

it is possible to define

ûi (x, ρ) =

∫
γ (x, ρ, η′)× exp

(
−j 4π

λ
Ri (ρ, η

′)

)
dη′ (2.32)

and phase-rotate it with respect to η = 0 as follows [Reig 00]:

µi (x, ρ) = ûi (x, ρ)× exp

(
j
4π

λ
Ri (ρ, η = 0)

)
(2.33)
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which, in turn, can be written as:

µi (x, ρ) ∼=
∫
γ (x, ρ, η′)× exp

(
j
4π

λρ
b⊥i η

′
)
dη′ (2.34)

=

∫
γ (x, ρ, (z′/sin(θ)))× exp

(
j
4π

λρ
b⊥i (z′/sin(θ))

)
dz′ = µ̂i (x, ρ) (2.35)

where θ is the look angle formed by the reference coordinate system; and b⊥i denotes
the effective baseline, which is defined as the perpendicular component of the baseline
with respect to ρ. Thus, by making the azimuth–range dependence implicit, the ith
pixel can be expressed as:

µ̂i =

∫
γ (η′)× exp (j2πξiη

′) dη′ (2.36)

with

ξi =
2b⊥i
λρ

(2.37)

which shows that µ̂i and γ (η) form a Fourier transform pair and hence, assuming a
suitable sampling rate—one that satisfies the Nyquist criterion—it is possible to com-
pute either one from the other [Reig 00, Nann 11]. In accordance with the previous
considerations, tomographic SAR imaging can be achieved from a set of 2-D images
by solving a 1-D spectral estimation problem (along the η-axis) at every azimuth–range
position.

2.3 Standard Sampling Considerations

As it follows from equations (2.36) and (2.37), the tomographic sampling interval is
given by:

∆ξ =
2d

λρ
(2.38)
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where d is the effective separation between adjacent passes. Hence, a sufficient con-
dition (i.e., the Nyquist criterion) to recover a cross-range signal γ of vertical extent Z
(i.e., extent along the z-axis) is [Reig 00, Forn 03, Nann 11]:

Z

sin (θ)
≤ 1

∆ξ
(2.39)

or equivalently

∆ξ ≤ sin (θ)

Z
(2.40)

or

d ≤ λρ sin (θ)

2Z
(2.41)

Nevertheless, since only a limited number of acquisitions are generally available, un-
ambiguous recovery entails a reduced tomographic aperture Ltom (see Figure 2.5). As a
result, the cross-range and vertical resolutions are given by [Reig 00,Forn 03,Nann 11]:

ϱη =
λ

2Ltom
ρ (2.42)

ϱz = ϱη sin (θ) (2.43)

Consequently, for a specific extent Z and a desired vertical resolution ϱz, the required
number of regular passes is:

m =

⌈
Z

ϱz

⌉
+ 1 (2.44)

where ⌈·⌉ indicates the smallest following integer. Note, however, that (2.44) does not
mean that the desired Z and ϱz can be achieved throughout the swath. In fact, this will
depend on the range distance and the baseline distribution, as captured by equations
(2.41), (2.42), and (2.43).
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2.4 Tomographic SAR Techniques

This section revisits two widely-used cross-range power estimators, namely, the Fourier
and Capon beamformers [Gini 02,Lomb 03,Jako 05,Saue 11], which will be extensively
used for comparison purposes in subsequent sections. To this end, the model described
by (2.36) will be henceforth approximated by its discrete counterpart:

g = Af (2.45)

where g ∈ Cm is a stack of m pixels, A ∈ Cm×n is a partial Fourier matrix usually re-
ferred to as the steering matrix, and f ∈ Cn denotes a cross-range signal of limited ex-
tent. The data vector g is assumed to follow a zero-mean complex circular Gaussian
distribution with covariance matrix

K0 = E
{
gg†
}
= AE

{
ff †}A† (2.46)

where K0 ∈ Cm×m, E {·} is the expectation operator, and (·)† denotes the conjugate
transpose [Baml 98]. Accordingly, under the assumption of ergodicity, the correspond-
ing maximum likelihood estimate is found by replacing the expectation operator with
spatial averaging as follows:

K̂ =
1

L

L∑
l=1

g (l) g† (l) (2.47)

where K̂ is the sample covariance matrix and L is the number of independent pixels
(or looks) being averaged [Baml 98, Saue 11].

Note that the tomographic methods covered below are based on the multi-look sample
covariance matrix K̂ rather than g. As a result, not only is the effective azimuth–range
resolution inevitably reduced, but also the focus is shifted from the estimation of f to
the estimation of its expected power, i.e., the main diagonal of E

{
ff †} in (2.46).



2. SAR Tomography Fundamentals 27

2.4.1 Fourier Beamforming

Fourier beamforming (FB) is a linear reconstruction method whose resolving power
and ambiguity rejection capabilities are dictated by standard sampling considerations
as outlined in Section 2.3 [Stoi 97]. The FB multi-look cross-range power estimate
pFB ∈ Rn

≥0 is obtained from:

pFB = diag1

(
H†K̂H

)
(2.48)

where diag1 (·) denotes the main diagonal of a matrix and the ith column of H is found
by solving the following minimization problem:

min
Hi

(
H i
)†
H i subject to

(
H i
)†
Ai = 1 (2.49)

where Ai is the ith column of A, usually referred to as the ith steering vector. The
solution to (2.49) can be shown to be [Stoi 97]:

H i =
Ai

m
(2.50)

This estimator has the advantage of being both radiometrically correct and computa-
tionally efficient. In practice, however, the artifacts caused by irregular sampling to-
gether with the limited resolving power can reduce the applicability of this approach
[Teba 12]. Also, note that from equations (2.48) and (2.50), it follows that the FB esti-
mate is obtained by means of a projection matrix H which is independent of the scat-
tering process actually being measured.

2.4.2 Capon Beamforming

Unlike FB, Capon beamforming (CB) is a nonlinear algorithm based on a data-adaptive
projection matrix H . The CB multi-look cross-range power estimate pCB ∈ Rn

≥0 is given
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by:

pCB = diag1

(
H†K̂H

)
(2.51)

where the ith column of H is the solution to the following minimization problem:

min
Hi

(
H i
)†
K̂H i subject to

(
H i
)†
Ai = 1 (2.52)

which can be shown to be [Capo 69, Stoi 97]:

H i =
K̂−1Ai

(Ai)† K̂−1Ai
(2.53)

and thus CB requires K̂ be an invertible matrix. Very often, however, a limited number
of looks causes this matrix to be rank deficient. In such cases, it is a common practice
to make K̂ full rank by diagonal loading it [Lomb 03]. Interestingly, employing the
CB algorithm based on a diagonal-loaded covariance matrix can be interpreted as a
regularized version of CB. In particular, letting τCB be a loading factor, it follows from
(2.52) that H is constructed by solving:

min
Hi

(
H i
)†
(K̂ + τCBIm)H

i subject to
(
H i
)†
Ai = 1 (2.54)

where Im is an m-by-m identity matrix. Since equation (2.54) is equivalent to:

min
Hi

(
H i
)†
K̂H i + τCB

(
H i
)†
H i subject to

(
H i
)†
Ai = 1 (2.55)

it follows from (2.49) that (2.55) is a regularized version of (2.52) which behaves like FB
as τCB → ∞ [Lore 05].

In addition to its moderate computational complexity, the advantages of CB are its
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super-resolution and interference rejection capabilities. However, this estimator is
known to be sensitive to imprecise steering vectors [Stoi 02] and can exhibit poor ra-
diometric accuracy [Teba 12].





3 Polarimetric Forest Scattering

Natural distributed scenes are characterized by a SAR resolution cell composed of
a large number of random scatterers. This leads to the assumption of a zero-mean
complex circular Gaussian distribution which is usually exploited by characterizing
a scattering process by means of its second-order statistics [Clou 96, Baml 98]. This
chapter provides a short introduction to radar polarimetry and introduces widely-
used covariance matrix models for forested areas, which will be the basis for devel-
oping sparsity-based tomographic techniques in the chapters to come. In addition, ba-
sic eigendecomposition-based polarimetric parameters are formulated. Note that, for
simplicity of explanation, possible noise contributions as well as any other source of
decorrelation [Zebk 92,Baml 98,Hans 01] will be intentionally neglected in this chapter.
Also, the estimation of covariance matrices will be henceforth assumed to be carried
out by spatial averaging in a form analogous to (2.47).

3.1 Polarimetric SAR

By considering the coordinate system x ρ η introduced in Section 2.1, the monochro-
matic space-time electric field corresponding to a linearly-polarized planar wave can
be written as [Lee 09, Clou 10]:

E (ρ, t) =
√

E2
x +E2

η

[
cos (ϕ)

sin (ϕ)

]
exp

(
j

(
wt− 2π

λ
ρ

))
(3.1)

=

[
Ex

Eη

]
exp

(
j

(
wt− 2π

λ
ρ

))
(3.2)

31
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Figure 3.1: Linear polarization with amplitude
√

E2
x +E2

η and orientation angle ϕ.

where Ex and Eη are the amplitude components for the x- and η-axes, respectively;
ϕ is the orientation angle (see Figure 3.1); w is the angular frequency; and λ denotes
the wavelength. It then follows that, for a specific target at range distance r0 from the
radar, the transmitted ET (t) and received ER (t) waves can be described by:

ET (t) =

[
ET

x

ET
η

]
exp (jwt) (3.3)

ER (t) = SET (t) exp

(
−j 4π

λ
r0

)
(3.4)

= S

[
ET

x

ET
η

]
exp (jwt)× exp

(
−j 4π

λ
r0

)
(3.5)

= S

[
ET

x

ET
η

]
exp

(
j

(
wt− 4π

λ
r0

))
(3.6)

=

[
ER

x exp (jψx)

ER
η exp (jψη)

]
exp

(
j

(
wt− 4π

λ
r0

))
(3.7)

where ψx and ψη are phase shifts introduced by the SM; and the matrix S ∈ C2×2 ac-
counts for the interaction of the wave with the target and is usually referred to as the
scattering matrix [Krog 90]. By referring to the horizontal (x-directed) and the vertical
(η-directed) components of the wave with H and V, respectively, the scattering matrix
S can be written as:

S =

[
SHH SHV

SVH SVV

]
(3.8)
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Note that the transmitted and received waves with respect to x η can be expressed with
respect to any counterclockwise-rotated coordinate system x η as follows:

ET (t) = T (ζ)ET (t) (3.9)

ER (t) = T (ζ)ER (t) (3.10)

with

T (ζ) =

[
cos (ζ) sin (ζ)

− sin (ζ) cos (ζ)

]
(3.11)

where ζ is the rotation angle. Consequently, replacing ER (t) in equation (3.10) accord-
ing to (3.4) results in:

ER (t) = T (ζ)SET (t) exp

(
−j 4π

λ
r0

)
(3.12)

which, after replacing ET (t) according to (3.9), gives:

ER (t) = T (ζ)S T−1 (ζ)ET (t) exp

(
−j 4π

λ
r0

)
(3.13)

= SζET (t) exp

(
−j 4π

λ
r0

)
(3.14)

and hence Sζ = T (ζ)S T−1 (ζ) is a synthesized scattering matrix with respect to the
rotated coordinate system [Lee 09].

In practice, many radars are designed to transmit/receive with either horizontal or
vertical polarization [Clou 96,More 13]. Thus, the scattering coefficients SHH, SVV, SHV,
and SVH are measured, respectively, by means of four transmit–receive polarization
pairs, often referred to as polarimetric channels: HH, VV, HV, and VH. This mode of
operation results in four SAR images per acquisition, which may be modeled by equa-
tions (2.27) and (2.28) by simply substituting the complex reflectivity a for aHH, aVV,
aHV, or aVH, as appropriate.

Finally, note that a monostatic configuration has been assumed so far, which implies
SHV = SVH [Boer 98]. The lexicographic kL and Pauli kP vector representations of the
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scattering matrix are therefore given by:

kL =

 SHH√
2SHV

SVV

 kP =
1√
2

 SHH + SVV

SHH − SVV

2SHV

 (3.15)

whose norms equal the so-called span, i.e., ∥kL∥22 = ∥kP∥22 [Boer 81, Kost 86, Clou 86,
Borg 87, Borg 89]. Figure 3.2 shows a polarimetric SAR image corresponding to the
lexicographic basis.

Figure 3.2: Polarimetric SAR image (X-Band / Red: HH; Green: HV; Blue: VV) of Traunstein,
Germany. Range projected to ground-range.
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3.2 Forest Scattering Model

Due to the high-penetration capabilities of radiation at long wavelengths, such as those
within the L- or P-band, forested areas give rise to complex scattering processes which
are generally described in terms of the responses and interactions of its constituent
targets. Specifically, return echoes are usually assumed to originate from an ensemble
of leaves and branches (i.e., the canopy), as well as from the underlying trunks and
terrain. With this in mind, the analysis can be restricted to four nonnegligible physical
phenomena, namely: ground backscattering, double-bounce scattering from ground–
trunk interactions, double-bounce scattering from ground–canopy interactions, and
canopy backscattering [Teba 10a]. As illustrated in Figure 3.3, these four phenomena
give rise to two effective SMs along cross-range: a ground-locked SM that includes
ground-only, ground–trunk, and ground–canopy components; and a volume SM that
includes a canopy-only component [Teba 09, Teba 10a, Teba 12]. Alternatively, the vol-
ume SM is often assumed to exhibit contributions at ground level either due to the
presence of understory or by letting the volume SM (instead of the ground-locked SM)
capture the ground–canopy interactions [Teba 09,Teba 10a,Teba 12]. Note that, in light
of equation (2.31), while ground–trunk interactions can be modeled as a single point
target—and hence are invariant to the look angle θ—the spatial distribution of the re-
maining three phenomena spreads along cross-range with an extent that is bound to
decrease with increasing look angle (see Figure 3.3) [Teba 10a]. More formally, let k
be any polarimetric vector representation, as defined by (3.15), for a specific azimuth–
range position corresponding to a single SAR acquisition. Under the hypothesis that
the underlying physical phenomena are uncorrelated, the polarimetric covariance matrix
C ∈ C3×3 can be written as [Boer 81, Clou 92]:

C = E
{
kk†} = CGB + CGT + CGC + CCN (3.16)

where GB, GT, GC, and CN denote, respectively, ground backscattering, double-bounce
scattering from ground–trunk interactions, double-bounce scattering from ground–
canopy interactions, and canopy backscattering. Thus, by letting

CG = CGB + CGT + CGC (3.17)

CV = CCN (3.18)
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Figure 3.3: Illustration of forest phenomena giving rise to two effective SMs (adapted from
[Teba 10a]). Ground-locked SM: (Brown) Ground backscattering. (Light blue) Double-bounce
scattering from ground–trunk interactions. (Red) Double-bounce scattering from ground–
canopy interactions. Volume SM: (Green) Canopy backscattering.

it is then possible to associate C with two effective SMs:

C = E
{
kk†} = CG + CV (3.19)

where CG and CV are, respectively, the polarimetric covariance matrices for ground
and volume SMs [Teba 09]. The retrieval of such matrices is of considerable interest in
its own right, as they allow for a physical characterization of SMs and thus find appli-
cation in different areas, such as image segmentation, classification, and soil moisture
estimation [Lee 09, Reig 13, Jagd 13].

When multi-baseline data are available, the resulting second-order statistics are not
only related to the polarimetric response of the scatterers, but also to their cross-range
spatial distribution [Papa 01, Teba 09]. This can be understood by first extending the
discrete model described by equation (1.4) so as to consider all polarimetric channels.
Without loss of generality, consider the lexicographic polarimetric representation and
let i denote either HH, VV, or HV. Then, the corresponding stack of m pixels can be
written as:

gi = Afi (3.20)
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which can be jointly expressed as:

gpol = (I3 ⊗ A) fpol (3.21)

where gpol = [ gT
HH gT

VV gT
HV ]T ∈ C3m; fpol = [ fT

HH fT
VV fT

HV ]T ∈ C3n; I3 is a 3-by-3
identity matrix; and ⊗ denotes the Kronecker product, which implies that (I3 ⊗ A) ∈
C3m×3n. The corresponding multi-baseline polarimetric covariance matrix Kpol ∈ C3m×3m

can be modeled as [Treu 02, Clou 06, Lomb 08b, Teba 10b]:

Kpol = E
{
gpolg

†
pol

}
= (I3 ⊗ A)E

{
fpolf

†
pol

}(
I3 ⊗ A†) (3.22)

with

E
{
fpolf

†
pol

}
=

 diag2 (pHH–HH) diag2 (pHH–VV) diag2 (pHH–HV)

diag2 (pVV–HH) diag2 (pVV–VV) diag2 (pVV–HV)

diag2 (pHV–HH) diag2 (pHV–VV) diag2 (pHV–HV)

 (3.23)

where, in this context, diag2 (·) represents a diagonal matrix with its main diagonal
given by the argument. Note that pHH–HH, pVV–VV, and pHV–HV ∈ Rn

≥0 correspond to the
cross-range powers for the HH, VV, and HV channels, respectively; and that

pVV–HH = conj (pHH–VV) ∈ Cn (3.24)

pHV–HH = conj (pHH–HV) ∈ Cn (3.25)

pHV–VV = conj (pVV–HV) ∈ Cn (3.26)

where conj (·) indicates complex conjugation.

For the sake of simplicity, (3.22) will be rearranged as follows. Let Kpol be represented
by a partition matrix of nine m-by-m blocks such that

Kpol =

 KHH–HH KHH–VV KHH–HV

KVV–HH KVV–VV KVV–HV

KHV–HH KHV–VV KHV–HV

 (3.27)
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and form

Kpol =
[

vec (KHH–HH) vec (KVV–HH) · · · vec (KHV–HV)
]

(3.28)

and

P pol =
[
pHH–HH pVV–HH · · · pHV–HV

]
(3.29)

where Kpol ∈ Cm2×9, P pol ∈ Cn×9, and vec (·) is the matrix to vector operation. Next,
construct Φ ∈ Cm2×n as follows. Define the functions row (·) and col (·), which take a
linear index corresponding to any vectorized block of Kpol as an argument and return
the row and column indices corresponding to the original block, respectively. Then,
the ℓth row of Φ is given by:

Φℓ = Arow(ℓ) ⊙ conj
(
Acol(ℓ)

)
(3.30)

where the subscripts indicate a specific row and ⊙ denotes element-wise multiplica-
tion. It then follows that (3.22) is equivalent to:

Kpol = ΦP pol (3.31)

Note that equations (2.36) and (2.37) imply that, just as every row of A is directly re-
lated to a specific baseline, every row Φℓ is related to the difference between baselines
row (ℓ) and col (ℓ). For this reason, this difference will be hereinafter referred to as
cobaseline. As will be shown in Section 7.1.1, in order to avoid redundant entries in
Kpol, additional emphasis should be placed on these waveforms. For details on this
concept, known in the literature as minimum redundancy arrays, the reader is referred
to [Line 93, Nann 10].

Under the additional hypotheses that the cross-range spatial distributions of the GB,
GT, GC, and CN phenomena are invariant with respect to the choice of polarimetric
channel; and that the GB, GT, GC, and CN polarimetric covariance matrices are invari-
ant with respect to the choice of track; P pol can be modeled as [Teba 09, Agui 13a]:

P pol = pGBvec (CGB)
T + pGTvec (CGT)

T + pGCvec (CGC)
T + pCNvec (CCN)

T (3.32)
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where pGB, pGT, pGC, and pCN ∈ Rn
≥0 will be referred to as, respectively, the cross-range

power distributions of the GB, GT, GC, and CN phenomena. Likewise, CGB, CGT, CGC,
and CC—which correspond to the covariance matrices given by (3.17) and (3.18)—will
be referred to as the GB, GT, GC, and CN polarimetric signatures, respectively. Also, note
that, provided that there is a suitably-high range resolution and assuming an approxi-
mately flat terrain, it can be shown that [Teba 09]:

pGB
∼= pGT

∼= pGC (3.33)

Finally, it follows from (3.17) and (3.18) that, by letting pG approximate any of the
power distributions for GB, GT, and GC; and pCN = pV, equation (3.32) may be simpli-
fied to:

P pol = pGvec (CG)
T + pVvec (CV)

T (3.34)

where pG and pV are, respectively, the cross-range power distributions of the ground
and volume SMs; and CG and CV are their respective ground and volume polarimetric
signatures.

3.3 Analysis of Polarimetric Signatures

A common approach to analyzing polarimetric signatures is to decompose their re-
spective 3-by-3 covariance matrices by means of an eigendecomposition. Note that
this method is applicable to any polarimetric signature, i.e., the input 3-by-3 covari-
ance matrix can correspond to either CG or CV, as well as to either their sum C [see
(3.19)] or any rearranged row of P pol. For this reason, this section will focus on C

only. However, all definitions will be based on the assumption that the Pauli vector
representation has been considered.

The eigendecomposition of C provides a description of the underlying SM by means of
a sum of covariance matrices corresponding to 3 independent targets. This expansion
can be written as follows:

C = λ1e1e
†
1 + λ2e2e

†
2 + λ3e3e

†
3 (3.35)
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where λ1 ≥ λ2 ≥ λ3 are nonnegative eigenvalues; and e1, e2, and e3 are the respective
eigenvectors. From this decomposition, five rotation-invariant [see (3.11)] parameters
can be derived [Clou 96, Clou 97], as listed below:

1) Eigenvalue probability qi ∈ [0, 1]:

qi =
λi

λ1 + λ2 + λ3
(3.36)

with 1 ≤ i ≤ 3. This parameter measures the relative importance of each eigenvalue
and so q1 + q2 + q3 = 1.

2) Polarimetric entropy QE ∈ [0, 1]:

QE = −
3∑

i=1

qi log3 qi (3.37)

If QE = 0, the rank of C equals 1, which indicates a deterministic SM. If QE = 1, the
eigenvalues are equal, thus corresponding to a completely random SM.

3) Polarimetric anisotropy QA ∈ [0, 1]:

QA =

{
(λ2 − λ3) / (λ2 + λ3) if QE > 0

0 if QE = 0
(3.38)

This parameter characterizes the difference between the second and third eigenval-
ues. Thus, it is able to discriminate high-entropy SMs.

4) Mean alpha angle αmean ∈ [0, π/2]:

αmean =
3∑

i=1

qi arccos |ei1| (3.39)

where ei1 denotes the first element of the ith eigenvector. The reference values are
αmean = 0, αmean = π/4, and αmean = π/2; which indicate scattering from an isotropic
surface (i.e., a single bounce), an oriented dipole, and an isotropic dihedral (i.e., a
double bounce), respectively.
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5) Maximum alpha angle αmax ∈ [0, π/2]:

αmax = arccos |e11| (3.40)

This parameter is analyzed just like αmean, only the dominant target is considered.





4 Sparsity-Based SAR Tomography

Image compression algorithms are able to convert large digital datasets into signif-
icantly smaller ones by applying an appropriate change of basis [Mall 09]. Once a
sparsifying domain has been found, only the nonzero expansion coefficients are coded
and stored. Since the original data are generally discarded, this raises the question of
whether it is at all possible to directly sample in a compressed form—thus effectively
reducing the sampling rate. In effect, this is of particular interest for imaging tech-
niques such as SAR tomography, for which the number of measurements are limited
and expensive. This chapter first reviews the conditions under which compressible
signals can be measured and reconstructed from a reduced set of observations. Then,
it thoroughly explores their application to SAR tomography of forested areas for both
single-channel and polarimetric sensors. Since the goal is to develop estimators that
allow for an accurate electromagnetic characterization of natural distributed scenes,
much of the emphasis is placed on ensuring physical validity. Finally, a motivation for
the use of sparsifying wavelet systems is provided.

4.1 Compressed Sensing

4.1.1 Single-Signal CS

Compressed Sensing (CS) is a sampling paradigm that allows for capturing a signal—
at a rate significantly below the Nyquist one—by exploiting sparse representations
[Cand 06a, Cand 06b, Dono 06, Bara 07]. In particular, a signal f0 ∈ CN is said to be K-
sparse in an orthonormal basis Ψ ∈ CN×N if its projection α = Ψf0 ∈ CN has, at most,K
nonzero elements. In turn, f0 = Ψ†α. Thus, CS proposes measuring such a signal f0 by

43
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collecting M linear measurements of the form b0 = A0f0+ y0 or b0 = A0Ψ
†α + y0 ∈ CM ,

where A0 ∈ CM×N is a sensing matrix with M much smaller than N , and y0 ∈ CM is
a perturbation term. Also, the matrix Θ0 = A0Ψ

† ∈ CM×N , such that b0 = Θ0α + y0, is
said to obey the restricted isometry property (RIP) of order K if there exists a constant
δK ∈ (0, 1) such that

(1− δK) ∥α∥22 ≤ ∥Θ0α∥22 ≤ (1 + δK) ∥α∥22 (4.1)

holds for all K-sparse signals α. This property essentially requires that every set of,
at most, K columns approximately behaves like an orthonormal system [Cand 05,
Cand 06d]. As developed in [Cand 06c, Cand 08], if Θ0 satisfies the RIP of order 2K

with δ2K <
√
2− 1, then it is possible to recover α from the measurements b0 by L1-

norm minimization:

min
α̃

∥α̃∥1 subject to ∥Θ0α̃− b0∥2 ≤ ε (4.2)

and the solution α̃ obeys:

∥α̃− α∥2 ≤ C0

∥∥α− αK
∥∥
1
/
√
K + C1ε (4.3)

for some constant C0 and C1, where αK is the signal α with all but the K largest com-
ponents set to zero and ε ≥ ∥y0∥2 is an upper bound on the perturbation level. In other
words, this means that the K largest nonzero elements are recovered in their correct
location and that the error is proportional to the rest of the nonzero elements and the
perturbation level. Finally, f̃0 is recovered by computing f̃0 = Ψ†α̃.

As a result of the previous discussion, emphasis should be placed on designing a ma-
trix A0 for a given Ψ such that Θ0 = A0Ψ

† satisfies the RIP with δ2K <
√
2− 1. To

that end, let Υ ∈ CN×N be an orthonormal matrix and F = ΥΨ† ∈ CN×N . Also, let the
coherence of F be given by:

µ0 (F) =
√
N max

i,j
|F i,j| ∈

[
1,
√
N
]

(4.4)

which basically measures the largest correlation between the rows of Υ and Ψ [Cand 07].
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Then, it can be shown [Cand 06d, Rude 08] that, if A0 is constructed by taking

M = O
(
µ2
0 (F)K log4N

)
(4.5)

sensing waveforms (i.e., rows) of Υ uniformly at random and renormalizing the col-
umns so that they are unit-normed, then δ2K <

√
2− 1 holds with large probability.

4.1.2 L1 Minimization in Action

This section aims to provide instructive insight as to why the L1-norm is a suitable
proxy for sparsity. For this purpose, an intuitive geometrical explanation will be given
by means of a simple (noiseless) example. Also, it will be shown that it is possible to
generalize this reasoning whereby a recovery guarantee—in the form of (4.3)—can be
found.

Let Θ′
0 ∈ R2×3 be given by:

Θ′
0 =

[
0 1 −1

1 −1 0

]
(4.6)

with its null space defined as N (Θ′
0) = {h′ ∈ R3 : Θ′

0h
′ = 0} and hence comprises

scaled versions of the vector [ 1 1 1 ]. Then, take noiseless measurements of the
form b′0 = Θ′

0α
′, where α′ is a 1-sparse signal in R3, e.g., α′ = [ 1 0 0 ]. Since it is

then also true that b′0 = Θ′
0(h

′ + α′), there are infinitely many solutions corresponding
to S = N (Θ′

0) + α′. This is commonly referred to as the translated null space S and has
been indicated by the red line in Figure 4.1. Note, however, that only one solution lies
on the vertical axis, which corresponds to the 1-sparse vector α′. Noticeably, due to
the pointiness of the L1-ball B = {x0 ∈ R3 : ∥x0∥1 ≤ 1} (visualized as an octahedron in
Figure 4.1), this coincides with the solution with the minimum L1-norm, which can be
found by:

min
α̃′

∥α̃′∥1 subject to Θ′
0α̃

′ = b′0 (4.7)
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Figure 4.1: Visualization of L1-norm minimization. The red line depicts the translated null
space while the L1-ball is visualized as an octahedron. The intersection coincides with the
sparsest solution.

As is clear from Figure 4.1, the orientation of the null space (and hence the orientation
of the red line) plays a crucial role in the process of singling out the right solution.
In effect, provided the null space is not parallel to any of the faces or edges of the
octahedron, a unique 1-sparse solution to (4.7) can be guaranteed. In particular, let h′i
represent the ith element of any vector h′ in N (Θ′

0) (excluding the zero vector). It then
follows that the desired orientation can be achieved provided that [Forn 11]:

|h′1| < |h′2|+ |h′3| (4.8)

|h′2| < |h′1|+ |h′3| (4.9)

|h′3| < |h′1|+ |h′2| (4.10)

which is clearly satisfied by Θ′
0 since, as previously pointed out, its null space is spanned

by the vector [ 1 1 1 ].
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The previous considerations can be generalized and extended as follows. Consider
noiseless measurements of the form b0 = Θ0α, where b0 ∈ CM , α ∈ CN , and Θ0 ∈
CM×N . The matrix Θ0 will be said to obey the null space property (NSP) of order K with
constant δNSP ∈ (0, 1) if

∥hΛ∥1 ≤ δNSP ∥hΛc∥1 (4.11)

where Λ is an arbitrary index subset of {1, 2, . . . , N} such that #Λ ≤ K, i.e., the cardi-
nality of Λ is less than or equal to K; Λc indicates the complement of Λ; h ∈ CN is any
vector in the null space of Θ0; and hΛ and hΛc are vectors in CN that coincide with h

for the indices given by Λ and Λc, respectively, and are zero otherwise [Forn 11]. More-
over, let Θ0 satisfy the NSP of order K and α̃ ∈ CN be the solution to (4.7). Then, α̃
obeys:

∥α− α̃∥1 ≤
2 (1 + δNSP)

1− δNSP

∥∥α− αK
∥∥
1

(4.12)

which is yet another recovery guarantee analogous to (4.3) [Forn 11]. The following
proof adopts the strategy followed in [Forn 11] and is intended to provide further
insight.

Proof. Since

Θα−Θα̃ = 0 = Θ (α− α̃) (4.13)

it follows that h = α − α̃ is in the null space of Θ. Also, because α̃ is found by (4.7), it
must be true that:

∥α̃∥1 ≤ ∥α∥1 (4.14)

∥α̃Λ∥1 + ∥α̃Λc∥1 ≤ ∥αΛ∥1 + ∥αΛc∥1 (4.15)
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which, by the fact that α̃ = α− h, leads to the following inequalities:

∥αΛ − hΛ∥1 + ∥αΛc − hΛc∥1 ≤ ∥αΛ∥1 + ∥αΛc∥1 (4.16)

∥αΛ − hΛ∥1 + ∥−αΛc + hΛc∥1 ≤ ∥αΛ∥1 + ∥αΛc∥1 (4.17)

∥αΛ∥1 − ∥hΛ∥1 − ∥αΛc∥1 + ∥hΛc∥1 ≤ ∥αΛ∥1 + ∥αΛc∥1 (4.18)

where the last inequality follows from the reverse triangle inequality. Hence,

∥hΛc∥1 ≤ ∥hΛ∥1 + 2 ∥αΛc∥1 (4.19)

which, by the NSP, gives:

∥hΛc∥1 ≤ δNSP ∥hΛc∥1 + 2 ∥αΛc∥1 (4.20)

∥hΛc∥1 ≤ 2

1− δNSP
∥αΛc∥1 (4.21)

Finally, since

∥α− α̃∥1 = ∥h∥1 = ∥hΛ∥1 + ∥hΛc∥1 (4.22)

and, by the NSP,

∥hΛ∥1 + ∥hΛc∥1 ≤ δNSP ∥hΛc∥1 + ∥hΛc∥1 (4.23)

∥hΛ∥1 + ∥hΛc∥1 ≤ (1 + δNSP) ∥hΛc∥1 (4.24)

it follows from (4.21) that:

∥hΛ∥1 + ∥hΛc∥1 ≤
2 (1 + δNSP)

1− δNSP
∥αΛc∥1 (4.25)

and hence, from (4.22),

∥α− α̃∥1 ≤
2 (1 + δNSP)

1− δNSP
∥αΛc∥1 (4.26)

which completes the proof.
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4.1.3 Multi-Signal CS

Multi-signal CS enables the joint recovery of signal ensembles by exploiting inter-
signal structural correlations. It generalizes the concept of a signal being sparse to the
concept of an ensemble of signals being jointly sparse [Baro 09,Elda 10]. In particular, it
proposes taking linear measurements of the formB = A0X+Y , whereX ∈ CN×L indi-
cates L sparse signals that exhibit common support (i.e., X is row-sparse), A0 ∈ CM×N

is a sensing matrix with M < N , and Y ∈ CM×L is an unknown perturbation term.
The corresponding reconstruction is achieved by the following convex optimization—
which is the multi-signal analog of (4.2):

min
X̃

∥∥∥X̃∥∥∥
2,1

subject to
∥∥∥A0X̃ −B

∥∥∥
F
≤ ε (4.27)

where ε is an upper bound on the perturbation level, ∥·∥F is the Frobenius matrix norm,
and ∥·∥2,1 is a mixed norm (sum of the L2-norms of the rows of a matrix) that promotes
row-sparsity.

In general, the reconstruction approach given by (4.27) is known to perform better
than L independent instances of (4.2) (see, for example, [Elda 09, Elda 10, Agui 12a]).
Nonetheless, in order to provide a joint treatment of sensing considerations for the
single- and multi-signal cases, the sampling requirements will be henceforth assumed
to be determined as if each of the signals were to be reconstructed separately.

4.2 CS for SAR Tomography

4.2.1 Single-Channel CS

SAR sensors that operate using a single polarimetric channel allow for the estimation
of only one of the main diagonal blocks in (3.27), i.e., eitherKHH–HH,KVV–VV, orKHV–HV.
As a result, the corresponding reduced covariance matrix model is given by consider-
ing either the 1st, 5th, or 9th column of Kpol and P pol in (3.31). From (3.28) and (3.29),
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this model can be written as:

vec (Ki) = Φpi (4.28)

or

ki = Φpi (4.29)

where i corresponds to either HH–HH, VV–VV, or HV–HV.

By considering equations (4.29) and (4.2) together, the cross-range power estimation
can be readily recast as an instance of CS. Once an appropriate sparsifying basis Ψ ∈
Rn×n has been chosen, the reconstruction of pi can be formulated as the following con-
vex optimization:

min
p̃i

∥Ψ p̃i∥1 subject to
∥∥∥Φp̃i − k̂i

∥∥∥
2
≤ ε (4.30)

where k̂i is the rearranged sample covariance matrix and ε can be used to control the
trade-off between sparsity in Ψ and model mismatch. In accordance with the definition
of pi, the optimization has to be carried out over the set of nonnegative real numbers
[Agui 13c]. As will be demonstrated in Chapter 7.1, this approach has considerable
ambiguity-rejection capabilities and has the ability to recover the complete cross-range
power with few highly irregular passes. Also, it will be noted that, unlike FB and CB,
CS requires an appropriate definition of the cross-range extent inherently modeled by
pi.

Since, by construction, Φ behaves like a partial Fourier matrix [see (3.30)], the coherence
of F = ΥΨ†, as defined by (4.4), ought to be computed by letting Υ be a Fourier matrix.
In addition, note that (4.30) implies a nonlinear reconstruction. Therefore, radiometric
accuracy might be incurred which, as denoted by (4.3), will be bounded by both ε

and the sparsity level. Thus, whereas the former is directly related to any source of
decorrelation [Baml 98, Hans 01] as well as to the number of looks that were used
to compute the rearranged sample covariance matrix k̂i, the latter translates into the
number of effective unknowns, i.e., the coefficients that sparsely represent pi.
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Finally, note that it is common to use (4.30) in penalized form, along with an additional
total-variation (TV) norm regularization [Yang 10], which results in [Agui 13c]:

min
p̃i

∥Ψ p̃i∥1 + τ1

∥∥∥Φp̃i − k̂i

∥∥∥2
2
+ τ2 ∥p̃i∥TV (4.31)

with

∥p̃i∥TV =
n∑

r=2

|p̃i [r]− p̃i [r − 1]| (4.32)

where |·| denotes the absolute value; and the parameters τ1 and τ2 control the trade-off
between sparsity in Ψ, model mismatch, and TV. Essentially, ∥·∥TV enables the introduc-
tion of prior knowledge about the fact that the nonzero elements of pi tend to appear in
groups (see Section 4.3.2), thereby exploiting the ordering of the features in pi [Tibs 05].

4.2.2 Polarimetric CS

As observed in Section 3.2, forested areas are generally dominated by two effective
SMs. Thus, if there exists a sparsifying basis Ψ ∈ Rn×n for pG and pV in (3.34), it follows
that P pol can be represented by a row-sparse matrix Θ ∈ Cn×9, such that P pol = ΨTΘ.
Consequently, the reconstruction of Θ can be directly cast as an instance of (4.27) as
follows:

min
Θ̃

∥∥∥Θ̃∥∥∥
2,1

subject to
∥∥∥ΦΨTΘ̃− K̂pol

∥∥∥
F
≤ ε (4.33)

where K̂pol is the sample version of Kpol and ε is an upper bound on the model mis-
match that potentially captures any source of decorrelation as well as an insufficient
level of multi-looking. In turn, this would yield P̃ pol = ΨTΘ̃. Although intuitive and
simple, this approach falls short of ideal, in that it ignores the inherent properties and
low dimensionality of the subspace of the polarimetric signatures CG and CV.
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As a stepping-stone toward a robust formulation note that, under the assumptions in-
troduced in Section 3.2, (3.31) and (3.34) imply that the rank of Kpol should be less than
or equal to 2. In practice, however, the hypothesis of invariance of the power distri-
bution with respect to the choice of polarimetric channel might not hold. As a result,
the rank of Kpol could turn out to be greater than 2 [Teba 10a]. Incidentally, the re-
quired dimensionality, and hence the number of effective SMs, can be readily enforced
by computing the best rank-2 approximation of Kpol. This approximation, which can
be obtained by means of a singular-value decomposition (SVD) [Teba 09], will be de-
noted with K2

pol. Of equal importance is the fact that the outer-product structure of
(3.34) implies that the adjoint of the corresponding right-singular vectors defines an
orthonormal basis for the unknown polarimetric signatures CG and CV [Teba 09] (see
also [Bijm 05, Merc 09]). As a result, if K2

pol is considered, it follows that every row of
P pol will be bound to lie in a 2-D subspace. Thus, once the right-singular vectors v1
and v2 ∈ C9—whose conjugates span the polarimetric space—have been obtained and
a matrix V ∈ C2×9

V =

[
v†1
v†2

]
(4.34)

has been formed, a data-adaptive reconstruction can be formulated as follows:

min
Ω̃

∥∥∥Ω̃∥∥∥
2,1

subject to
∥∥∥ΦΨTΩ̃V − K̂

2

pol

∥∥∥
F
≤ ε (4.35)

where Ω̃ ∈ Rn×2, which stems from the fact that hermitian matrices form a vector space
only over the real numbers. Just as in (4.33), ε is an upper bound on the model mis-
match. Then, P̃ pol = ΨTΩ̃V . In order to ensure physical validity, proper constraints
must be set so that every row of P̃ pol (when rearranged in a 3-by-3 matrix) results in
a positive-semidefinite matrix. To this end, let Vi ∈ C3×3 and P̃ polj

∈ C3×3 be the re-

sult of rearranging v†i and p̃polj ∈ C9 (a vector corresponding to the jth row of P̃ pol)
into 3-by-3 matrices, respectively. Since it is possible to find a matrix G that jointly
diagonalizes V1 and V2 (see, for example, [Teba 09]), it follows that G†P̃ polj

G is certain
to be diagonal. Furthermore, the corresponding main diagonal entries can be alter-
natively computed by Ṁp̃polj , where Ṁ ∈ C3×9 is formed from G† and G. Then, the
required positive semidefiniteness can be enforced by adding a constraint of the form
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Ṁ(ΨTΩ̃V )T ⪰ 0 [Agui 13a], which ensures element-wise nonnegativity.

Interestingly, this approach can be understood from a slightly different, yet instructive,
viewpoint. Specifically, rather than considering P pol to be composed of nine 1-D signals
(column vectors), it can be thought of as one 2-D signal. As a result, P pol can be repre-
sented in a 2-D basis, readily formed by computing the outer product of all 1-D basis
vectors for Ψ and all 1-D polarimetric signature basis vectors, i.e., a Kronecker basis.
Thus, just as the former allows for a sparse expansion of the cross-range backscattered
power, the latter provides a sparse expansion of the polarimetric signature. However,
since only two SMs are considered, the support of the polarimetric signature transform
coefficients is known a priori. Consequently, if ℓ≪ n is the size of the union of the sup-
ports of the two cross-range power distributions pG and pV (in the Ψ domain), then
the number of nonzero (real-valued) transform coefficients reduces to 2ℓ. Also note
that, from this perspective, Φ is bound to take partitioned measurements, in that only one
column is measured at a time. For further details on this kind of distributed sensing
setting, the reader is referred to [Duar 12].

For the sake of completeness, the possibility of the existence of more than two indepen-
dent SMs (i.e., SMs with both linearly independent power distributions and linearly
independent polarimetric signatures) will be considered. To this end, first assume that
all the hypotheses thus far considered hold true. It then follows from the outer-product
structure of (3.34) that relying on the best rank-2 approximation of Kpol will limit the
analysis to only two SMs [Teba 09]. Hence, a full-rank formulation is of interest. How-
ever, were the condition of power-distribution invariance not to hold, such a full-rank
approach would be unable to enforce this condition a priori. Consequently, this vio-
lation must be captured in the form of an additive perturbation. With this in mind, a
full-rank reconstruction can be accomplished via the following convex optimization:

min
P̃ pol

∥∥∥ΨP̃ pol

∥∥∥
2,1

subject to∥∥∥ΦP̃ pol − K̂pol

∥∥∥
F
≤ ε

and

P̃ polj
∈ H3

+ for all 1 ≤ j ≤ n

(4.36)
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where P̃ polj
∈ C3×3 is the result of rearranging the jth row of P̃ pol into a 3-by-3 matrix,

H3
+ denotes the cone of hermitian positive-semidefinite 3-by-3 matrices [Boyd 04], and

ε is an upper bound on the perturbation size. The resulting penalized form is given by:

min
P̃ pol

τ
∥∥∥ΨP̃ pol

∥∥∥
2,1

+
∥∥∥ΦP̃ pol − K̂pol

∥∥∥2
F

subject to

P̃ polj
∈ H3

+ for all 1 ≤ j ≤ n

(4.37)

where τ trades row-sparsity for data mismatch.

4.3 Sparse Representations for Forested Areas

4.3.1 Wavelet Systems

An orthogonal wavelet system is generally regarded as a set of functions used for
uniquely representing a signal. When formulated from a multi-resolution perspective,
these functions can be divided into two classes, namely, scaling and wavelet functions,
that represent coarse and fine information, respectively. Thus, the discrete wavelet
transform (DWT) of a signal ϑ (ς) for a given integer scale j0 computes the coefficients
cj0 and dj—at k integer shifts—as follows [Burr 98]:

cj0 (k) =

∫
ϑ (ς)φj0,k (ς) dς (4.38)

dj (k) =

∫
ϑ (ς)ψj,k (ς) dς (4.39)

where j ∈ [j0,+∞); k ∈ (−∞,+∞); and φj0,k (ς) and ψj,k (ς) are the family of functions
given by:

φj0,k (ς) = 2j0/2φ
(
2j0ς − k

)
(4.40)

ψj,k (ς) = 2j/2ψ
(
2jς − k

)
(4.41)
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Figure 4.2: Block diagram of the computation of the wavelet coefficients dj and the scaling
coefficients cj from the scaling coefficients cj+1. The blocks corresponding to h0 and g0 are
assumed to implement the required time-reversal.

where φ (ς) and ψ (ς) are, respectively, basic scaling and wavelet functions of choice
[Burr 98, Mall 09]. Then, ϑ (ς) can be recovered from:

ϑ (ς) =
∑
k

cj0 (k)φj0,k (ς) +
∑
k

+∞∑
j=j0

dj (k)ψj,k (ς) (4.42)

Incidentally, expansion coefficients at a given scale can be shown to define those at a
lower scale as follows [Burr 98, Mall 09]:

cj (k) =
∑
m

h0 (m− 2k) cj+1 (m) (4.43)

dj (k) =
∑
m

g0 (m− 2k) cj+1 (m) (4.44)

where h0 and g0 are known as the (low-pass) scaling and the (high-pass) wavelet filters,
respectively. This leads to the common practice of interpreting the samples ϑ (n), with
1 ≤ n ≤ N , of a signal ϑ (ς) as scaling coefficients at an arbitrary scale j + 1 such that
ϑ (n) = cj+1 (n). Thus, (4.43) and (4.44) can be used to compute the wavelet coefficients
dj and the scaling coefficients cj . Figure 4.2 shows a block diagram of the resulting
filtering and downsampling operation, where ϑ (n) has been assumed to be a periodic
signal with period N—and hence the circular convolution. Also, note that the blocks
corresponding to h0 and g0 are assumed to implement the required time-reversal.

When these steps are applied ℓ times in a cascaded fashion, the resulting operation is
said to compute the DWT with ℓ levels of decomposition. From an operational standpoint,
if ϑ (n) represents scaling coefficients at scale j + 1, then computing an ℓ-level DWT
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Figure 4.3: Expansion coefficients resulting from 3 levels of decomposition. The leaves of the
tree provide the 3-level DWT.

will yield scaling coefficients at scale j + 1 − ℓ and wavelet coefficients from scale
j +1− ℓ up to j. Figure 4.3 illustrates the intermediate and final expansion coefficients
for ℓ = 3, where the leaves of the tree provide the 3-level DWT. Also, note that, from
the assumption of periodicity, it follows that an ℓ-level DWT can be implemented as
an orthonormal transform defined by an N -by-N matrix Ψ, whose inverse is readily
found by its transpose [Mall 09].

Finally, a wavelet is said to have vm vanishing moments if it is orthogonal to polyno-
mials of degree vm − 1 [Mall 09]. Hence, if ϑ(ς) exhibits such a polynomial behavior, all
its wavelet coefficients dj (k) will be zero which, in turn, implies that ϑ (ς) will be fully
captured by the scaling coefficients cj0 (k). As a result, if ϑ (ς) has few isolated singu-
larities and is very regular, a wavelet with many vanishing moments should be chosen
in order to achieve a sparse expansion. On the contrary, if the number of singularities
increases—which results in high-amplitude coefficients due to the overlap between
the chosen wavelets and these singularities—the size of the wavelet support should
be decreased. Unfortunately, this is achieved at the expense of reducing the number
of vanishing moments. That being said, there is a trade-off between the number of
vanishing moments and the support size [Mall 09].

4.3.2 Wavelets for SAR Tomography

As a consequence of equation (4.5), the choice of an orthonormal basis Ψ requires some
special consideration. First, Ψ should generate a sparse expansion. Second, the coher-
ence between the measurement basis Υ and the sparsity basis Ψ should be as small
as possible. This section proposes a sparsifying basis that is in line with these two
requirements [Agui 13c].
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Figure 4.4: Sparsity in the wavelet domain. (Left column) Power distribution (as a function of
height with n = 128) of typical cross-range profiles encountered over forested terrain. (Middle
column) Sorted magnitudes of the transform coefficients using a Daubechies Symmlet wavelet
with 4 vanishing moments and 3 levels of decomposition. (Right column) Magnitude of the
inverse DWT after zeroing out all but the 5 largest coefficients. All plots have been normalized.
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As developed in Section 3.2, cross-range profiles over forested terrain follow, in gen-
eral, a very simple two-component structure. Specifically, one of these components
accounts for a ground SM whereas the other accounts for a volume SM. Interestingly,
their respective power distributions are quite regular, thereby giving rise to sparse rep-
resentations in the wavelet domain [Agui 13c]. By way of illustration, the left column
of the plots in Figure 4.4 shows several commonly-encountered power distributions
[Teba 12, Agui 13c]. In addition, the middle column displays the rapid decay of the
sorted magnitudes of the corresponding transform coefficients, which were computed
using Daubechies Symmlet wavelets with 4 vanishing moments and 3 levels of decom-
position. Finally, the right column presents the magnitude of the inverse DWT, after
zeroing out all but the 5 largest transform coefficients. Clearly, the profiles are very
well approximated. In this respect, the choice of Symmlets can be justified by noting
that, besides yielding good results in practice, they are optimal in the sense that they
have minimum support for a given number of vanishing moments [Burr 98, Mall 09].

Lastly, in order to generate the maximum number of small wavelet coefficients, it might
seem tempting to use a Ψ that computes many levels of decomposition. However,
more levels of decomposition lead to a higher coherence. For example, 4 levels result
in µ0 = 4.0, 3 levels result in µ0 = 2.8284, while 2 levels in µ0 = 2.0.



5 Separation of SMs via Convex
Optimization

This chapter develops the fundamentals of algebraic SM separation—originally intro-
duced in [Teba 09]—and proposes a convex optimization approach to achieving such
separation. The basic idea is to filter out the cross-range power distributions and po-
larimetric signatures of the ground and volume SMs (see Section 3.2) so that they can
be subsequently evaluated separately. Specifically, while their spatial distributions can
then be determined via tomographic techniques such as FB, CB, and/or CS, their po-
larimetric signatures can be analyzed in terms of eigendecomposition-based parame-
ters (see Section 3.3). The difficulty, however, lies in the fact that the filtering procedure
is required to ensure positive semidefiniteness of the resulting matrices, i.e., physical
validity. As will be developed, this can be accomplished by restricting the analysis to
the cone of hermitian positive-semidefinite matrices [Boyd 04].

The outer-product model outlined in Section 3.2 will serve as a starting point. First,
note that, as follows from (3.31) and (3.34), Kpol can be written as:

Kpol = ΦpGvec (CG)
T + ΦpVvec (CV)

T (5.1)

= kGvec (CG)
T + kVvec (CV)

T (5.2)

= vec (KG)vec (CG)
T + vec (KV)vec (CV)

T (5.3)

where KG and KV ∈ Cm×m are ground and volume covariance matrices (usually re-

ferred to as structure matrices [Teba 09]), respectively, which can be exploited by the

59
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tomographic techniques introduced in Sections 2.4 and 4.2.11. Then, the SVD of Kpol

must be given by:

Kpol =
[
w1 w2

] [ σ1v
†
1

σ2v
†
2

]
(5.4)

where σ1 ≥ σ2 are nonnegative singular values; w1 and w2 ∈ Cm2 are, respectively, the
first and second left-singular vectors; and v1 and v2 ∈ C9 are, respectively, the first and
second right-singular vectors. Next, given an invertible matrix

ASMs =

[
ȧ ḃ

ċ ḋ

]
∈ R2×2 (5.5)

it follows that:

Kpol =
[
w1 w2

]
ASMsA

−1
SMs

[
σ1v

†
1

σ2v
†
2

]
(5.6)

which, by considering (5.3), leads to:

vec (KG) = ȧw1 + ċw2 (5.7)

vec (KV) = ḃw1 + ḋw2 (5.8)

Note, however, that the interpretation of the elements of KG and KV as correlation
coefficients [Baml 98, Hans 01] requires that the respective diagonal elements be equal
to 1. Incidentally, this can be readily enforced by letting

w1 = w1/w11 (5.9)

w2 = w2/w21 (5.10)

1 Observe that (5.3) is equivalent to the well-known sum of Kronecker products (SKP) given by
[Teba 09]:

Kpol = CG ⊗KG + CV ⊗KV
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and

ċ = 1− ȧ (5.11)

ḋ = 1− ḃ (5.12)

where wi1 denotes the first element of the ith left-singular vector. This, in turn, results
in:

vec (KG) = ȧw1 + (1− ȧ)w2 (5.13)

vec (KV) = ḃw1 + (1− ḃ)w2 (5.14)

Accordingly, vec (CG) and vec (CV) must be given by:

vec (CG) =
1

ȧ− ḃ

(
(1− ḃ)v1 − ḃv2

)
(5.15)

vec (CV) =
1

ȧ− ḃ

(
−(1− ȧ)v1 + ȧv2

)
(5.16)

with

v1 = w11σ1conj (v1) (5.17)

v2 = w21σ2conj (v2) (5.18)

Thus, the aforementioned considerations can be equivalently summarized into the fol-
lowing expression:

KG = ȧW 1 + (1− ȧ)W 2 (5.19)

KV = ḃW 1 + (1− ḃ)W 2 (5.20)

CG =
1

ȧ− ḃ

(
(1− ḃ)V 1 − ḃV 2

)
(5.21)

CV =
1

ȧ− ḃ

(
−(1− ȧ)V 1 + ȧV 2

)
(5.22)

where W 1 and W 2 ∈ Cm×m are the rearranged versions of w1 and w2, respectively.
Likewise, V 1 and V 2 ∈ C3×3 are the rearranged versions of v1 and v2, respectively.
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As a result of the previous derivations, the problem of SM separation is equivalent to
the problem of finding two real numbers ȧ and ḃ subject to the constraint of positive
semidefiniteness, i.e., physical validity. A detailed discussion on the possible choices
of these parameters can be found in [Teba 12], where the authors show the robust-
ness of this approach for estimating ground and treetop elevations [Teba 12]. While
the methodology originally proposed in [Teba 09] resorts to joint-diagonalization tech-
niques, this dissertation takes a convex optimization approach that enables a direct
computation of ȧ and ḃ. Specifically, the minimum allowed values for ȧ and ḃ will be
retrieved by:

min
ã,̃b

ã+ b̃ subject to

ãW 1 + (1− ã)W 2 ∈ Hm
+

b̃W 1 + (1− b̃)W 2 ∈ Hm
+

(1− b̃)V 1 − b̃V 2 ∈ H3
+

− (1− ã)V 1 + ãV 2 ∈ H3
+

(5.23)

where Hm
+ and H3

+ denote the cones of hermitian positive-semidefinite m-by-m and 3-
by-3 matrices, respectively [Boyd 04]. Analogously, the maximum allowed values are
given by:

max
ã,̃b

ã+ b̃ subject to

ãW 1 + (1− ã)W 2 ∈ Hm
+

b̃W 1 + (1− b̃)W 2 ∈ Hm
+

(1− b̃)V 1 − b̃V 2 ∈ H3
+

− (1− ã)V 1 + ãV 2 ∈ H3
+

(5.24)

Finally, note that, in practice, Kpol must be estimated from multi-look data. As thor-
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oughly discussed in [Teba 09], this can be efficiently accomplished by computing the
best rank-2 approximation of K̂pol.





6 Convexity Properties of
Tomographic Techniques

Thus far, the optimization problems formulated in Sections 4 and 5 have been regarded
as convex and, as such, their local optima have been assumed to be global. This chapter
verifies that these problems satisfy a reduced set of sufficient conditions, which are a
subset of a well-established ruleset for ensuring convexity. In particular, an optimiza-
tion problem will be said to be convex if it can be described by the following building
blocks [Libe 06, Blon 08]:

1) An objective function that consists of the minimization (maximization) of a convex
(concave) expression.

2) Zero or more constraints that are either a less-than inequality (i.e., ≤), such that
the left-hand side (LHS) is a convex expression and the right-hand side (RHS) is a
nonnegative constant; or a set membership relation (i.e., ∈), such that the LHS is an
affine expression and the RHS is a convex set.

In order to form valid expressions, it is important to note that [Blon 08]:

– The product of a convex expression and a nonnegative constant is a convex expres-
sion.

– The sum of convex expressions is a convex expression.

– The sum or difference of affine expressions is an affine expression.

– An affine expression is both a convex and a concave expression.
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In addition, the following composition rules will be considered [Blon 08]:

– The composition of a convex function with an affine function is convex.

– The composition of a nondecreasing convex function with a convex function is con-
vex.

Note that the (·)2 function will be assumed to be given by max {·, 0}2 where the ar-
gument is real. Consequently, (·)2 is convex and nondecreasing and, for nonnegative
arguments, it coincides with its standard definition.

In what follows, every tomographic problem will be restated first, followed by a de-
tailed description of its ruleset-compliant building blocks. For a review of the complete
ruleset, the reader is referred to [Libe 06, Blon 08] and the references therein.

6.1 Single-Channel CS

Nonpenalized Formulation

The nonpenalized single-channel CS optimization problem given by (4.30) is:

min
p̃i

∥Ψ p̃i∥1 subject to∥∥∥Φp̃i − k̂i

∥∥∥
2
≤ ε

and

p̃i ∈ Rn
≥0

(6.1)

where Φ ∈ Cm2×n, p̃i ∈ Rn, k̂i ∈ Cm2 , Ψ ∈ Rn×n, and ε ≥ 0. The objective function
∥Ψ p̃i∥1 corresponds to a convex expression, since it is the L1-norm (convex function) of
an affine expression. The first constraint is an inequality with a nonnegative constant ε
as RHS and a convex LHS

∥∥∥Φp̃i − k̂i

∥∥∥
2
, which follows from the fact that it is theL2-norm
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(convex function) of an affine expression. The second constraint is a set membership
relation with an affine LHS p̃i and the convex set Rn

≥0 as RHS.

Penalized Formulation

The penalized single-channel CS counterpart [see (4.31) and (4.32)] is given by:

min
p̃i

∥Ψ p̃i∥1 + τ1

∥∥∥Φp̃i − k̂i

∥∥∥2
2
+ τ2 ∥p̃i∥TV subject to

p̃i ∈ Rn
≥0

(6.2)

where Φ ∈ Cm2×n, p̃i ∈ Rn, k̂i ∈ Cm2 , Ψ ∈ Rn×n, τ1 ≥ 0, and τ2 ≥ 0. The objective func-
tion is a convex expression, since it is the sum of three convex expressions, namely, the
L1-norm (convex function) of the affine expression Ψ p̃i; the product of a nonnegative
constant τ1 and the square (which is, as previously defined, a nondecreasing convex
function) of the L2-norm (convex function) of the affine expression Φp̃i − k̂i; and the
product of a nonnegative constant τ2 and the L1-norm (convex function) of an affine
expression [see (4.32)]. The only constraint is a set membership relation with an affine
LHS p̃i and the convex set Rn

≥0 as RHS.

6.2 Polarimetric CS

Nonpenalized Formulation (Two SMs)

The nonpenalized polarimetric CS optimization problem restricted to two SMs [see



68

(4.35)] is defined by:

min
Ω̃

∥∥∥Ω̃∥∥∥
2,1

subject to∥∥∥ΦΨTΩ̃V − K̂
2

pol

∥∥∥
F
≤ ε

and

Ṁ(ΨTΩ̃V )T ∈ R3×n
≥0

(6.3)

where Ω̃ ∈ Rn×2, Φ ∈ Cm2×n, Ψ ∈ Rn×n, V ∈ C2×9, K̂
2

pol ∈ Cm2×9, Ṁ ∈ C3×9, and

ε ≥ 0. The objective function
∥∥∥Ω̃∥∥∥

2,1
corresponds to a convex expression, since it is the

L2,1-norm (convex function) of an affine expression. The first constraint is an inequal-
ity with a nonnegative constant ε as RHS and a convex LHS

∥∥∥ΦΨTΩ̃V − K̂
2

pol

∥∥∥
F
, since

it takes the Frobenius-norm (convex function) of an affine expression. The second con-
straint is a set membership relation with an affine LHS Ṁ(ΨTΩ̃V )T and the convex set
R3×n

≥0 as RHS.

Nonpenalized Formulation (More Than Two SMs)

As formulated in (4.36), the nonpenalized polarimetric CS optimization that is able to
account for between two and nine SMs is defined by:

min
P̃ pol

∥∥∥ΨP̃ pol

∥∥∥
2,1

subject to∥∥∥ΦP̃ pol − K̂pol

∥∥∥
F
≤ ε

and

P̃ polj
∈ H3

+ for all 1 ≤ j ≤ n

(6.4)

where P̃ pol ∈ Cn×9, Φ ∈ Cm2×n, Ψ ∈ Rn×n, K̂pol ∈ Cm2×9, P̃ polj
∈ C3×3, and ε ≥ 0.
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The objective function
∥∥∥ΨP̃ pol

∥∥∥
2,1

is a convex expression, since it is the L2,1-norm (con-

vex function) of an affine expression. The first constraint is an inequality with a non-
negative constant ε as RHS and a convex LHS

∥∥∥ΦP̃ pol − K̂pol

∥∥∥
F
, because it takes the

Frobenius-norm (convex function) of an affine expression. The jth constraint is a set
membership relation with an affine LHS P̃ polj

and the convex set H3
+ as RHS.

Penalized Formulation (More Than Two SMs)

The penalized version of the previous problem is given by (4.37), as follows:

min
P̃ pol

τ
∥∥∥ΨP̃ pol

∥∥∥
2,1

+
∥∥∥ΦP̃ pol − K̂pol

∥∥∥2
F

subject to

P̃ polj
∈ H3

+ for all 1 ≤ j ≤ n

(6.5)

where P̃ pol ∈ Cn×9, Φ ∈ Cm2×n, Ψ ∈ Rn×n, K̂pol ∈ Cm2×9, P̃ polj
∈ C3×3, and τ ≥ 0. The

objective function is a convex expression, since it is the sum of two convex expressions,
namely, the product of a nonnegative constant τ and the L2,1-norm (convex function)
of the affine expression ΨP̃ pol, and the square (nondecreasing convex function) of the
Frobenius-norm (convex function) of the affine expression ΦP̃ pol − K̂pol. The jth con-
straint is a set membership relation with an affine LHS P̃ polj

and the convex set H3
+ as

RHS.

6.3 Separation of SMs

According to (5.23) and (5.24), the region defined by valid parameter pairs (ȧ, ḃ) that
allow for separation of SMs can be found by performing two optimizations, namely, a
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minimization and a maximization, as formulated below:

min
ã,̃b

ã+ b̃ subject to

ãW 1 + (1− ã)W 2 ∈ Hm
+

b̃W 1 + (1− b̃)W 2 ∈ Hm
+

(1− b̃)V 1 − b̃V 2 ∈ H3
+

− (1− ã)V 1 + ãV 2 ∈ H3
+

(6.6)

max
ã,̃b

ã+ b̃ subject to

ãW 1 + (1− ã)W 2 ∈ Hm
+

b̃W 1 + (1− b̃)W 2 ∈ Hm
+

(1− b̃)V 1 − b̃V 2 ∈ H3
+

− (1− ã)V 1 + ãV 2 ∈ H3
+

(6.7)

where ã and b̃ are real numbers; W 1 and W 2 ∈ Cm×m; and V 1 and V 2 ∈ C3×3. Note
that the objective function of both optimization problems are based upon the affine
expression ã+b̃ (sum of two affine expressions). As such, it is both convex and concave,
thus providing direct compliance with the convexity rules. In addition, all constraints
are set membership relations with affine LHSs and convex sets as RHSs.



7 Experimental Results

7.1 Sparsity-Based Experiments

In order to demonstrate the advantages and the shortcomings of the sparsity-based
methodologies outlined in Chapter 4, both simulated and real data will be used. The
real data consist of 21 polarimetric SAR images obtained by the E-SAR airborne sen-
sor of DLR during a campaign near Dornstetten, Germany, in 2006. All flights were
performed at approximately the same altitude with horizontal baselines of about 20m.
Figures 7.1 and 7.2 show, respectively, an optical image and the amplitude of a radar
image of this area. The center frequency used was 1.3GHz (L-band) and the nomi-
nal altitude above ground was about 3200m. The resulting resolutions were 0.66m
and 2.07m in azimuth and range, respectively. The near, middle, and far ranges cor-
responded to 3953.15m, 4527.09m, and 5102.52m, respectively [Nann 09, Nann 11].
Three different constellations will be considered employing the following: C1) all 21
passes; C2) 10 irregular passes; and C3) 6 irregular passes. Figures 7.3–7.5 show the his-
tograms of horizontal baselines and corresponding horizontal cobaselines. Note that
Figure 7.3(b) uncovers a high level of redundancy, unlike Figures 7.4(b) and 7.5(b).

7.1.1 Single-Channel CS

7.1.1.1 Experiments with Simulated Data

This section presents a comparison of FB and CB (as defined in Section 2.4) with the
single-channel CS technique by letting τ1 = τ2 = 0.5 [see (4.31)] and employing a
Daubechies Symmlet wavelet with 4 vanishing moments and 3 levels of decomposi-

71
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Figure 7.1: Test site near Dornstetten, Germany (47◦ 59′ 37.45′′ N, 10◦ 51′ 40.27′′ E). Google.

tion. To this end, a 300-look cross-range profile was simulated based on a circular
Gaussian distribution with zero mean and unit variance. In addition, multi-baseline
measurements were generated considering the system parameters previously intro-
duced and constellations C1–C3 at the near, middle, and far ranges. Decorrelation ef-
fects were introduced by means of Gaussian noise using a signal-to-noise ratio (SNR)
of 10dB.

The tomographic inversion was carried out under different assumptions on the extent
of the cross-range profile, i.e., the observation space. Figure 7.6 shows the normalized
profiles as a function of height obtained using 21 passes. First, an observation space
of 80m was assumed with n = 256 at near, middle, and far ranges [see Figures 7.6(a)–
(c)]. Then, it was restricted to 40m with n = 128 [see Figures 7.6(d)–(f)]. Similarly,
the reconstruction was performed employing 10 and 6 tracks (see Figures 7.7 and 7.8).
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Figure 7.2: Polarimetric SAR image of the test site near Dornstetten, Germany (red: HH − VV;
green: HV; blue: HH + VV). The targets of interest are located within the yellow rectangles
along azimuth.

Alternatively, Figure 7.9 shows an example of the impact of choosing an insufficient
range of heights (i.e., 20m with n = 128), where part of the backscatter is neglected.

In light of these simulations, several observations can be made:

a) When using all the available passes (Figure 7.6), CS almost does not suffer from
ambiguities. A further reduction of the observation space does not seem to provide
any significant advantage.

b) When decreasing the number of passes to 10 (Figure 7.7), despite providing similar
results to those obtained using 21 tracks, a further reduction of the range of heights
does prove to be advantageous for CS at the near range. The reconstruction is ac-
tually unsatisfactory if this is not taken into account [compare Figure 7.7(a) with
(d)].
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(a) (b)

Figure 7.3: Histogram of (a) 21 horizontal baselines employed in the first constellation and
(b) resulting horizontal cobaselines.

(a) (b)

Figure 7.4: Histogram of (a) 10 horizontal baselines employed in the second constellation and
(b) resulting horizontal cobaselines.

(a) (b)

Figure 7.5: Histogram of (a) 6 horizontal baselines employed in the third constellation and
(b) resulting horizontal cobaselines.

c) A more limited number of tracks (Figure 7.8) can lead to unsatisfactory results at
the near range, regardless of the previous knowledge about the observation space
[compare Figure 7.8(a) with (d)].

d) An erroneous range of heights may introduce artifacts in the CS reconstruction (see
Figure 7.9).

Finally, note that, although the TV-norm regularization promotes the removal of spuri-
ous spikes and aliasing-like artifacts, in practice, setting τ2 = 0 also leads to satisfactory
results [Agui 13c].
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(a) (b) (c)

(d) (e) (f)

Figure 7.6: Normalized cross-range profiles as a function of height (in meters) obtained us-
ing 21 passes, 300 looks, and SNR = 10dB. (Black) Simulated. (Blue) CS. (Green) CB. (Red)
FB. (Top plots) An observation space corresponding to a height range of 80m has been con-
sidered at (a) near, (b) middle, and (c) far ranges. (Bottom plots) A limited observation space
corresponding to a height range of 40m has been considered at (d) near, (e) middle, and (f) far
ranges.

(a) (b) (c)

(d) (e) (f)

Figure 7.7: Normalized cross-range profiles as a function of height (in meters) obtained using
10 irregular passes, 300 looks, and SNR = 10dB. (Black) Simulated. (Blue) CS. (Green) CB
method. (Red) FB. (Top plots) An observation space corresponding to a height range of 80m has
been considered at (a) near, (b) middle, and (c) far ranges. (Bottom plots) A limited observation
space corresponding to a height range of 40m has been considered at (d) near, (e) middle, and
(f) far ranges.
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(a) (b) (c)

(d) (e) (f)

Figure 7.8: Normalized cross-range profiles as a function of height (in meters) obtained using 6
irregular passes, 300 looks, and SNR = 10dB. (Black) Simulated. (Blue) CS. (Green) CB method.
(Red) FB. (Top plots) An observation space corresponding to a height range of 80m has been
considered at (a) near, (b) middle, and (c) far ranges. (Bottom plots) A limited observation
space corresponding to a height range of 40m has been considered at (d) near, (e) middle, and
(f) far ranges.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.9: Normalized cross-range profiles as a function of height (in meters) obtained using
300 looks and SNR = 10dB. (Black) Simulated. (Blue) CS. (Green) CB. (Red) FB. The observa-
tion space corresponds to a height range of 20m, thus ignoring part of the cross-range backscat-
ter. (Top plots) 21 passes at (a) near, (b) middle, and (c) far ranges. (Middle plots) 10 irregular
passes at (d) near, (e) middle, and (f) far ranges. (Bottom plots) 6 irregular passes at (g) near,
(h) middle, and (i) far ranges.
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(a)

(b)

(c)

Figure 7.10: Span of tomogram (normalized at every position) obtained by FB as a function
of azimuth and height (300m by 40m) using a 20 × 20m2 window with (a) 21, (b) 10, and
(c) 6 passes. Range distance: 4816.30m.

7.1.1.2 Experiments with Real Data

For validation purposes, several contiguous azimuth positions were selected at two
different range locations (i.e., 4816.30m and 4501.61m), as indicated by the yellow rect-
angles and the red lines in Figure 7.2. As a result, tomographic slices were obtained as
a function of azimuth and height of dimensions 300m by 40m (n = 128), respectively.
In both cases, a 20 × 20m2 estimation window was considered. In Figure 7.10, FB was
used for the range distance 4816.30m. Figures 7.10(a)–(c) display the normalized sum
of the cross-range power throughout polarimetric channels (i.e., the span) using the
constellations C1–C3, respectively. Likewise, as presented in Figure 7.11, the recon-
struction was carried out with CB. In order to obtain CS results, first note that (4.29)
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(a)

(b)

(c)

Figure 7.11: Span of tomogram (normalized at every position) obtained by CB as a function
of azimuth and height (300m by 40m) using a 20 × 20m2 window with (a) 21, (b) 10, and
(c) 6 passes. Range distance: 4816.30m.

implies that:

kHH–HH + kVV–HH + kHV–HV = Φ(pHH–HH + pVV–HH + pHV–HV) (7.1)

It is therefore possible to estimate the span directly by carrying out the optimization
given by (4.31) based on k̂span = k̂HH–HH+ k̂VV–HH+ k̂HV–HV. Figure 7.12 shows the results
obtained using τ1 = τ2 = 0.5 and a Daubechies Symmlet wavelet with 4 vanishing
moments and 3 levels of decomposition.

Evidently, all methods bear comparison with each other for C1 [see Figures 7.10(a),
7.11(a), and 7.12(a)]. However, a reduction in the number of tracks, i.e., constellations
C2–C3, reveals the robustness of the different methods. In contrast to CS [Figures 7.12(b)
and (c)], these irregular baseline distributions cause FB [Figures 7.10(b) and (c)] as well
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(a)

(b)

(c)

Figure 7.12: Span of tomogram (normalized at every position) obtained by CS as a function
of azimuth and height (300m by 40m) using a 20 × 20m2 window with (a) 21, (b) 10, and
(c) 6 passes. Range distance: 4816.30m.

as CB [Figures 7.11(b) and (c)] to present more severe artifacts, just as observed with the
simulated data. Figures 7.13–7.15 show similar results at the nearer range 4501.61m,
so as to see the impact of the ambiguities even for C1. Upon comparison, the CS recon-
struction exhibits the lowest ambiguity level.

7.1.1.3 Computation Time

Note that even though research is currently being conducted in order to solve CS prob-
lems efficiently (see, for example, [Beck 11] and the references therein), the increase in
computational complexity is significant. By way of illustration, Figure 7.16 presents
three histograms of the reconstruction time required for single-channel CS [as formu-
lated in (4.31)]. The different constellations (C1–C3) were employed for simulating
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(a)

(b)

(c)

Figure 7.13: Span of tomogram (normalized at every position) obtained by FB as a function
of azimuth and height (300m by 40m) using a 20 × 20m2 window with (a) 21, (b) 10, and
(c) 6 passes. Range distance: 4501.61m.

the corresponding multi-baseline measurements at the far range. For every realiza-
tion (2000 in total), one of the profiles from the left column of Figure 4.4 was cho-
sen uniformly at random. The SNR = 10dB and the number of looks was 300. The
resulting times have been normalized to the FB reconstruction time using 21 passes.
The solver used was CVX, which is a package for specifying and solving convex pro-
grams [Gran 13]. As conveyed by the histograms, besides incurring much more com-
putation time, CS is less predictable, due to the iterative nature of the algorithm.
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(a)

(b)

(c)

Figure 7.14: Span of tomogram (normalized at every position) obtained by CB as a function
of azimuth and height (300m by 40m) using a 20 × 20m2 window with (a) 21, (b) 10, and
(c) 6 passes. Range distance: 4501.61m.
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(a)

(b)

(c)

Figure 7.15: Span of tomogram (normalized at every position) obtained by CS as a function
of azimuth and height (300m by 40m) using a 20 × 20m2 window with (a) 21, (b) 10, and
(c) 6 passes. Range distance: 4501.61m.

Figure 7.16: Normalized histogram of the reconstruction time required for CS (black: 21 passes;
red: 10 passes; magenta: 6 passes). The times have been normalized to the FB reconstruction
time using 21 passes.
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7.1.2 Polarimetric CS

7.1.2.1 Tomographic Slices

For the polarimetric CS case, the tomographic reconstruction was conducted in the lex-
icographic representation according to (4.37). Again, the sparsifying basis Ψ ∈ R128×128

was based on the Daubechies Symmlet wavelet with 4 vanishing moments and 3 levels
of decomposition. The same azimuth positions as those selected for the single-channel
case at 4816.30m were considered, as indicated by the yellow rectangle in Fig. 7.2. The
sample covariance matrix was computed by taking a 20 × 20m2 estimation window.
The value of τ was found heuristically by performing the reconstruction repeatedly
with increasing τ starting from 0 (i.e., no regularization). Then, the smallest value was
chosen such that all the recovered profiles exhibited no spikes, so as to be consistent
with the assumption that the unknown cross-range powers are sparse in the wavelet
domain. In this regard, note that spikes, or rather spatially-sparse solutions, are ex-
pected in this kind of optimization when it is not regularized but nonnegativity con-
straints are imposed (see, for example, [Dono 10]). For this specific tomographic slice
τ = 2 was decided upon. Figures 7.17–7.19 show a comparison of the reconstructed
profiles using C2 for the HH, VV, and HV channels, respectively. In each figure, the FB
reconstruction using C1 is shown as a reference first, followed by the FB, CB, and CS
reconstructions. Likewise, Figures 7.20–7.22 present tomographic slices using C3. As
conveyed by the figures, the CS reconstruction is able to counter the artifacts exhibited
by CB and FB, just like in the single-channel case.
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(a)

(b)

(c)

(d)

Figure 7.17: Tomographic slices in the HH channel (normalized at every position) obtained as a
function of azimuth and height (300m by 40m) using a 20 × 20m2 window. (a) FB reconstruc-
tion with 21 passes. (b) FB reconstruction with 10 passes. (c) CB reconstruction with 10 passes.
(d) Polarimetric CS reconstruction with 10 passes. Range distance: 4816.30m.
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(a)

(b)

(c)

(d)

Figure 7.18: Tomographic slices in the VV channel (normalized at every position) obtained as a
function of azimuth and height (300m by 40m) using a 20 × 20m2 window. (a) FB reconstruc-
tion with 21 passes. (b) FB reconstruction with 10 passes. (c) CB reconstruction with 10 passes.
(d) Polarimetric CS reconstruction with 10 passes. Range distance: 4816.30m.
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(a)

(b)

(c)

(d)

Figure 7.19: Tomographic slices in the HV channel (normalized at every position) obtained as a
function of azimuth and height (300m by 40m) using a 20 × 20m2 window. (a) FB reconstruc-
tion with 21 passes. (b) FB reconstruction with 10 passes. (c) CB reconstruction with 10 passes.
(d) Polarimetric CS reconstruction with 10 passes. Range distance: 4816.30m.
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(a)

(b)

(c)

(d)

Figure 7.20: Tomographic slices in the HH channel (normalized at every position) obtained as a
function of azimuth and height (300m by 40m) using a 20 × 20m2 window. (a) FB reconstruc-
tion with 21 passes. (b) FB reconstruction with 6 passes. (c) CB reconstruction with 6 passes.
(d) Polarimetric CS reconstruction with 6 passes. Range distance: 4816.30m.
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(a)

(b)

(c)

(d)

Figure 7.21: Tomographic slices in the VV channel (normalized at every position) obtained as a
function of azimuth and height (300m by 40m) using a 20 × 20m2 window. (a) FB reconstruc-
tion with 21 passes. (b) FB reconstruction with 6 passes. (c) CB reconstruction with 6 passes.
(d) Polarimetric CS reconstruction with 6 passes. Range distance: 4816.30m.
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(a)

(b)

(c)

(d)

Figure 7.22: Tomographic slices in the HV channel (normalized at every position) obtained as a
function of azimuth and height (300m by 40m) using a 20 × 20m2 window. (a) FB reconstruc-
tion with 21 passes. (b) FB reconstruction with 6 passes. (c) CB reconstruction with 6 passes.
(d) Polarimetric CS reconstruction with 6 passes. Range distance: 4816.30m.
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(a)

(b)

(c)

Figure 7.23: Polarimetric entropy obtained as a function of azimuth and height (460m by 25m)
using a 20× 20m2 window and a common mask. The slices correspond to (a) FB with 21 passes,
(b) polarimetric CS with 10 passes, and (c) polarimetric CS with 6 passes. Range distance:
4272.33m.

7.1.2.2 Polarimetric Validation

In order to validate the property of physical validity, tomographic slices of dimensions
460m by 25m were obtained in the Pauli representation according to (4.37) using C2
and C3. The sparsifying basis Ψ ∈ R128×128 corresponded to that used in previous sec-
tions and the sample covariance matrix was computed by taking a 20 × 20m2 estima-
tion window. The range distance was 4272.33m, as indicated by the yellow rectangle
in Fig. 7.2. Then, several polarimetric parameters (see Section 3.3) were computed for
each retrieved P̃ polj

. Figures 7.23–7.26 present, respectively, the polarimetric entropy,
anisotropy, mean alpha angle, and maximum alpha angle (note that angles are given
in degrees). In each figure, the FB reconstruction using 21 passes is shown first, fol-
lowed by the CS reconstruction with C2 and C3. Note that, for comparison purposes,
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(a)

(b)

(c)

Figure 7.24: Polarimetric anisotropy obtained as a function of azimuth and height (460m by
25m) using a 20 × 20m2 window and a common mask. The slices correspond to (a) FB with
21 passes, (b) polarimetric CS with 10 passes, and (c) polarimetric CS with 6 passes. Range
distance: 4272.33m.

a common mask has been applied and thus white regions should not be considered.

In addition to bearing comparison with the linear reconstruction provided by FB, the
CS slices are consistent with the expected scattering phenomena. Specifically, the az-
imuth interval [46m, 138m] is known to correspond with scattering from a bare surface
where a metallic container of dimensions 6.10 × 2.40 × 2.55m3 ([length] × [width] ×
[height]) has been placed at 100m [Nann 11]. As a result, while the entropy is low for
both the ground and the container, the mean and maximum alpha angle tend to be 0◦

for the ground and 90◦ for the container. The anisotropy is not considered in this inter-
val, since it is expected to be noisy due to the low entropy values [Lee 09]. On the other
hand, the azimuth interval [230m, 414m] corresponds with forest scattering where an-
other metallic container has been placed at 250m. As expected, the entropy is high
for the forest but lower for the container, while the anisotropy gives, in general, low
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(a)

(b)

(c)

Figure 7.25: Mean alpha angle obtained as a function of azimuth and height (460m by 25m)
using a 20× 20m2 window and a common mask. The slices correspond to (a) FB with 21 passes,
(b) polarimetric CS with 10 passes, and (c) polarimetric CS with 6 passes. Range distance:
4272.33m.

values [Lee 09]. In addition, the mean alpha angle throughout the forest corresponds
with volume scattering and is hence close to 45◦.

For additional verification purposes, 4000 azimuth–range positions were randomly
chosen from a region where cross-range profiles are expected to have a very limited
spatial extent, as indicated by the yellow rectangle in Figure 7.27. Then, the tomo-
graphic reconstruction was carried out by FB using constellation C1 and by polarimet-
ric CS using constellations C2 and C3. Next, the estimated P̃ polj

corresponding to the
height of maximum span was selected, thus yielding 2-D maps of 3-by-3 covariance
matrices. Subsequently, the entropy, anisotropy, and alpha angles were computed for
these 2-D maps as well as for two 2-D polarimetric SAR images corresponding to the
reference track (i.e., the 0-baseline track) and a 100m-baseline slave track. The rea-
son for this choice lies in the fact that, since a limited cross-range spatial distribution
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(a)

(b)

(c)

Figure 7.26: Maximum alpha angle obtained as a function of azimuth and height (460m by
25m) using a 20 × 20m2 window and a common mask. The slices correspond to (a) FB with
21 passes, (b) polarimetric CS with 10 passes, and (c) polarimetric CS with 6 passes. Range
distance: 4272.33m.

is expected, the polarimetric parameters derived from these five 2-D maps should be
highly correlated. However, in practice, these parameters do experience small varia-
tions which are independent of possible artifacts due to tomographic processing. This
is illustrated in Figure 7.28, where the reference and slave maps are compared. The
green line indicates the ideal perfect correlation, while the red line has been obtained
by a Least Squares (LS) fit. Figures 7.29–7.31 show, respectively, the same kind of com-
parison with respect to the reference track for FB with 21 passes and for CS with 10 and
6 passes. In addition, Figures 7.32 and 7.33 show a comparison with respect to FB with
21 passes for CS with 10 and 6 passes, respectively. The resulting root mean square
errors (RMSEs) are reported in Figure 7.34, which should be interpreted as a deviation
rather than an error.

As observed in the scattergraphs and bar charts, all tomographic inversions incur an
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Figure 7.27: Polarimetric SAR image of the test site near Dornstetten, Germany (red: HH −
VV; green: HV; blue: HH + VV). The yellow rectangle indicates a region where no volume
scattering is expected.

acceptable error with respect to the reference track, which provides a pseudo-ground
truth. In particular, the entropy, anisotropy, and mean and maximum alpha angle cor-
respond, respectively, with a RMSE of less than 0.12, 0.08, 2.9◦, and 5.23◦. Similarly, the
RMSE of CS with respect to FB is, respectively, of less than 0.03, 0.05, 1.09◦, and 2.23◦.
Also, note that the entropy parameter tends to shift to lower values when compar-
ing the reference track with the tomographic results [see Figures 7.29(a), 7.30(a), and
7.31(a)], which can be explained by a possible noise reduction due to the additional
(multi-baseline) measurements.
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(a) (b)

(c) (d)

Figure 7.28: Comparison of reference image with another 100m-baseline image (slave) in terms
of entropy, anisotropy, and mean and maximum alpha angle. (Green line) Ideal correlation.
(Red line) LS fit.

(a) (b)

(c) (d)

Figure 7.29: Comparison of reference image with FB layer (using 21 passes) in terms of entropy,
anisotropy, and mean and maximum alpha angle. (Green line) Ideal correlation. (Red line) LS
fit.
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(a) (b)

(c) (d)

Figure 7.30: Comparison of reference image with CS layer (using 10 passes) in terms of entropy,
anisotropy, and mean and maximum alpha angle. (Green line) Ideal correlation. (Red line) LS
fit.

(a) (b)

(c) (d)

Figure 7.31: Comparison of reference image with CS layer (using 6 passes) in terms of entropy,
anisotropy, and mean and maximum alpha angle. (Green line) Ideal correlation. (Red line) LS
fit.
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(a) (b)

(c) (d)

Figure 7.32: Comparison of FB layer (using 21 passes) with CS layer (using 10 passes) in terms
of entropy, anisotropy, and mean and maximum alpha angle. (Green line) Ideal correlation.
(Red line) LS fit.

(a) (b)

(c) (d)

Figure 7.33: Comparison of FB layer (using 21 passes) with CS layer (using 6 passes) in terms of
entropy, anisotropy, and mean and maximum alpha angle. (Green line) Ideal correlation. (Red
line) LS fit.
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(a) (b)

(c) (d)

Figure 7.34: RMSE corresponding to the estimated entropy, anisotropy, and mean and max-
imum alpha angle using a 100m-baseline image (slave), a FB layer with 21 passes, and CS
layers with 10 and 6 passes. (Top plots) RMSE with respect to the reference track. (Bottom
plots) RMSE with respect to the FB layer using 21 tracks.
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Figure 7.35: Test site near Umeå, Sweden (64◦ 13′ 57.62′′ N, 19◦ 49′ 14.21′′ E). Google.

7.2 Separation of SMs

This section verifies the optimization-based separation of SMs as given by (5.23) and
(5.24). To this end, multi-baseline data acquired by the E-SAR sensor near Umeå, Swe-
den, in 2008 [Hajn 09], will be employed. Figures 7.35 and 7.36 show, respectively, an
optical image and the amplitude of a radar image of this area. The center frequency
used was 0.35GHz (P-band) and the resulting resolutions were 1.60m and 2.07m in
azimuth and range, respectively. The acquisition geometry corresponded to 9 parallel
passes thus yielding 8 horizontal baselines of 8m, 16m, 24m, 32m, 40m, 88m, 184m,
and 288m. Due to this favorable baseline distribution, CB has been chosen for tomo-
graphic analysis purposes.

First, three tomographic slices were obtained as a function of azimuth and height



100

Figure 7.36: Polarimetric SAR image of the test site near Umeå, Sweden (red: HH − VV; green:
HV; blue: HH + VV). The targets of interest are located within the yellow rectangle along
azimuth.

(730m by 50m) using an estimation window of 30 × 30m2 at a range distance of
6081.97m (see Figure 7.36). Figures 7.37(a)–(c) show the HH, VV, and HV channels,
respectively. Then, the optimizations given by (5.23) and (5.24) were carried out so
as to find the range of valid values for the ȧ and ḃ parameters. In agreement with
[Teba 10c,Teba 12] the values given by ȧmax (i.e, the maximum ȧ) and ḃmin (i.e., the min-
imum ḃ) led to rank-deficient structure matrices, i.e., KG and KV, and can thus be as-
sociated with thin cross-range structures [Teba 12]. Whereas it is known that low-rank
solutions are appropriate for identifying the ground SM, it is still unclear what criteria
should be applied for finding the real volume SM [Teba 12]. Since this topic is outside
the scope of this dissertation and a detailed treatment can be found in [Teba 12], only
four possible solutions will be reported, based on four equally-spaced values for ḃ, i.e.,
ḃmin = ḃ1 < ḃ2 < ḃ3 < ḃ4 = ḃmax, where ḃmin and ḃmax define the interval of allowable
values. Figures 7.38(a)–(d) show (in green) the CB tomographic slices corresponding to
ḃ1, ḃ2, ḃ3, and ḃ4, respectively; and (in red) the CB tomograms for ȧmax. Noticeably, the
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(a)

(b)

(c)

Figure 7.37: Tomographic slices (normalized at every position) obtained by CB as a function
of azimuth and height (730m by 50m) in the (a) HH, (b) VV, and (c) HV channels. Estimation
windows: 30 × 30m2. Range distance: 6081.97m.

(ȧmax, ḃ1) (low-rank) solution pair results in two SMs that tend to exhibit disjoint sup-
port, which is consistent with the fact that the union of the supports of the two SMs
should remain constant. On the contrary, higher values of ḃ lead to larger cross-range
structures where the support of the SMs intersect and thus appear in yellow. Finally,
in order to reduce noise in the tomograms, a reduced-rank structure matrix has been
used. The basic method proceeds as follows. First, compute the CB projection matrix
H (see Section 2.4). Then, obtain the cross-range power by applying H to a low-rank
approximation of the covariance matrix [Agui 12b]. Figure 7.39 presents the same SMs
shown in Figure 7.38 by using the best rank-1 approximation.
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(a)

(b)

(c)

(d)

Figure 7.38: Tomographic slices of two SMs (normalized separately at every position) obtained
by CB as a function of azimuth and height (730m by 50m) using an estimation window of 30
× 30m2. The (ȧ, ḃ) pair of parameters is given by (a) (ȧmax, ḃ1), (b) (ȧmax, ḃ2), (c) (ȧmax, ḃ3), and
(d) (ȧmax, ḃ4). The ground and volume SMs are shown, respectively, in red and green. Range
distance: 6081.97m.
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(a)

(b)

(c)

(d)

Figure 7.39: Tomographic slices of two SMs (normalized separately at every position) obtained
by CB as a function of azimuth and height (730m by 50m) using an estimation window of 30×
30m2 and the best rank-1 approximation of the structure matrices. The (ȧ, ḃ) pair of parameters
is given by (a) (ȧmax, ḃ1), (b) (ȧmax, ḃ2), (c) (ȧmax, ḃ3), and (d) (ȧmax, ḃ4). The ground and volume
SMs are shown, respectively, in red and green. Range distance: 6081.97m.





8 Conclusions and Recommendations

The experimental results shown in this work, which are in line with the analysis re-
ported in [Agui 13a, Agui 13b, Agui 13c], emphasize the ambiguity-rejection capabili-
ties of CS as well as its ability to recover the complete cross-range backscattered power
with few highly-irregular passes. A direct—and desirable—result is the increase in the
height of ambiguity (see Figure 7.15). In addition, the polarimetric CS method pro-
vides high resolution while attaining physical validity (in terms of positive semidefi-
niteness), a property that is commonly sacrificed by most super-resolution estimators.
Nevertheless, special consideration should be given to the following points:

a) It follows from the random sampling strategy outlined in Section 4.1.1 that a reduc-
tion in aliasing-like artifacts entails a nondeterministic acquisition geometry. Al-
though such an approach might require extensive simulations prior to planning
campaigns that rely on very few baselines, this downside could be alleviated by
having a large tomographic aperture with a few small approximately regular base-
lines, in addition to few large highly-irregular ones. Nonetheless, when several
passes are available, the natural deviations from the ideal tracks seem to provide (at
least at L-band) the required randomness for ambiguity rejection [see, for example,
Figure 7.15(a)].

b) According to the results presented in Section 7.1.1.1, large tomographic apertures
with very sparse baselines can reduce the usable swath. This is due to the fact
that the tomographic sampling interval [see (2.38)] intrinsically experiences higher
variations at the near range [Baml 98]. Hence, this kind of sparse constellation and
wide-swath airborne tomography are bound to be conflicting requirements, unless
simpler models that make additional assumptions are used.

c) It is known that, for SAR tomography, the order of the RIP might fall short of ideal,
even when attaining optimal coherence between the measurement basis and the
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sparsity basis (see, for example, [Zhu 12]). Nonetheless, the experiments outlined
in Section 7.1.1.1 (see observations a–c) indicate that this inherent limitation can be
transcended (to a certain extent, depending on the number of available passes) by
appropriately defining the range of heights.

d) Of equal importance is the fact that, while an adequate definition of the observa-
tion space leads to improved ambiguity-rejection capabilities, an erroneous range
of heights impacts on the CS reconstruction (see observation d in Section 7.1.1.1).
Nevertheless, this is appropriately bounded, as the backscatter corresponding to
the neglected observation space can be absorbed by ε in (4.3).

e) As is clear from the previous points, an arguable case can be made that CS re-
quires special consideration due to the fact that it inherently estimates the cross-
range backscattered power simultaneously for all heights. However, note that this
required a priori knowledge is also implicitly critical for conventional estimators,
such as FB and CB, as the maximum height is an important parameter for appropri-
ate campaign design [Nann 11].

f) Although not shown in this work, CS tomographic profiles at P-band are expected
to require special consideration, as they are known to be dominated by ground-
level contributions [Teba 12]. In such a case, volume backscattering might be very
low with respect to the ground-level component and thus improper regularization
might result in vanishing canopies. To account for this, separation of ground and
volume SMs is recommended prior to carrying out CS reconstructions.

g) Since it is not always possible to conduct a multi-baseline acquisition in a short
period of time, care must be taken to properly account for the possible variations
(in terms of structural and electromagnetic properties) undergone by the scene (see,
for example, [Lomb 98b,Lomb 12,Lomb 14]). From (4.30), (4.35), and (4.36), it is clear
that the CS methodologies formulated in this work treat these variations as a simple
additive perturbation. That being said, the development of more sophisticated—or
simpler—CS models is recommended for future work.

h) One of the research objectives accomplished in this work was to significantly reduce
the number of passes required for robust tomographic imaging. Note, however,
that although CS has led to high-quality imaging (in terms of low sidelobe and
ambiguity levels) with a provable upper bound on the reconstruction error [see
(4.3)], operational use of CS methods should consider the corresponding estimation
variance (i.e., achievable lower bounds). For examples of considerations of this kind
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in the context of SAR tomography, the reader is referred to [Gini 02,Pard 08,Baml 09,
Zhu 12].

i) The polarimetric extension of CS has been evaluated in terms of estimation of stan-
dard polarimetric parameters such as entropy, anisotropy, and alpha angle. While
this is a reasonable validation approach, the effectiveness of polarimetric CS ought
to be evaluated as a function of applications (e.g., biomass and soil moisture esti-
mation), which is also recommended for future work.

j) Finally, note that, even though this thesis has focused on single-channel and fully-
polarimetric data, all the results can be readily derived and remain valid for dual-
polarized sensors.
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ing in radar imaging”. Proceedings of the IEEE, Vol. 98, No. 6, pp. 1006–1020,
Jun. 2010.

[Reig 00] A. Reigber and A. Moreira. “First demonstration of airborne SAR tomog-
raphy using multibaseline L-band data”. IEEE Trans. Geosci. Remote Sens.,
Vol. 38, No. 5, pp. 2142–4152, Sep. 2000.

[Reig 13] A. Reigber, R. Scheiber, M. Jager, P. Prats-Iraola, I. Hajnsek, T. Jagdhuber,
K. Papathanassiou, M. Nannini, E. Aguilera, S. Baumgartner, R. Horn,
A. Nottensteiner, and A. Moreira. “Very-high-resolution airborne syn-
thetic aperture radar imaging: signal processing and applications”. Pro-
ceedings of the IEEE, Vol. 101, No. 3, pp. 759–783, Mar. 2013.

[Rude 08] M. Rudelson and R. Vershynin. “On sparse reconstruction from Fourier
and Gaussian measurements”. Communications on Pure and Applied Math-
ematics, Vol. 61, pp. 1025–1045, 2008.
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