DER FREIKOLBENLINEARGENERATOR

POTENZIALE UND HERAUSFORDERUNGEN

AUTOREN

DIPL.-ING. FLORIAN KOCK
ist Projektleiter Freikolbenlinearantriebe am Institut für Fahrzeugkonzepte des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Stuttgart.

DIPL.-ING. ALEX HERON
nachwuchsfördernder Mitarbeiter am Institut für Fahrzeugkonzepte des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Stuttgart.

DR.-ING. FRANK RINDENHEIT
ist Abteilungsleiter Alternative Energiewandler am Institut für Fahrzeugkonzepte des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Stuttgart.

PROF. DR.-ING. HOFSTET. FRIEDRICH
ist Direktor des Instituts für Fahrzeugkonzepte des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Stuttgart.

KONZEPT DES FREIKOLBENLINEARGENERATORS

Die beim DLR gewählte Anordnung unterscheidet sich durch die Gasfeder von den meisten Freikolbenprojekten der Vergangenheit (1). Dieser innovative Ansatz wurde zum einen gewählt, um eine Hubvariabilität darstellen zu können, zum anderen ist das System in dieser Bauweise regelungstechnisch leichter zu beherrschen.

Basis ist die beschriebene Anordnung mit einer Kolbenfeder (beispielsweise aus Verbrennungsgas- und Gasfederkolben sowie dem Lineargestator) und der Verwendung von Elektromotorenzweigeinsätzen, die in einem weiteren Schritt die konventionelle Verbrennungsmaschine ersetzen und eine weitere spiegelsymmetrische Einheit vorgesehen. Dadurch wird der Antrieb aller bewegten Massen und somit ein günstiges Getriebes- und Vibrationsverhalten ermöglicht. Diverse Ausführungsformen sind denkbar und grundlegend zu unterscheiden in die Klasse der Einzelbrennraumsysteme, (a), und die der Zentralbrennraumsysteme, (b, c).

PROBSTANDSAUFWERK UND MACHBARKEITSNACHWEIS

MTZ 10 2013 74. Jahrgang

Der Versuchsbaumufliniend, wie bereits an der Lineargeneratore-Auslegung erläutert, Vorwiegend der sichere Funktionsdemonstration und dem Konzept der Neubähr es nähert sich die Leistungsdichte, Messbarkeit und Wirkungsgrad sind daher nicht als

Hinweis auf die quantitativen Potenziale des FKLG zu vernachlässigen.

VERBRENNUNGSVERFOLGUNG UND EMISSIONEN

Ebenfalls besteht Entwicklungspotenzial hinsichtlich der Abgasfaktoren, die ein shared Fahrzeug nicht zur Verfügung.

SYSTEMWIRKUNGSGRAD

<table>
<thead>
<tr>
<th>FUNKTIONSDEMONSTRATOR</th>
<th>FLR-BESTÄTIGUNGSMODUL (BEISPIEL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufbau: 1-Benzinmotor, 1 Lineargenerator, 1 Gasfeder</td>
<td>Aufbau: 1-Benzinmotor mit 2 Hybrid, 2 Lineargeneratoren, 2 Gasfedern</td>
</tr>
<tr>
<td>Brennverfahren: Zweitakt Otto</td>
<td>Brennverfahren: Zweitakt Otto (je nach Betriebspunkt mit HCCI)</td>
</tr>
<tr>
<td>Hubraum</td>
<td>321-481</td>
</tr>
<tr>
<td>Leistung (otomotorisch)</td>
<td>0,12</td>
</tr>
<tr>
<td>Leistung (elektrisch)</td>
<td>0,12</td>
</tr>
<tr>
<td>Nebenaggregate</td>
<td>0-26</td>
</tr>
<tr>
<td>Verbrennungsfrequenz</td>
<td>16-21</td>
</tr>
<tr>
<td>Bewegte Massen</td>
<td>35,12</td>
</tr>
<tr>
<td>Baßlänge</td>
<td>82,5</td>
</tr>
<tr>
<td>Höhe</td>
<td>50</td>
</tr>
<tr>
<td>Ladedruck (bar abs.)</td>
<td>1,2-2,0</td>
</tr>
<tr>
<td>Ladedruck</td>
<td>1,2-2,0</td>
</tr>
</tbody>
</table>
| Verdichtungsverhältnis | 7:11
| typisch 9:14 (je nach Kraftstoff) |
| Einspritzung: Direkteinspritzung, zentraler Mehrläufiger | Direkteinspritzung, seitlicher Injectorköpfen |
| Kraft Lineargenerator | 2,5-15 kN |
| Abmessungen (ohne Nebenaggregate): (mm) | 3940 x 560 x 225 |
| Abmessungen (ohne Nebenaggregate): (mm) | 970 x 228 x 143 |
| Technische Daten des Funktionsdemonstrators und eines beispielhaften Fahrzeugeinsatzmoduls FKLG | FKLG, 10.01.13, 74. Jahrgang |
Wirksungsgrad η (beziehungsweise effektiven spezifischen Kraftstoffverbrauch β) gibt. Es sollte daher stets die Effizienz der gesamten Wandlungs- kette, also der Externder-Verbrauch vom Kraftstoff bis zur elektrischen Energie betrachtet werden [5].

PACKAGE UND GEWICHT

STEUERUNG UND REGELUNG

Vorteil

Der FKLG ist eine Stromerzeugmaschine, die einen Einbau als Range-Extender interessante Potenziale aufweist. Ein Wirkungsgrad von mehr als 36% für die gesamte Wandlerkette bis zur elektrischen Ausgangsleistung scheint erreichbar. Dieser im Bestpunkt erzielbare Wert wird voraussichtlich auch im Teilbaureich nur geringfügig niedriger liegen, sodass für die fahrzeug- sgezielte Betriebsstrategie ein breiter Lastbereich zur Verfügung steht, in dem das Antriebsstrang- system bis zur endgültigen Auslegung der FKLG in typischen Fahrzuständen und untergebracht werden kann.

DANK

DOWNLOAD DES BEITRAGS

springerprofessional.de/MITZ

READ THE ENGLISH E-MAGAZINE

http://www.springerprofessional.de/MITZ
