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This paper presents how a continuous mission verification process similar than in soft-
ware engineering can be applied in early spacecraft design and Concurrent Engineering.
Following the Model-based Systems Engineering paradigm, all engineers contribute to one
single centralized data model of the system. The data model is enriched with some extra
information to create an executable representation of the spacecraft and its mission. That
executable scenario allows for verifications against requirements that have been formalized
using appropriate techniques from the field of formal verification. The paper focuses on
a current approach of integrating this verification mechanism into our Concurrent Engi-
neering environment. In an example study, we explain how basic mission requirements are
created at the beginning of the spacecraft design. After each iteration and change, the inte-
grated verification will be executed. This instantly highlights the effects of the modification
and points out potential problems in the design. Using the continuous verification process
alongside the Concurrent Engineering process helps to mature both, the requirements and
the design itself.

I. Introduction

Spacecraft are commonly considered to be complex systems. Verification is an inevitable part of space
mission design and the projects use practices like the V-model where verification is an essential principal.1

From a Systems Engineering point of view, it is important to know as much as possible about the system as
early as possible. The decisions made at the beginning of the projects define up to 85% of the overall cost of
the project.2 This frontloading of information requires that verification is also included right from the start.

Concurrent Engineering (CE) has evolved into a successful methodology to elaborate early spacecraft
system designs and decide on the feasibility of a space mission. The CE process follows the principle of
bringing stakeholders together in one room at the same time, thus increasing communication and joint
understanding of the design on system level. Within some weeks only, the engineers can pin down the
baseline requirements as well as delivering a fundamental design covering aspects like the mass summary,
power consumption and costs.3 However, in this agile process with many design iterations, it remains difficult
to track changes. In particular, it is difficult to see the implications on the overall behavior of the system
caused by changes to one subsystem. Therefore, it is desirable to have a verification process that runs after
each design change and analyzes the spacecraft design with respect to its mission goals.

Other disciplines, for example software engineering, experience similar difficulties. Some of the open
source projects or large enterprise software products are considerably complex and hundreds of engineers
and computer scientists contribute to the final software system. The community has addressed that issue
and implemented a process called continuous integration. It is based on the idea that every change to the
software system is fully integrated and automatically tested against specifications. This demands that every
engineer is not only delivering productive source code, but tests for it as well. The continuous integration
server reacts on every change on the source code and rebuilds the software. It executes the tests and informs
all engineers about the results, if tests are failing or not. The automated execution of the builds and tests
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ensures that the quality is kept on a high level. This frees engineering time spent on repetitive and dull
tasks and allows the engineers to focus on the design rather than on manual verification.4

The motivation for the work presented in this paper grew even more by participating in one week CE
studies.5 We noticed that verification is addressed mainly on subsystem level. Many domain experts have
adequate means to verify the part of the design which they are responsible for, e.g. doing a structural or
a thermal analysis of the satellite. However, the evaluation of the design on system level remains difficult,
especially considering a dynamic behavior. The systems engineer has little means to analyze the complex
interactions and contributions of individual designs with respect to the overall mission objectives. One
common way of doing verification of the complete system is setting up a dynamic simulation, an approach
currently carried out in later design phases when detailed models of the subsystem are available. ESA tries
to involve a simulation expert already during their CE activity using a tailored simulation environment.6,7

Our approach postulates to add a verification expert to the CE core team. The purpose of this new role
is set up an executable verification model which takes advantage of the information of the central system
model. This verification model covers the functional and temporal behavior the spacecraft and respects
mission objectives and constraints. A special mission checking framework analyzes the design after each
design change. With this, the verification expert produces quick results which can be directly used in the
following design session.

The remainder of the paper is organized as follows: The next section gives an overview of the Systems
Engineering methodology in spacecraft design as it is currently used at the German Aerospace Center.
Section III explains the technologies behind the mission verification framework. Section IV introduces
an example space mission and explains in detail how mission verification can be used in the Concurrent
Engineering process. This section also includes a short evaluation of the characteristic parameters for the
mission verification. Then, the paper concludes and mentions some future ideas.

II. Model-based Systems Engineering applied in Concurrent Engineering

The Virtual Satellite initiative of the German Aerospace Center (DLR) promotes Model-based Systems
Engineering (MBSE) methodologies starting at the very beginning of space mission design. In this project we
developed a software to support the space mission design process. The software has reached a productive state
and was used successfully in several CE studies. One field of application is DLR’s Concurrent Engineering
Facility at the Institute for Space Systems. Here, the various stakeholders come together for initial mission
designs and feasibility studies. CE is a structured design process that has some important characteristics.
Typically, the design is evolving fast and since all involved personnel is available at the same time, quick
iterations are common. At the beginning of the design the uncertainty is quite high, because many values
are based on estimations or assumption. In order to compensate for the uncertainty, the design team applies
margins of up to 30% to their values.

The Virtual Satellite software fully covers the Concurrent Engineering work methodology as shown in
Figure 1. All members of the design team work on a central repository, thus following the model-based
paradigm of having a system model as single point of truth. They commit their design information through
a special client and make it available for others. In return, they can receive the updates of others and
use it as input for their own design. The software has a role management to assign certain people to
their responsibility. This assures that the team members can only modify a part of the design, typically a
subsystem like power or thermal. On the other hand, everyone can see the designs of others. This increases
transparency and makes it easy for the team leader or systems engineer to monitor the progress of the study.

The Virtual Satellite is based on a flexible and extensible data model covering many required features
of the CE design. The data model allows child-parent relations to define a hierarchy and a (functional)
decomposition of the design. Further, it provides means to define subsystems or components with parameters
and calculations. The data model also offers the possibility to introduce so called modes of operation. They
are used to split the mission in time periods where certain activities are performed. For instance, an Earth
observation mission would have a camera mode, where certain equipment is turned on and requires a certain
amount of energy. The power consumptions can vary dependent on the modes. Defining modes is one task
of CE and mode dependent parameters are a first attempt to describe dynamic behavior of the system.

The domain experts are usually responsible for one subsystem. They come up with a design, enter their
values and calculations and share the information with the team. They are also doing subsystem analysis
and evaluation which is often performed in established domain specific tools. The systems engineer has
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Figure 1. Concurrent Engineering with the software Virtual Satellite

different tasks, e.g. monitoring the mass and power budget of the spacecraft. The two other important
actors are the team leader and the customer. The team leader guides the study, triggers and assigns tasks to
certain people, raises questions, and generally has the overview. The customer should be involved as much
as possible so that his needs are understood and hopefully satisfied in the end.

III. Mission verification

We instigated the work on verification for Concurrent Engineering over a year ago. We first looked at
formal verification techniques used in software and hardware designs. We particularly decided to use model
checkers because they potentially do a fully automated verification of a system against a given specification.
In a first paper we examined the information which is typically available at the beginning of a spacecraft
design and transferred it into a state machine. The state machine was used as input for an existing model
checker. We found that this is generally possible, but experienced the state explosion problem very quickly.
An exhaustive coverage of the state space becomes impossible because of memory and computational limits.
This is especially true for the nature of a space missions where state transitions are often calculated by data
and time continuous simulation models.8

One idea to avoid the state explosion was to replace the model checker and use informed search algorithms
instead. The advantage of this approach is that the search algorithms do not have to examine all possible
state transitions. Instead they are driven by a cost function and try to find a way (or the best way) through
the state space to reach the mission goal. It is also possible to define constraints, e.g. the physical size
of the on-board memory or discharging the battery below the safety criteria which potentially harms the
spacecraft. The search algorithm treats these as hard limits and eliminates any state transitions that violate
such a constraint. This reduces the state space, too. We implemented several algorithms, most importantly
the A* algorithm and looked at heuristics to define the cost functions. The results were promising: the
computations were fast and we were able to connect simulation models directly to the state machine to
increase the level of detail. Another important aspect is that most of this work was directly implemented as
a new part of the Virtual Satellite software, a part which is now called mission checking framework.9,10

The workflow and integration in the CE process of the verification framework is explained in Figure 2.
The system model as it is defined by the CE team is the input for the framework. It is transformed into an
executable state machine model. The verification expert can edit the definition of the state machine model
with a textual editor. Here, it is possible to select different search algorithm or connect simulation models
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Figure 2. Workflow of the verification with the mission checking framework in Concurrent Engineering

to the state machine. The editor is based on a domain specific language, a spacecraft description language
in this case, which provide user friendly features such as keyword completion and syntax highlighting. Once
the scenario of the mission is fully described, the verification expert can start a run of the search algorithm.
When the algorithm is successful, it gives the sequence of state transitions leading to a result. In the opposite
case, when it cannot find a way through the state space that reaches the goal, the software notifies the user.

IV. Example: A technology demonstrator mission

IV.A. Maturing the requirements

As an example to demonstrate the possibilities of continuous verification in CE, we use a scenario which
is derived from the TET-1 space mission, a German technology demonstration microsatellite launched in
2012. The main goal of this mission is to provide a low cost platform for on orbit validation of new space
technology. TET-1 carries a total of eleven experiments as payloads.11

On the basis of the TET-1 mission, we derive a simplified example, yet considering realistic design infor-
mation and requirements from the original mission. The satellite shall be on a low Earth, sun synchronous
orbit at a high inclination of 97.5◦, a period of 95 minutes and an altitude of 520 km. Instead of considering
all eleven experiments we use only three in our simplified scenario namely an infra-red camera for detecting
fires on Earth, a GPS experiment, and a small satellite propulsion system. All experiments gather science
data and the overall mission objective is to gather 10 Gigabytes of experiment data and the mission should
not take longer than one year.

These are typical initial requirements that are used as a starting point for a first design in a CE process.
The team then decides for certain concepts which are promising to fulfill the mission goal. In our example we
are interested to have the experiment data back on the ground, so we need a concept to retrieve it. Rather
than doing a re-entry mission, let us assume we decide for first storing the data on an on-board mass memory
and then downlink it to the ground. This triggers the data handling expert who will provide first estimates
for downlink bandwidth and mass memory size. At the same time the experiment specialists come up with
the amount of data their experiments produce in a certain period of time and how much power they will
use. The power domain considers all on-board consumers and lays out a battery and solar cells to generate
power.

From a system level point of view we define certain modes of operation for our mission. We assume that
the experiments run separately so they are each represented by an individual mode. Additionally, we define
separate modes for charging the satellite, downlinking the data and idle time. Each mode is associated with
a duration and this allows us to define parameters changes over time, thus adding information about the
dynamic behavior of the system. Table 1 gives an overview of the requirements and the design after the
first CE iteration. The members of the design team enter all this information into the central system model.
The team leader and systems engineer monitor the design and assure that all necessary design information
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appears in the central repository.

Table 1. Requirements subsystem constraints as initial input for the mission verification framework

Requirement/Constraint Value

Mission objective 10 GB of data in one year

Orbit Low Earth, sun synchronous orbit*

Mass memory size 512 MB*

Downlink bandwidth 2.2Mbit/s*

Battery capacity 4320Wh = 240Ah · 18V *

Modes of operation 6 modes (three experiment modes, charge, downlink and idle)

* Actual value of the TET-1 mission:
https://directory.eoportal.org/web/eoportal/satellite-missions/t/tet-1 [last accessed: 08/06/2013]

After this first iteration, the mission verification expert can start setting up the executable state machine
model. We transform the system model in an input file for the verification framework. This means, we define
state variables, initial values, constraints, goals and the state changes in accordance with the information
contained in the system model. Of course, not all information is directly usable or available at this early
stage. For instance, so far we have no information about contact times to a ground station. Therefore, it is
unknown how much data we can actually send to the ground. We overcome this lack of information by using
assumptions or simplifications and integrate them directly in the state machine definition. In this particular
case, the simplification is, we allow downlink at any time and assume a very low bandwidth.

Now we run the mission checker. The search algorithm tries to find a sequence of state changes that fulfill
our goal of downlinking 10 Gigabyte of data in one year. In case it does, it returns a list of all state changes
including the state parameter changes leading to the successful mission for further analysis. Otherwise it
states that it can not find a solution for the given mission scenario.

The result of the first run is depicted in Figure 3 on the left hand side. Here, the amount of data is plotted
over the mission time. We see that the search algorithm found a sequence of state transitions which reaches
the goal; the required 10 Gigabytes of data are downlinked in 16 days. But only the camera experiment was
selected and produced data. The other two experiments were not executed and produced no data in result.
The mission verification expert takes the results and discusses them with the design team and initiates the
next iteration. Now, considering the requirements, the graphs make sense, because the only statement for
mission success was the amount of downlinked data in one year. We did not state the requirement that
each experiment has to run at least once during the mission or give individual data requirements for each
payload. Let us consider the team leader decides to define individual goals for each experiment. He assigns
the task to the experiment specialists and they come up with values for required amount of data for each
experiment. They commit their numbers to the system model and they are added as goals to the mission
verification framework which analyzes the modified mission directly.

The result of the second mission verification run is given in Figure 3 on the right hand side. We are
still acquiring 10 Gigabytes of data overall, and additionally all three experiments are now scheduled one
after the other. The camera and the propulsion experiment reach their required amount of data and are not
executed any more. The GPS experiment is collecting the rest of the data until the overall 10 Gigabytes are
reached. The mission time has increased to 42 days.

This first evolution of the design shows how the result of the verification model can help to mature
the requirements. In this particular case we found a deficiency in our requirements. We defined individual
required data for the three on-board experiments as additional goals that more precisely describe what we
want to achieve in our mission. The result can directly be seen by analyzing the state transitions.

IV.B. Increasing the level of detail with simulation models

So far, the model still allows selecting the downlink mode at all times. This is not possible in reality of course,
because we can only send data down to the ground if we have contact to a ground station. In a first refinement
we include a simple communication simulation to our state machine. From previous missions we know that
on similar orbits we have an average of one hour connection to the ground per day. This information is put
into a very simple simulation model which, based on the mission time, sets a flag indicating whether there is
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Figure 3. Results of the first and second run of the mission verification showing the improvement of adding goals for
the three on-board experiments

contact or not. In consequence, the mission checker can only select the downlink mode if the downlink flag
is set. This simulation model is called in a special section of the state machine description.

The results of this refined mission with a simulation model are depicted in Figure 4 in the left column.
As before, we can see the collected amount of data of the experiments and the downlinked data in the first
plot. Additionally, we are also plotting the development of the mass memory capacity utilization. Starting
at the top left, we see that we can still reach our goal. The behavior is similar to the one we observed in the
previous run. The camera experiment is selected first and produced the majority of the downlinked data.
The other two experiments are executed thereafter. The mission time is at 82 days which is almost twice as
long as in the last run. Looking closer at the graph we see a step-like development where over a period of a
couple of days no downlink is possible. This is also clearly resembled in the second graph on the left hand side
showing the utilization of the on-board mass memory. The mass memory is quickly filled with experiment
data. Then, there is a recurring pattern of downlinking the data and running the camera experiment. In
the ground station contact simulation model we allowed downlink every day, but the period of the pattern is
longer than one day. The reason for this is the step sizes of our simulation model and the state durations of
the state machine that represents the duration of the modes of operation. In other words, when the duration
of a mode is longer than the one hour downlink window, we simply miss the option of sending data to the
ground. So here, we are running into step-size problems as they are common in simulations. The general
rule that the step-size has to match the resolution of the underlying problem applies here as well.

In the next step, we adjust the step size of our state duration and the simulation model. We set it to 1.44
minutes (1/1000 of a day). Also, we improve the downlink connection model. We replace the simple model
of setting the downlink flag with a SGP4§ orbit propagator and a ground station model which checks if a
downlink is possible based on the position of the satellite. The results of detailed analysis are depicted in
the right column of Figure 4. We clearly see the effect of the smaller step size. We have frequent contact
to the ground. The propulsion experiment is starting earlier and is scheduled alternating with the camera
experiment. In comparison to the previous results, the time to reach the mission objective dropped to 64
days.

IV.C. Identifying and exploring trade-off scenarios

In the second graph on the right hand side of Figure 4, we see that mass memory is used to capacity over
a very long period of the mission. The mission verification expert can use this information to point out
potential trade off scenarios for the next CE session. In this particular case he could propose to the team to
look into using a larger on-board mass memory system. This is a task for data handling to check for other
available equipment, or in case a totally new component has to be developed, how much does it cost. The
mission verification expert can easily adjust the model, e.g. double the size of the mass memory, run the
verification and look at the results again. We could also explore in another direction. We noticed that the
mass memory is very full: data is available, but it cannot be transmitted to the ground. So we might want to
explore the effect of adding another ground station to our scenario. Again, we do this in the similar fashion

§The SGP4 algorithm calculates the orbital state vector for low Earth orbits and uses simplified perturbation models for
The Earth’s shape, atmospheric drag, and gravitation effects from Sun and Moon.
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Figure 4. Results of the mission verification with simulation models; simple communication model on the left and orbit
propagation model on the right hand side. The first row shows the accumulated data of each on-board experiment
and the total amount of downlinked data. The second row shows the capacity utilization of the mass memory on the
spacecraft.

as before when we increased the mass memory. We add a second and potentially a third and fourth ground
station to our model, run the mission verification and look at the results. Using more ground stations also
means higher cost for the mission. Last but not least, the payload specialist for the camera system has to
look into the possibilities of reducing the amount of data that the camera is producing. Maybe pre-processing
is an option, but it adds complexity and another computer to the satellite, therefore has other implications
on the design.

The mission verification framework makes it very easy to explore in multiple directions. We can set
up different scenarios to explore the trade space quickly and then use it to make informed decisions in the
design process. The result of our analysis for the example was that the increase of the mass memory has
only a small positive effect. It reduced the mission time by some days, yet the mass memory reached its
capacity of now one Gigabyte very quickly and stayed high as long as the camera experiment was active.
Adding more ground stations had the desired effect of significantly cutting down the mission time. Three
well distributed ground stations allowed us to downlink the data in just 24 days. The detailed graphs of this
trade exploration are given in the Appendix.

IV.D. Applicability in Concurrent Engineering

We found that the performance of the mission verification part of Virtual Satellite is well suited for the
Concurrent Engineering process. The presented example shows the flexibility of the approach which is
necessary for the early stages of a mission design. It is possible to quickly adapt the input for the mission
checking framework and to give feedback to the design team by evaluating the results. The framework is
also easily extensible. Extension points offer a fast way to connect new simulation models. New language
elements for describing the satellites state machine can be added during an ongoing Concurrent Engineering
session if required.

In Table 2 we present some characteristic parameters of the state machine description of the above
example to give an idea of the complexity and size of the problem. The first column shows the values of
the initial design of the technology demonstrator mission. This was just a state machine with no simulation
model attached. The second column is the simple ground communication simulation model. The third
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Table 2. Characteristics of the mission verification runs

Initial design: First refinement: Second refinement:

No simulation Simple ground station Orbit propagation with

communication simulation ground station positions

State variables 7 8 14

Modes of operations 6 6 6

Step size of state transition 0.1 0.01 0.001

Step size of simulation - 0.01 0.001

Evaluated state changes 422 1466 26281

Computation time 0.05s 1.00s 11.97s

column presents the most complex set up in the example, the orbit propagation model in conjunction with
ground station locations. At first, we are looking at the number of state variables, which increases as we
describe the space mission in more detail. At the beginning, we defined variables for the amount of data of
the three experiments and the downlinked data. We also have a parameter for the mission time, the mass
memory capacity and the battery charge. The number of state variables doubles as we add more details.
For instance, the orbit propagation algorithm needs to store the position and velocity of the satellite as
state parameters. The modes of operation, respectively the number of states remains constant throughout
the example. The defined states are: Idle, Charge, Downlink, and one state for each experiment on board.
Further, the table shows the minimal step size, the number of state transitions needed to fulfill the mission
objective and the computational time needed. The step size is relatively long in the initial design, therefore
the number of state transitions is quite low and the computational time is short. As the level of detail
increases and we connect the simulation models, the number of state transition and computation time both
grow. The worst case took just under twelve seconds to find a matching sequence of state transitions which
is still relatively short and can very well be used in Concurrent Engineering. All these models were executed
on a standard notebook with a Core i7 processor. The available memory was limited to one Gigabyte by
the size of the Java Virtual Machine. Of course, the presented example does not have the same complexity
and number of parameters as a typical Concurrent Engineering spacecraft study. However, the results are
promising that this kind of mission verification can successfully support the Concurrent Engineering process.

V. Conclusion

In this paper, we propose to add a verification expert as a separate domain to the Concurrent Engineering
core team in order to check the feasibility of the planned mission. The integrated mission checking framework
of the software Virtual Satellite takes the information of the system model directly and turns it into a state
machine model representing the dynamic behavior and the mission goals. The verification expert analyzes
this model with informed search algorithms and uses the results as direct feedback for the design team. The
example of space mission explains in detail how this feedback matures requirements, increases the level of
detail of the design and supports fast trade-off studies.

In the future, we plan to do a field test of the framework in an actual CE study to get first hand user
experiences and apply it to a large scale study. This helps to further enhance the implementation and
improve the usability. We would also like to integrate the analysis of the results into Virtual Satellite which
is currently done in external tools. The driving element of the mission checking process is the cost function
of the search algorithm. Here, further research is necessary to find heuristics for defining the cost functions
for certain algorithms.
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Appendix

Figure 5 gives the results of the two modifications that we explained in IV to explore the trade space.
The plots on the left hand side show the mission with an increased mass memory (1024 MB). On the right
hand side are the resulting missions with additional ground stations.
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Figure 5. Results of the mission verification to support the trade space analysis

The following listing is a complete file of the domain specific language for the verification model. The
verification expert uses this file to describe the state machine, the goals and constraints, attaches simulations
models and defines which search algorithm should be used.

1 Describe Satellite
2 Set Solver
3 de.dlr.virsat.mission.modeling.checkingalgorithm.AStarDefaultCheckerAlgorithm
4 End
5
6 Describe State Parameters
7 Parameter missionTime ;
8 Parameter experimentDataCamera ;
9 Parameter experimentDataGPS ;

10 Parameter experimentDataPropulsion ;
11 Parameter massStorage ;
12 Parameter batteryCharge ;
13 Parameter TotalDownlinkData ;
14 Parameter DownlinkConnection ;
15 Parameter SatPositionX ;
16 Parameter SatPositionY ;
17 Parameter SatPositionZ ;
18 Parameter VelocityX ;
19 Parameter VelocityY ;
20 Parameter VelocityZ ;
21 End
22
23 Describe Initial Parameter Values
24 Parameter missionTime Set Value 2456268.0 ;
25 Parameter experimentDataCamera Set Value 0.0 ;
26 Parameter experimentDataGPS Set Value 0.0 ;
27 Parameter experimentDataPropulsion Set Value 0.0 ;
28 Parameter massStorage Set Value 0.0 ;
29 Parameter batteryCharge Set Value 200.0 ;
30 Parameter TotalDownlinkData Set Value 0.0 ;
31 Parameter DownlinkConnection Set Value 0.0 ;
32 Parameter SatPositionX Set Value 0.0 ;
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33 Parameter SatPositionY Set Value 0.0 ;
34 Parameter SatPositionZ Set Value 0.0 ;
35 End
36
37 Describe Operational States
38 State Idle ;
39 State Downlink ;
40 State Charge ;
41 State Experiment_GPS ;
42 State Experiment_Propulsion ;
43 State Experiment_Camera ;
44 End
45
46 Describe Starting State
47 Idle
48 End
49
50 Describe Operational State Changes
51 State Idle
52 Changes Parameter missionTime by 0.01 ;
53 Changes Parameter batteryCharge by -0.1 ;
54 End
55 State Downlink
56 Changes Parameter missionTime by 0.001 ;
57 Changes Parameter batteryCharge by -0.024 ;
58 Changes Parameter massStorage by -23.76 do not exceed 0.0
59 and shift inverted Value to Parameter TotalDownlinkData ;
60 End
61 State Charge
62 Changes Parameter missionTime by 0.001 ;
63 Changes Parameter batteryCharge by 0.24 do not exceed 200.0 ;
64 End
65 State Experiment_GPS
66 Changes Parameter missionTime by 0.001 ;
67 Changes Parameter batteryCharge by -0.024 ;
68 Changes Parameter experimentDataGPS by 0.2 do not exceed 1200.0
69 and shift effective Value to Parameter massStorage ;
70 End
71 State Experiment_Propulsion
72 Changes Parameter missionTime by 0.001 ;
73 Changes Parameter batteryCharge by -0.024 ;
74 Changes Parameter experimentDataPropulsion by 0.2 do not exceed 2200.0
75 and shift effective Value to Parameter massStorage ;
76 End
77 State Experiment_Camera
78 Changes Parameter missionTime by 0.001 ;
79 Changes Parameter batteryCharge by -0.024 ;
80 Changes Parameter experimentDataCamera by 4.0 do not exceed 7200.0
81 and shift effective Value to Parameter massStorage ;
82 End
83 End
84
85 Describe Operational Constraints
86 Constraint BatteryChargeConstraint for Parameter batteryCharge
87 Between 40.0 And 200.0 ;
88 Constraint massStorageConstraint for Parameter massStorage
89 Between 0.0 And 512.0 ;
90 Constraint DownLinkPossible for Parameter DownlinkConnection
91 Above 0.5 Accounts For State Downlink ;
92 Constraint missionTimeConstraint for Parameter missionTime
93 Below 2456632.0 ; // one year from start date
94 End
95 Describe Operational Goals
96 Parameter TotalDownlinkData Above 10000.0 ;
97 End
98
99 Describe Simulation Modules

100 Executing Time missionTime with StepSize 0.001 ; // 0.001 days = 1.44 min
101 Describe Module ID
102 de.dlr.virsat.mission.modeling.simulation.SGP4Model
103 Initialize TLE1 with
104 "1 38710U 12039D 13217.58194267 .00003276 00000 -0 14211 -3 0 340" ;
105 Initialize TLE2 with
106 "2 38710 97.4787 129.5105 0001914 158.0258 202.1061 15.23066867 57660" ;
107 End
108 Describe Module ID
109 de.dlr.virsat.mission.modeling.simulation.StationModel
110 Initialize Station1 with " N 5 3 1 9 .66866 , E 1 3 4 .409178" ; // Neustrelitz
111 Initialize Station2 with " N 6 7 5 1 .427512 , E 2 0 5 7 .860501" ; // Kiruna
112 Initialize Station3 with " S 6 3 1 9 .253520 , W 5 7 5 4 .057420" ; // O’Higgins
113 End
114 End
115 End
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