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Abstract 
Large scatter characterizes the collapse load of thin-walled structures due to their imperfection sensitivity. 
Random fields can be used to include imperfections in a finite element model.  Principal component analysis 
and analytical covariance functions are matched to available correlation information of geometrical 
imperfection measurements. The random fields are realized by Karhunen-Loève expansion combined with 
Monte Carlo methods. The results of the different covariance models are compared with the deterministic 
collapse loads of the measured imperfections in the FE-model. This approach isolates the effect of the 
different covariance models from other inaccuracies such as boundary conditions, loading imperfections, etc. 
The results show that random fields models can improve predictions and the understanding of the structural 
behavior of thin-walled structures, especially by using data based PCA. Caution is recommended with regard 
to analytical covariance functions since they may fail to capture the complete behavior of the structure. 

 

 

1. INTRODUCTION 

The buckling load of thin-walled structures is known to be 
highly sensitive to imperfections. Imperfections in the 
loading, material properties, boundary conditions, 
geometry, etc. affect the buckling load of, in particular 
cylindrical, shells [1, 2]. In current practice, knockdown 
factors are used to account for these uncertainties in 
industrial applications. 

Knockdown factors are derived from experimental data 
from the 1960ies and take the effects of all imperfections 
into account [3] in a cumulative way. This makes it very 
hard to reduce the knockdown factor if one can reduce the 
uncertainty or imperfection of one or more design 
variables. This may lead to overly conservative designs. 

Nowadays, finite element software is widely used to 
determine the structural behavior of a given structure [4]. 
Detailed prediction of the buckling behavior of thin-walled 
structures requires a detailed and correct description of 
the imperfections. One needs a robust probabilistic 
framework and models that represent the imperfections to 
be modeled [5, 6].  

Random fields have been used to model imperfections. 
Geometry, thickness, material, loading, etc. have all been 
the subject of investigations by means of random fields [7, 
8, 9]. Most of this research was based on the use of 
exponential covariance functions that were fitted to 
measurement data in a limited number of cases.  

It appears that the verification of such models is lacking in 
the literature. Usually, these models have been compared 

to the experimental failure loads. However, by comparing 
with the experimental failure load, the quality of the 
complete finite element model is evaluated, not the quality 
of the random field model. In such a comparison, it is 
tempting to attribute the differences to other uncertainties 
that were not taken into account, e.g. loading or boundary 
conditions. In contrast to this, the comparisons reported in 
this paper were done with respect to the deterministic 
imperfections applied to the finite element model. The 
differences between the models are now reduced to the 
way the imperfections were created; in this way, the effect 
of different descriptions of the random variations is 
isolated. This admits the assessment of the accuracy of 
the stochastic models in capturing the random influences 
as well as their predictive power. 

2. PROBABILISTIC FRAMEWORK 

In this paper, the analysis of the data and the simulation of 
random fields are based on the Karhunen-Loève 
expansion as well as on principal component analysis. A 
direct Monte Carlo simulation approach was used to 
generate the samples for the finite element computations. 
Due to the rather high computational cost, the analysis 
has to be performed with small sample size N. In such a 

situation it is mandatory to use correlation control in order 
to improve the empirical independence of the generated 
random variables. These ingredients will now be described 
in more detail. 

The Karhunen-Loève expansion decomposes a second 
order stochastic process U into a set of orthonormal 



deterministic functions, based on the eigenvalues and 
eigenvectors of its covariance functions: 

 

where  is a sequence of random variables determined 

by the process,  is the mean function and  and 

 are the eigenvalues and eigenvectors, respectively, 

of the eigenvalue problem 

 

where  is the domain and  is the covariance 

function. The Karhunen-Loève expansion converges in the 
mean square sense; in numerical approximations, it is 
truncarred after a finite number of terms, taking account 

of the largest eigenvalues. It is assumed here that the 
process  is Gaussian. Then the random variables  

are independent and identically distributed according to a 
standard normal distribution.  

A direct Monte Carlo approach was used for the 
simulations. In this approach, an artificial sample of size  

of the set of input variables is generated and the 
computational model is evaluated for each realization of 
the input. This results in a sample of size  of the output 

variable, which can be further analyzed statistically. This 
simple approach was chosen because it allows easy 
implementation of a random field generator and can be 
used in combination with the available, deterministic, finite 
element packages such as ABAQUS or MARC to perform 
a non-linear buckling analysis [10].  

When the sample size is small, as usually required in large 
FE calculations to save computational cost, and when the 
number of variables involved is appreciable, the 
multivariate output of a random number generator typically 
is weakly to moderately correlated, but not independent. 
To improve the performance of the analysis and reduce 
the number of required realizations, correlation control 
was applied. Correlation control is an empirical method 
that was proposed by Iman and Conover [11] that consists 
in a suitable rearrangement of the generated sample and 
leads to an approximately uncorrelated sample.  

3. STOCHASTIC PROBLEM FORMULATION 

The Karhunen-Loève method delivers an expansion of the 
covariance functions into orthogonal deterministic 
functions. These orthogonal functions can be derived in 
various ways. Section 3.1 explains how analytical 
functions can be used to assemble a covariance matrix. 
Section 3.2 shows how, by using principal component 
analysis, the eigenfunctions can be obtained more directly. 

3.1. Covariance functions 

Since the covariance matrix models contain the 
information of the spatial distribution of the imperfections, 
adequate modeling of the covariance matrix is key in 
producing trustworthy results. In the past, a variety of 
covariance models have been applied. It appears that a 
quantifiable comparison has not yet been reported in the 
literature. 

In theory, every function that produces a symmetric, 
positive definite matrix can be used to assemble a 
covariance matrix. In practice, exponential or Gaussian 

covariance functions usual suffice to model the empirical 
data. 

The exponential and Gaussian covariance functions for a 
homogeneous and isotropic random field are defined by  

 

and 

 

respectively, where  is the distance between two points 

and  is the correlation length. The correlation length 

determines the variation of the random field over the 
structure. Since the geometrical imperfections that will be 
described by random fields are not necessarily isotropic, a 
slightly different representation is necessary for orthotropic 
random fields. If one assumes that the variation along 
different axes is independent, the correlation structure can 
be split along, e.g., the axial and circumferential direction: 

 

Here, represents the correlation function along the 

axial direction and  the correlation function along the 

circumferential direction. An important issue in industrial 
applications with irregular geometry is the distance 
calculation over the surface. For surfaces with a 
sufficiently simple analytical expression, this is a trivial 
task. If such a representation is lacking, the assembly of 
the autocovariance matrix becomes computationally 
expensive.  

One of the main advantages of using covariance functions 
is that one does not necessarily need imperfection data of 
the specific structure to assemble a covariance matrix and 
perform a random field analysis. Available imperfection 
data can be extrapolated to structures with different 
dimensions or even shapes. Whether these covariance 
functions can be an adequate representation of the 
imperfection will be investigated in Section 5 of this paper. 

3.2. Principal component analysis 

Principal component analysis is a statistical technique that 
extracts the main modes from a set of observations that, 
together, account for the major portion of the variance 
present in the observations [12]. Just as with the 
Karhunen-Loève method, these modes can then be used 
in a truncated expansion for simulating random fields with 
the same statistical distribution as the observed 
imperfections. 

The covariance matrix  is directly calculated 

from the measured data at the points   by 

 

where is the mean of the field at point . 

Solving the eigenvalue problem  the eigenvectors 

in  will form the basis of the expanded process, with the 

eigenvalues in  representing the weight of each 

eigenvector. Again, only a limited number  of elements 

of the basis will be included to represent the random 
process. PCA has been widely applied in computational 
statistics, e.g. in data mining and image compression. The 
main disadvantage of this approach for use with random 
fields is the necessity for measurement data. It is hardly 
possible to extrapolate parameters from data available 
elsewhere and match it to the case at hand. 



4. STRUCTURAL ANALYSIS 

To evaluate the random field models, a finite element 
model to determine the failure load of a thin-walled 
cylinder was created. In this comparative study, the 
measured geometrical imperfections were used as input of 
the FE model on the one hand; on the other hand, 
simulated imperfections based on the different random 
field models were entered in the FE calculations. 

When investigating the buckling behavior of thin-walled 
structures, large displacements arise. A nonlinear analysis 
is necessary to make a prediction of the failure load. 
Because of the large instability of the problem and the 
necessity to decrease the user input during the analysis as 
much as possible a loading-driven arc-length approach 
was used. Failure of the structure was defined by the 
occurrence of a load-drop of 20% compared to the highest 
load reached during the previous steps. The highest load 
reached during the analysis is defined as the failure load. 
The analysis was ended when failure occurred; no post-
buckling analysis was performed. This allows one to 
assume that the strains remain small and therefore stay in 
the elastic regime. 

Thin-walled structures are very sensitive to the applied 
boundary conditions and loading. Since the main goal of 
this research is the comparison of the random field models 
and not the accurate modeling of the real failure load, it 
was decided to use easy to model boundary conditions 
and loading. The evaluation of the model was done with 
respect to the results of the same finite element model 
where the measured imperfections were applied. This 
means that the only differences come from the models of 
the imperfections, but none are from the discrepancies 
between reality and the finite element model.  

Boundary conditions are applied at the top and bottom of 
the cylinder. For the bottom nodes, all the translational 
degrees of freedom are constrained. At the top the same 
boundary conditions are applied, but the axial direction is 
left free. In this direction, a compressive load is applied. 
The load is applied at the center of the cylinder and 
connected to all the top nodes using a multi-point 
constraint. A mesh convergence analysis showed that a 
mesh with around 11.000 elements was a good 
compromise between numerical accuracy and analysis 
time. 

The numerical model was implemented in ABAQUS. Since 
a thin-walled cylinder needs to be modeled, the S4 and 
S4R elements in the ABAQUS library are the most 
appropriate. A comparative study showed that the gain in 
computational efficiency of the S4R element did outweigh 
the gain in accuracy of the S4 element, thus the S4R 
element was chosen. 

The empirical data for this research was made available 
by [13] and consisted of scans of the geometry of 10 
cylinders made of composite material.1 From these 
measurements, it was possible to derive the local 
imperfect radius of the cylinder at around 200.000 points 
per cylinder. Since the measurement mesh was too fine 
for the finite element computations and the correlation 
analysis, the data had to be broken down to the coarser 
FE mesh. Using the imperfect radius of the measured 
point closest to each grid point of the finite element 

                                                           
1
 The nominal values were: radius , height , 

thickness , four layers, lay-up  

description was judged to be enough. The imperfections 
were applied onto the finite element model using the 
*IMPERFECTION option provided by ABAQUS. This 
option allows one to include imperfections in the finite 
element model without getting errors about distorted 
elements. 

To set the stage, Figure 1 shows a comparison of the 
different buckling loads for each cylinder, using the FE 
model without imperfections, the FE model with the 
measured imperfections added in a deterministic way, and 
the experimentally measured buckling loads. 

 

FIGURE 1. Comparison of the failure loads showing the 
discrepancies between finite element failure load 
predictions with and without geometrical imperfections and 
the experimental buckling load 

5. RESULTS 

5.1. Setting up the random field model 

The primary goal of this research was to assess the 
predictive quality of different approaches to modeling and 
creating random fields as representations of geometrical 
imperfections. The comparisons following hereafter are 
made with respect to the failure loads of the finite element 
model with the measured geometrical imperfections 
directly applied to it. For reasons explained in the 
introduction, they are not compared directly to the 
experimental buckling loads. 

After investigation of the probability functions of the 
measurements it was found that the assumption of a 
Gaussian distribution was acceptable. A more problematic 
observation was the large variation of the standard 
deviation of the local radii. Investigations showed that 
these can vary up to almost a factor ten. A closer 
investigation revealed two sets of cylinders with distinctly 
different standard deviations. A visual investigation of the 
imperfections confirms the existence of these sets. Figure 
2 shows the imperfect radius for two different cylinders 
which are both representative for a set.  

 

FIGURE 2. Geometrical imperfections of two cylinders. 
Cylinder IGS Z17 is part of set 1, cylinder IGS Z26 is part 
of set 2, data from [13] 

One can see that the two sets exhibit different 
imperfection structures, which is also confirmed by the 
calculation of the correlation functions in the next section. 



Based on this observation it was decided to divide the 
available sample in two different sets and to form the 
analysis separately. The average mean and standard 
deviation of each set are reported in Table 1. 

Set 
Sample 

Size 
Mean 

Standard 
Deviation 

Set 1 3 250.78 0.321 

Set 2 6 250.73 0.068 

 
TAB 1. Average mean and standard deviation of the geo-
metrical imperfections per set 

The visual inspection also revealed the existence of an 
outlier. Because it was impossible to make any 
assumptions about the reason for the deviating 
imperfection shape, it was decided to remove this 
realization from the available sample. This reduced the 
sample size from 10 to 9. 

5.2. Theoretical covariance models 

As one can see in Figure 2, the imperfections are direction 
dependent. This observation was confirmed by calculating 
the correlation functions independently. Figure 3 shows 
the correlation functions in axial and radial direction.  

FIGURE 3. Empirical correlation functions of the 
geometrical imperfections in axial and radial directions 

The correlation is higher in the axial direction then in the 
radial direction. In axial direction, the cylinders are clearly 
different; set 2 has a lower correlation than set 1. It is less 
obvious from Figure 2 that the correlation function in the 
radial direction is similar for both sets. 

Direction Correlation Function 

Axial and Radial   

Axial and Radial  

Radial  

Radial  

 
TAB 2. Fitted correlation functions 

The theoretical correlation functions shown in Table 2 
have been fitted to the empirical correlation functions. The 
exponential correlation function gave the best fit in axial 
direction. The Gaussian correlation function did not fit well 

at  since the slope of the Gaussian correlation 

function is zero at this point. In radial direction, the mix of 
the cosine and the exponential correlation function gave 
the best fit. 

Using these theoretical correlation functions,  

random fields were generated and applied to the finite 
element model to evaluate the failure load. Figure 4 
exemplarily shows the resulting failure loads in a 
histogram compared to the deterministic failure loads of 
the imperfections.  
 

 

FIGURE 4. Histogram of the failure load of a theoretical 
covariance function with independence assumed along 
axial direction and radial direction 

; stars indicate the 

results of deterministic FE-calculations 

It becomes clear that the theoretical correlation model 
conspicuously overestimates the failure load. Further 
experiments showed that artificially increasing the 
standard deviation would reduce the average failure load, 
but increase the spread of the failure load. Further, the 
effects of choosing different correlation functions turned 
out to be small, especially when compared with the effect 
of the standard deviation. 

5.3. Principal component analysis 

As an alternative to the theoretical covariance functions, 
PCA is proposed. When using PCA, the assumption 
enters that the given measurements are a valid (and 
complete) representation of the main characteristics of the 
imperfections. As explained in Section 3.2, PCA obtains 
the eigenvectors and eigenvalues directly from the 
covariance matrix of the available measurements. These 
eigenvectors and eigenvalues can then be used in an 
orthogonal expansion to assemble the random fields. 
 

FIGURE 5. Histograms of the failure load of a PCA-
analysis; stars indicate the results of deterministic FE-
calculations 



A typical result from the Monte Carlo simulation using PCA 
is displayed in Figure 5. As one can see from this figure, 
the predictions are much better when using PCA to obtain 
the eigenvectors and eigenvalues, which captures the 
characteristics of the random field more closely from the 
available measurement data. 

A large number of further numerical experiments with 
various combinations of covariance functions and values 
for the standard deviation confirmed the findings. 

 

6. CONCLUSIONS 

Different covariance models have been evaluated to check 
their validity to represent general geometrical 
imperfections. The models with random fields have been 
compared with the failure loads of the finite element model 
when the measured imperfections are applied. By 
comparing to the deterministic imperfect finite element 
failure loads, the effect of the geometrical imperfection is 
isolated from other influences, such as boundary or 
loading imperfections. 

It was shown that the theoretical covariance models 
overestimate the failure load and do not provide an 
accurate prediction of the failure load. The results of the 
PCA are better, but only work well when the sample size is 
large. In this case, PCA is able to capture the lowest 
failure loads. 

An overall conclusion is that it is important to validate 
stochastic models before applying them to engineering 
problems. A mere comparison of the computational results 
with the experimental buckling loads to evaluate 
correlation models may be misleading, especially for 
shells where different sources of imperfections can have a 
large influence on the resulting failure load. A better 
approach consists in a comparison with the measured 
imperfections applied to the finite element model. 
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