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Abstract—A reference sensor system, consisting of a multilayer
laser scanner and a stereo camera system, is used for detecting
vehicle surroundings. Via a novel multi level multi sensor fusion
framework the heterogeneous sensor information can be fused
on three succeeding processing levels (low, mid and high level).
Here the low level fusion achieved the highest accuracy in the
description of the object hypotheses. Detection and processing
faults can be recognized and reduced by competing sensor
information within higher fusion levels. To combine the individual
advantages and compensate for the disadvantages of the each level
the different levels’ results are merged in a V-shaped descent and
ascent in the process chain. In the following the framework and
the various methods for data fusion are presented and finally
validated using real and simulated scenarios.

I. INTRODUCTION

More than three quarters of all traffic accidents in Germany
are caused by drivers’ mistakes [1]. A logical consequence to
assist the human in the recognition and avoidance of dangerous
situations, is the computer-based driver assistance. The sensor-
based vehicle environment detection provides the basis for
the automated driving assistance. The usage of homogeneous
sensor networks often has a sensor-specific drawback. For
instance, an image sensor needs an active light source and the
field of view of a laser scanner is usually rather limited [2].
To avoid the sensor specific disadvantages of homogeneous
sensors, the exploration and usage of heterogeneous sensors
in the environment detection is increasing (see EU project
Interactive [3]). Here, often one sensor is declared as the main
sensor determining the object hypotheses and another one is
only used for verification (for example radar and vision [4] or
laser scanner and vision [5]). Missing detections by the main
sensor remain undetected.

For reliable operation, the false positive and false negative
rates have to be reduced and the accuracy of the object and
situation determination must be increased. Reasons for the
errors are the sensor specificity (e.g. negative environmental
impacts on the measuring performance or accuracy), data
processing (eg fragmentation and merging of object hypothe-
ses, association errors) or the measurement conditions (e.g.
occlusion).

The work ties in at this point and attempts to increase the
vehicle environment perception in their reliability and accuracy
by a competing fusion of heterogeneous sensor data at differ-
ent levels of processing (fusion level). A fusion framework,

developed for this purpose, allows the parallel or exclusive
combination of the sensor data on the processing levels of
spatial point information (low level), object data (mid level)
and track data (high level). Contradictory sensor statements,
based on a common sensing area, are used to identify missing
and erroneous detections or processing errors of individual
sensors by fusion on higher levels. Based on a reference
sensor system, consisting of a multilayer laser scanner and
a stereo camera, it is further shown that the data fusion at the
lowest level, due to a high information density, provides the
relatively most accurate object estimation. A combination all
three levels’ fusion results therefore reduces the measurement
and processing errors and increases the accuracy of object
determination.

The paper is structured as follows: Section II introduces
the reference sensor used and the processing and fusion
framework. The data fusion on the lower point level is de-
scribed in section III while section IV focuses on the middle
and higher object and track level fusion. In Section V the
combination of the fusion levels is presented. Afterwards, the
presented approaches are finally tested against ground truth
and simulated data in section VI.

II. PROCESSING AND FUSION FRAMEWORK

A. Reference Sensor

The sensor system consists of a 4-layer laser scanner (IBEO
- Lux) and two side-mounted cameras (Leutron Vision - Pic-
Sight). The sensors are attached to the front of the measuring
vehicle, sensing in driving direction. For further processing
and recording the data is forwarded over an Ethernet interface
into a vehicle-integrated computation unit. The acquisition
timestamps of both sensors are hardware-synchronized in order
to allow low level data fusion.

The parameters for mutual orientation and the systematic
and random error of the sensors are determined in advance
[6]. Therefore for each measurement point a model driven
estimation of the measurement accuracy can be derived.

B. Fusion Framework

The first systematic attempt to develop concepts for sensor
data fusion in the automotive sector was in the EU project
PReVENT ProFusion 1 and 2 [7]. The concepts developed



therein still represent the current state of the art in the
following major automotive projects like interactIVe (2010 -
2013) [3], INTERSAFE-2 (2008 - 2011) [8] and HAVEit (2008
- 2011) [9].

Four essential fusion concepts were explored and listed in
[7]:

• Early Fusion

• Track-level Fusion

• Multi-level Fusion and Fusion Feedback

• Grid based Fusion

The Multi-Level Multi-Sensor Fusion Framework
(MMFF), presented here, can be considered as an extension
to the Multi-level fusion formulated in [7] and [10]. The
Multi-level fusion attempts to increase the accuracy of object
determination by data fusion on the optimal fusion level
depending on the included sensors and the specific application.
A parallel level fusion for combining the level benefits, in
contrast to the present work, does not take place. Another
difference is the mutual independence of the embedded
sensors and their processing in the MMFF to ensure an
equal information competition. Thereby the MMFF is able to
detect errors and false information by data fusion at higher
processing levels.

As shown in figure 1, the spatial object points of the
sensors are processed (fused) at the lowest level. Within the
segmentation process the point information from different
sensors is grouped independently or together into segments.
On the mid level these segments are grouped and aligned
to object hypotheses according to the real objects (Merging /
Shaping [11]). The tempo-spatial movement of objects (tracks)
is determined at the highest level within the tracking (Extended
Kalman Filter). To obtain a joint track information the data
from the two sensors can be fused at all three levels.

The framework is independent of the number and measur-
ing method of included sensors, as long as the data (points,
objects or tracks) and error models can be provided.

III. LOW LEVEL FUSION

By data fusion at the lowest processing level (LLF) the
measured point data from the sensors (3D Cartesian coor-
dinates) is fused. For that the points are fed into a joint
segmentation. This merging segmentation process does not
differ from the single sensor segmentation. In order to make
the segmentation independent from the sensor type, only the
spatial information from the points is used discarding the
image information from the stereo camera. Based on the
segmentation approach described in [12] an additional sensor-
specific segmentation model and an error model for the point
information are taken into account.

The segmentation model defines the valid segmentation
region of a sensor depending on the measuring principle,
the measurement resolution and the distance and direction
between measuring point and sensor. The segmentation region
is denoted by the space around a certain point in which another
point is probably mapping the same real object (S-Ellipsoid see
figure 2(a)). The local segmentation behavior of a sensor can
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Fig. 1: Multi Level Multi Sensor Fusion framework for refer-
ence sensor system

be described by an appropriate choice of the distance factor
S, a constant offset O and an exponent E. Depending on the
measurement distance d the S-Ellipsoid is described with:

Sa = Ox + (Sxd)
Ex

Sb = Oy + (Syd)
Ey

Sc = Oz + (Szd)
Ez . (1)

The error model, however, defines the space around each
measurement point (F-Ellipsoid), in which the true position of
the point is located with a required probability p:

Fa = Φ−1

(
p+ 1

2

)
σx + μx

Fb = Φ−1

(
p+ 1

2

)
σy + μy

Fc = Φ−1

(
p+ 1

2

)
σz + μz , with μx = μy = μz = 0 . (2)

As shown in figure 2(b) two points P1 and P2 are associ-
ated with the same segment if at least one F-Ellipsoid of one
point encloses the S-ellipsoid of the other one completely [13].

For the LLF presented here the input point data from the
sensors has to be acquired synchronously and in a common
coordinate system. Figure 3 shows the LLF results for an
exemplary traffic scene.
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Fig. 2: S- and F-Ellipsoid for a measurement point P1 (a);
valid segmentation of two points according to their S- and
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Fig. 3: Low Level Fusion by joint segmentation of the red
dotted stereo and green dotted laser data

A. Segmentation Probability

The segmentation probability P (SX
P ) (SP) defines the

probability for a valid segmentation S for an existing object O
at the measurement point P for a sensor X . For every point P
in the sensing area such a probability P (SX

P ) can be estimated.

The horizontal SP is determined on the shortest distance
d̄ between the F-Ellipsoid F P̄ of the horizontal neighbor P̄
and the S-Ellipsoid SP of P (see figure 4) and the standard
deviation σ̄ of P̄ with:

P (S̄X
P ) =

⎧⎨
⎩
Φ
(

d̄
σ̄

)
, with d̄ ≥ 0

1− Φ
(
− d̄

σ̄

)
, with d̄ < 0

(3)

The shortest distance d̄ equals the minimum of d̄x, d̄y
and d̄z . This distances are derived from the location of the
F-Ellipsoid F P̄ of the horizontal neighbor P̄ within the S-
Ellipsoid SP of P :

d̄y P̄ P

S-Ellipsoid of P
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Fig. 4: Illustration of the distance d̄y in Y-Direction between
the S-Ellipsoid SP

b of P and the F-Ellipsoid F P̄
b of P̄ for

determination of the horizontal SP P (S̄P ) in P

d̄x = SP
a − (P̄x + F P̄

a − Px)

d̄y = SP
b − (P̄y + F P̄

b − Py)

d̄z = SP
c − (P̄z + F P̄

c − Pz) (4)

In the same way the vertical distance ¯̄d to the F-Ellipsoid
F ¯̄P of ¯̄P and the vertical SP P ( ¯̄SX

P ) are estimated. The total
SP P (SX

P ) at P is set to the minimum of P (S̄X
P ) and P ( ¯̄SX

P ).

IV. MID AND HIGH LEVEL FUSION

In the Mid Level Fusion (MLF) object hypotheses of
different sensors and in the High Level Fusion (HLF) object
tracks are fused. In the following, the particular fusion steps
are described.

A. Mid Level Fusion

For the object data fusion, called mid-level fusion, the
incoming object hypotheses are determined either directly in
the sensor or in a subsequent processing unit. As a result
a new object hypothesis is generated by a weighted fusion
of the incoming objects from the involved sensors. At first
all corresponding objects mapping the same real object are
associated with each other within a clustering. Based on
contradictory sensor assignments within the object clusters
segmentation errors can be detected. As shown in figure 5
the segmentation errors are divided into fragmentation objects
(FO), merging objects (MO), missing objects (FNO) and false
objects (FPO) similar to [14]. Afterwards the error cleaned
object clusters are fused by a Simple Convex Combination
algorithm [11].

Fragmentation and Merging Objects: If not all involved
sensors are able to associate an object to a certain cluster
a segmentation error is presumed. In this case this conflict
cluster C1 is tested on the complementary effects object frag-
mentation and merging. This occurs if some object hypotheses
of a second cluster C2 overlapping C1. The complementary
probabilities for an FO P (F+) and MO P (F+) are determined
depending on the degree of splitting or overlapping between
the single object hypotheses and the cluster centers of C1 and
C2. This is described by an overlapping dF+ and splitting
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Fig. 5: Errors in segmentation: Fragmentation object (FO),
merging object (MO), missing object (FNO) and false object
(FPO)
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Fig. 6: Determination of overlapping distance dF+ between
Object O and cluster C2 (a); Determination of splitting dis-
tance dF− between Objects O1 and O2 (b)

distance dF− and the accuracy of the clusters σMC and the
objects σMO (see figure 6).

The so called overlapping probability P −(F+) is deter-
mined by

P−(F+) =

⎧⎨
⎩
Φ
(

dF+

σMC

)
, with dF+ ≥ 0

1− Φ
(
− dF+

σMC

)
, with dF+ < 0

(5)

and together with the segmentation probability P (SX
MO

) at
MO the probability for an FO P (F+) is derived by

P (F+) = (P−(F+)− 1

2
)(
3

2
− P (SX

MO
)) +

1

2
. (6)

In the same way the splitting probability P −(F−) is
determined by

P−(F−) =

⎧⎨
⎩
Φ
(

dF−
σMO

)
, with dF− ≥ 0

1− Φ
(
− dF−

σMO

)
, with dF− < 0

(7)

and

P (F−) = (P−(F−)− 1

2
)(P (SY

MO1O2
)) +

1

2
. (8)

The complementary probabilities P (F+) and P (F−) can
be determined for each involved sensor for the two conflict

clusters C1 and C2. To resolve this conflict the two probabil-
ities are multiplied and compared:

M∏
i=1

PXi (F+) >

M∏
i=1

PXi (F−) , with X i ∈ (U ∪ Ū) → FO

M∏
i=1

PXi (F+) <

M∏
i=1

PXi (F−) , with X i ∈ (U ∪ Ū) → MO

M∏
i=1

PXi (F+) =

M∏
i=1

PXi (F−) , with X i ∈ (U ∪ Ū) → ND

(9)

In case of equality no decision can be taken (ND).

Missing and False Objects: If no other clusters overlap a
conflict cluster C1 a missing (FNO) or false detected object
(FPO) is assumed. To solve the conflict for all involved sensors
of C1 the compound probabilities P (E+|D+) and P (E−|D+)
have to be estimated. P (E+|D+) equals the probability given
an object hypothesis was detected D+, the object exists in
real E+ and P (E−|D+) the probability given an object
hypothesis was detected D+, the object does not exist E−.
Since these probabilities are not directly measurable, they are
derived according to the Bayes’ theorem from the likelihoods
P (D+|E+) and P (D+|E−) and the prior probability P (E+).
The likelihood is substituted by the analytically determined
segmentation probability. For the N involved sensors the two
likelihoods can be fused by the independent likelihood pool
[15]:

P (E+|D1
+, D

2
+, . . . , D

N
+ ) =

P (D1
+, D

2
+, . . . , D

N
+ |E+)P (E+)

P (D1
+, D

2
+, . . . , D

N
+ )

P (E−|D1
+, D

2
+, . . . , D

N
+ ) =

P (D1
+, D

2
+, . . . , D

N
+ |E−)P (E−)

P (D1
+, D

2
+, . . . , D

N
+ )

.

(10)

The maximum of the two posteriori probabilities
P (E+|D1

+, D
2
+, . . . , D

N
+ ) and

P (E−|D1
+, D

2
+, . . . , D

N
+ ) resolves the conflict between a

missing or false object detection:

P (E+|D1
+, D

2
+, . . . , D

N
+ ) > P (E−|D1

+, D
2
+, . . . , D

N
+ ) → FNO

P (E+|D1
+, D

2
+, . . . , D

N
+ ) < P (E−|D1

+, D
2
+, . . . , D

N
+ ) → FPO

P (E+|D1
+, D

2
+, . . . , D

N
+ ) = P (E−|D1

+, D
2
+, . . . , D

N
+ ) → ND

(11)

Again, in case of equality no decision can be taken (ND).
An exemplary illustration of the MLF for a traffic scene is
shown in figure 7.

B. High Level Fusion

The sensors’ single tracks representing the same object are
fused into a system track in the HLF. Similar to the MLF the
detected tracks from different sensors have to be associated
to each other first. The clustering is basically an extension of
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the MLF clustering. Besides the actual object state, the history
states are taken into account to support a correct association.
The incomplete cluster configurations are rated as an indicator
for tracking errors as well. For that the clustering history of a
system track is stored in a system cluster (see figure 9).

Tracking Errors: The tracking errors are separated into
multi object track (MOT) (multiple tracked real objects per
track) as well as missing track (FNT) and false track (FPT)
(see figure 8).

The FPT/FNT effect is recognized within the system cluster
by contradictory sensor statements regarding to missing object
assignments. Figure 9 shows how sensor 3 missed to assign
objects to the system cluster for the last three time steps (green
framed). To solve the complementary FPT/FNT effect, the
FPO/FNO approach from the MLF was extended by taking
the track state accuracies into account.

The MOT effect, which results from a falsely changed
tracking object within a track, can also be detected with the
system cluster. As shown in figure 9 the red framed area shows
a change of track id 3 to 4 for sensor 1. As a consequence the
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Fig. 10: Sequential combination of fusion levels

two wrong tracks are removed from the track cluster.

State Fusion: After cleaning the track clusters all tracks
of one cluster are fused to obtain the system track. To filter
the shared information within a track (inter-track correlation)
and between tracks (intra-track correlation) and to avoid a
distortion of the fusion weight, various methods have been
developed. In this work three different track-to-track fusion
approaches, the Simple Convex Fusion [16], [17], the Fast Co-
variance Intersection Fusion [18] and the Information Fusion
[19], were tested and compared.

V. MULTI LEVEL FUSION

Looking back on the advantages and disadvantages of the
three fusion levels, it can be stated that with an increasing
data processing, the accuracy of the object determination is
decreasing. On the other side errors made in lower process
steps can be caught at higher processing steps. The logical
consequence is the bundling of the specific advantages of the
three fusion levels with a sequential combination of the fusion
methods.

In the sense of a descent, the object data, which was
obtained by fusion of the upper processing levels, is mapped
on the lower point level to get an optimum description of the
object information by a following ascent in the process chain
(see red arrow in figure 10).

Therefore the sensor data, taken from one time step,
is fused independently on mid and high level. Afterwards
the actual track states are mapped from the high on the
object hypotheses of the mid level. Thus detected conflicts
on higher level can confirmed or rejected by comparing them
with the results of the mid level conflict detection. Then the
cleaned object hypotheses are mapped into the point space
of the sensors’ on lower level. For every object Ǒ a local
segmentation is executed to get an optimal object description
Ô. Due to the imprecise high level object description the object
box dimensions are doubled to specify the local segmentation
area. In table I the actions for the prevention of tracking and
segmentation errors in the local segmentation for an object Ǒ
are listed.

Those newly determined objects have the high description
accuracy of the LLF and should be cleaned of detection and



Error Type Action for Avoidance

False detection (FPO, FPT) No further action necessary, as false object and
track hypotheses are already removed out of
the hypotheses list by MLF and HLF

Missing detection (FNO, FNT) No further action necessary, as missing de-
tections are compensated by object detections
from other sensors

Merging object (MO) In case of a detected object merging (MO) for
the corresponding cluster of Ǒ only point sets
from sensors, which are checked as correct
detecting, are involved in the segmentation

Fragmentation object (FO) In case of a detected object fragmentation
(FO) for the corresponding cluster of Ǒ no
further actions are necessary, as a fragmenta-
tion is avoided by points sets of further sensors
at the location of Ǒ

TABLE I: Actions for error avoidance in the local segmenta-
tion

SO-Track 1

SO-Track 2

MO-Track 1
MO-Track 2

Driving direction

Object 1

Object 2

Fig. 11: Szenario 1: Two objects are crossing at an angle of
45◦ with 50 km/h; Sensor 1 detects two error-free SOT’s und
Sensor 2 detects two faulty MOT’s

processing errors by solving the conflicting sensor statements.
The renewed objects pass the process chain again and get
tracked. Here the error-prone object-to-track association can be
dropped since the track id is already known from the descent.

VI. EXPERIMENTAL VALIDATION

The presented methods for data fusion are tested either
by simulation or in real test scenarios. The results for the
experimental validation of MOT detection and object state
determination are listed below. For further experimental eval-
uations see [20].

A. MOT Detection

The introduced detection approach of multi object tracks
was tested in a simulation. In the simulated scenario two
objects are crossing at an angle of 45◦ with a constant speed
of 50 km/h (see figure 11). One correct detecting sensor S 1 is
tracking exactly one real object per track (single object track
– SOT). A second sensor S2 falsely switches the real objects
and their tracks at the crossing point (multi object track). Each
sensor is either detecting two SOT’s or two MOT’s.

The aim of the simulation was to determine the MOT
causing sensor by evaluating the system cluster. Therefore the
object positions were noised with normally distributed random
values to analyze the dependence between MOT determination
and measurement accuracy.

In table II the ratios between correctly detected MOT’s
and the total number of simulation steps depending on the

sensor accuracy are listed. Every single simulation is repeated
1000 times. If the accuracy of both sensors is equal the MOT
detection rate is over 89 %. This surprisingly high rate is due
to the behavior of the MOT compared to SOT. The sudden
difference between predicted an measured moving direction
for a MOT leads to increasing track variances. This benefits
the SOT within a correct system cluster creation. On the other
hand the MOT detecting sensor is trusted more, in case it is
more accurate than the SOT detecting one, which results in a
falsely recognized MOT. Simulations with a second scenario
and more than two involved sensors led to similar results.

SOT σ=0.01 m SOT σ=0.1 m SOT σ=0.2 m

MOT σ=0.01 m 100 % 0 % 0 %
MOT σ=0.1 m 100 % 97.6 % 0 %
MOT σ=0.2 m 100 % 100 % 89.3 %

TABLE II: Simulation of the MOT error detection for one
true and one false tracking sensor with different measurement
accuracies

B. Accuracy Object Determination

To determine the accuracy of the object box description
under real conditions, depending on the used fusion level, a
second car was used as a reference vehicle VR. The reference
vehicle was equipped with two high-accuracy RTK capable
GPS receivers. With knowledge of the vehicle dimensions and
the gps positions a ground truth box of VR could be estimated
in the UTM coordinate system.

The following analysis is based on a circular course driven
by VR with about 11 rounds and 4063 individual measurement
time steps. The circle center was about 35 meters located from
the sensors, with an average radius of about 6 m.

The figures 12 to 13 show the overlap between the mea-
surement and reference object box during the circular drive in
percent. It can be seen that the stereo system provides a better
covering (shown in red) compared to the laser scanner (green),
which can be explained by the better height resolution of the
stereo system (see figure 12).

As expected, in a direct comparison of the three fusion
Levels the LLF (light blue) has the smallest error in the
object description (see figure 13). MLF and HLF achieve a
comparable accuracy, which is lying between the accuracies
of the non-fused sensor data. The LLF outperforms even the
individual sensors regarding the object estimation accuracy. In
this comparison the Simple Convex Fusion was chosen for
the HLF due to the best object estimation compared to the
Information and Fast Covariance Intersection Fusion.

VII. CONCLUSION

A novel, multi-level sensor fusion architecture was intro-
duced, which reduces measurement and processing errors by
a competing fusion on higher level and increases the accuracy
and reliability of the sensor-based vehicle detection envi-
ronment. Additionally the fusion framework is independent
concerning the sensor number and measurement principle.

The comparatively best accuracy in the object description
can be achieved by LLF. This was proved with real measure-
ment data from the reference system, consisting of a laser
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scanner and a stereo camera. The efficiency of the MOT
detection was shown by simulation.
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