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Abstract The overarching goal at the Integrated Design Laboratory (IDL) is to
understand the mechanisms of decision making and exchanges among engineers.
In this study a toolbox for the assessment of engineering performance in a real-
istic aircraft design task is presented. It allows for the assessment of participants
in different experimental conditions. The degree of task difficulty and the amount
and quality of visualization are systematically varied across conditions. Using a
graphical user interface the participants’ mouse trajectories can be tracked. This
data together with performance evaluation of the generated aircraft design can help
uncover details about the underlying decision making process. The design and the
evaluation of the experimental toolbox are presented. This includes the number,
specificity, and ranges of design variables that can be manipulated by a participant.
The major difficulty thereby is to find a “sweet spot” where the task is just difficult
enough, such that participants display a progress in their performance. Too easy or
too difficult of a task would lead to flooring or ceiling effects, where most partic-
ipants will always fail or, respectively, perform perfectly. The decisions about the
aircraft design parameters are therefore based on a numerical analysis of the design
space. With this analysis nonlinearities and interdependencies of design parameters
are revealed. The experimental toolbox will be utilized to measure design perfor-
mance of individuals and groups. The results are expected to reveal ways to support
multidisciplinary collaboration.
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Introduction

Engineering graduates, when starting their professional careers, will face a challenge
they most likely are not yet familiar with. They will need to work in multidisciplinary
teams and thereby interact with experts whom they do not share a common understand-
ing and often not even a common technical language with. This is not just an individual
challenge, but also a real problem in many engineering projects. Progress is often slow
and difficult due to the sheer complexity in many current day projects [9]. For example,
aircraft design requires of engineers external exchanges with stakeholders like airlines
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and governments to specify design projects. Projects then typically require that experts
from diverse Science, Technology, Engineering, and Mathematics (STEM) fields collab-
orate on a high technical level.

Researchers at the Institute for Air Transportation Systems work exactly at both
these levels of external and internal cooperation. Externally, they cooperate closely with
stakeholders like airports, airlines, aircraft and air traffic management to develop holistic
understanding of air-transportation. Internally, this knowledge provides significant con-
straints for aircraft design projects within the the German Aerospace Center (DLR). The
holistic understanding provides a framework for integrative aircraft design. In particu-
lar it allows to (a) coordinate contributions from different DLR projects and (b) provide
unified software tools to serve the multitude of sub-projects. The day-to-day practice
of high-level integrative work exposed the need to gain explicit knowledge about the
mechanisms of collaborative engineering. This realization is shared with Ilan Kroo and
Juan Alonso at Stanford University, who proposed a third generation multidisciplinary
aircraft design view, highlighting the need for understanding decision processes in mul-
tidisciplinary teams [cite]. We consider the improvement of collaboration among engi-
neers from different subdisciplines and between engineers and stakeholders as a major
challenge toward improving engineering education and toward providing conditions for
better engineering practice and success. Toward that end, the goal of this paper is to ad-
dress the question of how engineering performance can be assessed. Note that to limit
the scope, the focus will be on methods that measure individual performance, which
later should be extended for collaborative engineering. Understanding engineering per-
formance is clearly an empirical question that needs to be addressed with methods from
the psychological and sociological sciences.

1. Related Research

Engineering practice is a very complex endeavor that is difficult to study, even more so
when it comes to the field of air transportation systems which is complex in its own
right [9]. Diverse innovative methods emerge from educational research, for instance,
[11] developed a method to introduce multidisciplinary collaboration on project-based
teaching such that diverse STEM disciplines can be learned successfully in concert. From
an analysis of skill-requirements of newly graduated engineers, [8] deduce guidelines for
the graduates’ further professional education. By observing engineering students over
multiple design sessions, [10] propose how a design tasks sequence can be structured to
facilitate creativity.

Creativity is critical to engineering practice because it involves exploration and in-
novation. Standard approaches, however, have been developed to assess routine work, as
[1] argue. Thus, the authors develop novel methods to observe and analyze engineers in
their natural work environment. Creativity, on the other hand, has been well studied in
laboratory settings (cf. [12] for a review), and there are ideas how standard methods from
creativity research can be applied to study professional practice (entrepreneurship in that
case) [5,13]. The design process, in contrast, has hardly been studied experimentally. A
literature search yielded only two studies [2,7]. Both provide only first insights how to
correlate performance measures with other behavioral or biological data; both however
are insufficient in that they test a single condition and thus do not identify how external
factors may influence behavior.
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The picture painted, from the approaches mentioned so far, is that scientists are just
begging to develop empirical methods to reveal the process of design. Creating research
standards to assess collaborative engineering performance is, in fact, a critical scientific
challenge. Researchers at the Institute of Air Transportation Systems are currently em-
barking on tackling this challenge and seek to introduce methods of cognitive science to
investigate the process of engineering. This paper is about the prerequisites and technical
challenges and solutions of developing novel experimental studies.

2. Prerequisites for Experimental Research

2.1. Integrated Design Laboratory

The Institute for Air Transportation Systems has established the Integrated Design Lab-
oratory (IDL) in 2012. The IDL is dedicated to investigate aspects of collaboration in the
air transport system thus emphasizing the “experimental” or laboratory character within
its premises and research staff [4]. Its capacious main room of about 190 m2 comprises
technical equipment such as a large high-resolution display wall, several secondary dis-
play sytems for stereo-projection and for touch-sensitive computer interaction, advanced
wireless inertia-triggered remote input devices, and diverse presentation support tools.

The IDL is designed and equipped for maximum flexibility in order to support a
wide range of work sessions that might require different seating arrangements, number
of participants, type and duration of meetings, and moderation styles. Integrated, mov-
able and easily network-enabled working desks and on-site computing facilities support
ad-hoc collaborative design tasks to the degree of purely technical feasibility. However,
provided this technical environment is only as powerful as the experience and methods
which are put to practice. Of course, acceptance and knowledge about the opportunities
available need to be communicated and cultivated, which leads directly to future experi-
mental research that will be performed in the Integrated Design Lab.

2.2. Experimental Software Tools

To keep laboratory investigation close to actual work scenarios, experimental studies are
based upon VAMPzero [3,6], which is the current software tool used to study prelimi-
nary aircraft design configurations at DLR. VAMPzero calculates a mass-breakdown and
global performance data by using a mix of statistic (handbook) and low-fidelity physical
methods and models. Calculations are initialized with a data set comparable to the Air-
bus A320 airplane.To create new designs, control parameters in the data set are modified
and VAMPzero is re-run.

Participants in the experiments will use VAMPzero through a Graphical User Inter-
face (GUI), as illustrated in Figure 1. The GUI is programmed in MATLAB R©, through
which parameters are communicated with VAMPzero. The GUI serves several impor-
tant roles for experimentation. Firstly, and important for the experimental design, only
a specified number of control parameters within predefined ranges can be controlled.
To avoid confusion, please note that the notions “control parameters” and “control vari-
ables” are used in two different but related contexts: (a) the participants define their
designs by setting control parameters via the GUI; and (b) the specific number, initial
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Figure 1. GUI to interact with aircraft design software tool VAMPzero. Control parameters can be changed
(pseudo-)continuously or in discrete steps with the sliders and the drop down menu, respectively. When press-
ing the large red button at the bottom of the screen, these values are passed on as inputs to the a VAMPzero it-
eration. When the calculation is complete, the control parameters (y-axis, top plot) and resulting output param-
eters (y-axis, bottom plot) are displayed against the iteration number (x-axis). The results are left empty (here,
iterations number six and nine) when the control parameters specify an infeasible aircraft (i.e., VAMPzero does
not converge).

setting, and ranges of the control parameters are control variables of the experimental
design, through variation of which different experimental conditions can be compared.

Secondly, the GUI provides participants with critical feedback about their designs.
Like the control parameters, both design goals as well as the amount of visualization are
critical factors in the experimental design. All these can be control variables that when
manipulated create different experimental conditions.

Thirdly, the GUI is a simple interface that participants can intuitively interact with.
An easy access to the design software shifts the focus on design skills in terms of con-
ceptual understanding about relationships between control parameters and objectives de-
rived from the output aircraft design values. This opens up the opportunity for experi-
mental variation in terms of participant groups. For instance, difference of design skills
can be tested for novices versus experienced engineers independently of their familiarity
with the specific design software or data structures.

3. Experimental Control

The task at hand is to find the right set of experimental control variables, which can be
any combination from the in Section 2.2 mentioned (a) control and output parameters of
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the aircraft design, (b) feedback and information about participants’ design solutions, or
(c) composition of participant groups.

3.1. Control and Output Parameters

Selecting control and output parameters and the right ranges for the control parameters
is critical for the experimental work. Namely, these parameters define a task that partic-
ipants need to solve by obtaining feasible and as efficient as possible aircraft designs.
Whether the experiment can yield meaningful evidence about work performance depends
in the first place on the task difficulty. This is because a too easy or a too difficult task
will lead to, respectively, flooring or ceiling performances whereby most participants fail
or succeed perfectly. The task difficulty needs to be adjusted such that other experimental
variables that we are interested in (e.g, type of feedback) may show effects.

3.2. Feedback and Other Information

To narrow down a good task in terms of its parameters is mandatory for the success
of the experiment. Once this preliminary work is accomplished, we choose to focus on
investigating the level and type of information the participants are provided with. This
is because we see the question of how ergonomic factors like visualization and type of
information (or the lack thereof) facilitate performance, as most relevant. The results of
these experiments are expected to provide insights that will support our efforts to improve
the IDL as a work environment.

In the example of Figure 1, the entire history of designs (i.e. choices of control
parameters and the resulting outputs) is provided throughout the experiment. If used
strategically, this may allow participants to investigate relationships about control and
output parameters. Other types of feedback that, depending on experimental conditions,
may be available are: (a) mathematical formulas that describe physical relationships;
(b) geometry of the aircraft designs produced by the participants; (c) partial derivatives
indicating the directions and magnitudes of changes in output parameters with respect
to the control parameters—information about the derivatives is ignored by novices [2,7],
but we expect experts to use it. At the current stage, the effects of these factors have not
been tested.

3.3. Particpant Groups

Although we are considering to extend our research to test experience levels, our initial
focus group is students. Whether testing different participant groups is a feasible exper-
imental condition hinges on the selected design task as defined by other experimental
variables. For example, a task that is adjusted to work well with students might be too
easy for experienced engineers.

4. Systematic Test of Parametric Conditions

The selection of adequate control and output parameters is mandatory for a good ex-
perimental design. In several discussion sessions, our team (of engineers and cognitive
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scientists) deliberately settled for a relatively small number of control and output param-
eters to setup the systematic testing. As control parameters, the aircraft’s design range,
wing span, and the engine’s bypass ratio were tested. From the output parameters, fuel
mass, Take-Off Mass (TOM), Operating Empty Mass (OEM) and Direct Operating Costs
(DOC) were investigated in detail. For these output parameters lower values are better,
therefore the optimization goal of the task is to adjust the control parameters such that
output parameters are minimized. Global dependencies of the control on the output pa-
rameters were tested and analyzed.

4.1. Testing Procedure

To evaluate if a given subset of control parameters indeed circumscribes a reasonable de-
sign task for engineering students, VAMPzero was repeatedly iterated with different in-
put parameters. Combinations of three control parameters, the values of which were var-
ied in small steps, were tested. Input settings and resulting output values were recorded
for each iteration. Tests and the subsequent analysis were performed with MATLAB R©.

4.2. Analysis and Results

For analysis, the dependencies of output parameters on a large set of control parameters
were visualized. Most indicative were three-dimensional (3D) carpet plots in which the
local optima per design variable are highlighted. Examples are shown in Figures 2 and 3.
Each subplot in Figure 2 shows how the DOC change for different wing span and bypass
ratio settings and a fixed design range; the design range is varied between subplots and
increases from the top left to the bottom right subplot. Figure 3 represents the same data,
however rearranged such as to vary the engine’s bypass ratio from low to high values
across the subplots.

Comparison of the subplots in Figure 2 shows a stronger curvature of the DOC sur-
face for increasing design range. Therefore, the DOC shows a larger sensitivity to the
remaining two parameters (wing span and design range) for increasing design range set-
tings. The plots also show that overall costs are lower for designs that use engines with a
high bypass ratio. For fixed design range and bypass ratio, a clear minimum considering
the wing span dimension is observed. Adjusting the latter variable will be trickier for the
test persons, since the minimum is not located at the edge of the parameter range under
consideration. Furthermore, the value of the absolute minimum to be attained will depend
on the settings of the other values. The behaviour of the DOC minimum as function of
wing span setting is caused by two conflicting optimization criteria from aerodynamics
and structural mechanics. Introducing a larger wing span will make the aircraft aerody-
namically more efficient: a larger amount of air is deflected with a relatively lower veloc-
ity over the wing to generate the required lift force. Since the kinetic energy required to
deflect the oncoming air is linearly dependent on the mass and quadratically dependent
on the velocity, it is energetically more advantageous to have a large wing span. From
a structural point of view, having a larger wing span is however disadvantageous: larger
bending moments will occur due to increased moment arms of the lift forces, leading to
higher material stress and the corresponding heavier structure needed. Conflicts that tap
into knowledge from different sub-disciplines involved in aircraft design are necessary
for the experimental task.
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Figure 2. Parametric interdependencies: DOC levels (z-axes) depending on bypass ratio (x-axes), wing span
(y-axes), and design range (varied over the subplots). White circles indicate the DOC minima for each tested
bypass ratio value, whereas black crosses indicate the DOC minima for each tested wing span value. The global
minimum is highlighted using a large black square. Default A320-type setting is for design range = 3 500 km
(middle subplot).

Different challenges concerning the design task are evident from Figure 3. For one,
it shows that the choice of design range has a non-linear effect on the DOC. This might
seem counter-intuitive as one might assume that, the shorter the design range, the cheaper
both production and operation are. However, the direct operating costs are reported in
Euros (EUR) per business hour with a [EUR / bh] unit. Shorter ranges mean shorter pe-
riods in the air and more ground time, which is in fact a cost factor for the operating
airline. As an engineering task, this is interesting since it introduces a component from a
different discipline—economics—which in fact poses relevant constraints for engineer-
ing practice. The perspective of Figure 3 also exposes an interaction between wing span
and design range, both of which have a non-linear influence on the DOC. The associ-
ated vallues in the subplots indicate that the aicraft design can be optimized globally by
adjusting wing span and design range for the given engine at hand. All subplots show
a similar shape, furthermore it is seen that the engine’s bypass ratio does not affect the
location of the global minimum largely (with respect to DOC). This can be explained due
to the underlying calculation software, in which the relation between the bypass ratio of
the engine and the corresponding effect on the engine mass is still to be incorporated. For
the experiment, it is interesting to see if participants will exploit this independence—note
that they will not have the global relationships among parameters available as displayed
here (the task would be trivial otherwise).

Recall that participants will need to optimize for more than just DOC. After sim-
ilar analyses of the effects of the control parameters on fuel mass, TOM, and OEM,
the output parameters fuel mass and OEM were also selected for the experimental task.
Traditionally, reducing mass is seen as critical within aircraft design. Optimizing for a
combination of both OEM or fuel mass and DOC is then particularly interesting, since
counter-intuitive relations might occur. For example, for a set of aircraft requirements
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Figure 3. Parametric interdependencies: DOC levels (z-axes) depending on design range (x-axes), wing span
(y-axes), and bypass ratio (varied over the subplots). White circles indicate the DOC minima for each tested
design range value, and white crosses indicate the DOC minima for each tested wing span value. The global
minimum is highlited using a filled white square. Default A320 setting is for bypass ratio = 4.8 (top right
subplot).

one could obtain a more DOC efficient aircraft, which is heavier than the configuration
at the global mass minimum.

The main result from our analysis is a potentially good set of control and output
parameters. In addition, meaningful ranges for the control parameters could be identi-
fied. A summary is given in Table 1. These ranges largely depend on the software used
to calculate the aircraft properties according to the provided control parameters. Since
VAMPzero is an empirical tool, the equations based on statistics limit the values of con-
trol parameters at hand. No ranges are reported for the output parameters since these are
actual outcomes of the calculations and not predefined like the controls.

description control parameters output parameters

name wing span bypass ratio design range fuel mass OEM DOC
range 14–44 3.5–7 350–7 000 n/a n/a n/a
unit [m] [ - ] [km] [l3] [t] [EUR/bh]

Table 1. Details for the control and output parameters, as selected for the experimental design task.

4.3. Follow-up: Pilot Studies

The next step is to conduct preliminary tests of the experiment with participants. These—
so-called pilot studies—are required to evaluative whether the current task comprises a
proper design exercise. Fine-tuning aside, the pilot studies will also serve to improve the
GUI by surveying participants about their experiences in using it. This is particularly
relevant in order to find proper variations of feedback levels and potentially additional
information that might be displayed, too. Form and amount of feedback are the most
relevant experimental variables to be tested, as argued in Section 3.2.
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Conclusion

Science is just beginning to unveil the process of collaborative engineering. One missing
link is the luck of experimental laboratory testing, which we aim to close by developing
rigorous cognitive science methods. Experimental research, which taps into the thought
process of engineering, requires innovative techniques. Innovation, in turn, requires pre-
liminary work as it was presented in the current paper. The central result was to identify
a design task which we believe to pose the right level of difficulty for undergraduate stu-
dents. Whether this indeed is the case will be tested with pilot studies, which will also
serve to find relevant feedback variables for the experiment. To understand the role of
feedback is central to our approach, and we anticipate the experiments to provide insights
that will help to improve the IDL as an environment for collaborative engineering. This
research is a first step toward finding new ways how to enhance work experiences for
individuals and outcomes for their institutions.
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