

Taking Advantage of the Model: Application of the
Quantity, Units, Dimension, and Values Standard

in Concurrent Spacecraft Engineering
Volker Schaus, Philipp M. Fischer, Andreas Gerndt

German Aerospace Center (DLR), Simulation and Software Technology

 Lilienthalplatz 7, 38108 Braunschweig, Germany

Email: {volker.schaus, philipp.fischer, andreas.gerndt}@dlr.de

Copyright © 2013 by Volker Schaus, Philipp M. Fischer and Andreas Gerndt. Published and used by INCOSE with permission.

Abstract. Designing a spacecraft involves many experts from different domains. In the early
design phases they are brought together to discuss the spacecraft in a short period of time. The
elements and building blocks the individual engineers want to use are stored and described in a
shared system model provided by a software framework. A lot of features like the masses or
dimensions are described using parameters. Due to the various domains and individual
preference, many different units are used, leading to mistakes, distraction and
misunderstandings caused by unit conversions. Our paper describes a pragmatic approach how
the QUDV is integrated into an existing system model. This allows taking advantage of it by
automatically analyzing the unit consistency as well as performing automatic conversions. The
presented work shows that with a profound integration into the existing software framework,
the engineers can overcome the error-prone task of unit checks and conversion problems.

Introduction
Dealing with scientific units and quantities is part of the everyday work of design engineers.
Unit checks and conversions are routine tasks; engineers gain confidence in their results by
comparing the calculated value to previous ones and their experience. If for example the order
of magnitude of a result is the same as a previously calculated value of a similar problem, the
engineer might consider this value as plausible. This can be described as to feel at home in a
system of units. Contrary, a misunderstanding on the units or a false conversion can implicate
major design changes. Even worse, if it remains unnoticed, it can lead to mission failures, such
as the loss of the Mars Climate Orbiter (NASA 1999). As a central example, one conclusion of
the investigation report on that particular mission was that errors can happen, but Systems
Engineering should provide adequate means to identify unit conversion problems throughout
the whole lifecycle.

Looking at the lifecycle of such space systems most of the designs starts in so called concurrent
engineering facilities (CEF) (Braukhane, et al. 2012). These facilities enable a design team
consisting of various individual experts to catch up in a common place and to discuss the
system design. Based on an agile approach and joint sessions that increase the common
understanding for the design on system level are alternating with individual work where an
expert can define a subsystem in more detail. Software tools like the Virtual Satellite
(Deshmukh, et al. 2013) from the German Aerospace Center (DLR) or the Integrated Design

Model (Bandecchi, et al. 2000) from the European Space Agency (ESA) provide the backbone
to these studies. Within these tools the engineers can store and exchange important facts in a
shared system model. The engineering process itself is characterized by fast iterations and high
level of communication across the design team. Many questions are raised across the technical
domains and need quick answers in order to have progress in the study. The implemented
system model tools supports this by sharing and reusing data across the whole design team, but
by the natures of the various expert domains, one and the same data may be used and
interpreted using different units. Since time is precious in such studies, the design team has to
focus on solving the actual design problems rather than fiddling around with units and dealing
with conversions. Therefore, already at the very beginning the demand for smart tools that take
care of units and avoid confusion is inevitable.

A key element to encounter the unit dilemma is the conceptual model of Quantities, Units,
Dimensions, and Values, defined in the appendix D5 of the SysML™ Standard (Object
Management Group 2012). This model offers all the semantics and relations of units starting
with the seven SI base units (Bureau International des Poids et Mesures 2006) and the quantity
standard ISO/IEC 80000 (International Organization for Standardization 2009). On top of
those basic definitions more complex relations are possible like the definition of a derived unit
torque in Newton meters or prefixed units like nanometers. Together with a provided algorithm
this model allows for automatic unit conversions and sanity checks as demanded by the
concurrent engineering tools.

To bring the advantages of QUDV into the early spacecraft design, the system model of Virtual
Satellite has been extended with this data model. It is based on Java/Eclipse and the Eclipse
Modeling Framework (EMF) (Fischer, et al. 2011) which leads to the demand of an
implementation of the QUDV in a matching format. In order to take full advantage of the
QUDV and its connection to the existing system model, the algorithms to check and convert
units automatically in the background are implemented as well.

This paper pinpoints the advantages of using QUDV in the early design phases and the
concurrent engineering in particular. Thereafter, it discusses the model implementation using
EMF as well as its integration with the already existing system model. The algorithms
evaluating the unit model are explained in detail. They are the essential part needed on top to let
the engineers benefit from the unit modeling. The paper concludes with describing the practical
uses case of applying QUDV to early spacecraft design.

EMF Implementation of QUDV and System Model Integration
In order to make the QUDV accessible in the early design phases Virtual Satellite’s data model
needs to be extended in several ways. First of all, the QUDV model needs to be implemented
using EMF. Second of all, it needs to be connected to the system model. In the presented
implementation, the QUDV and the system model are individual models, but the system model
is maintaining links to the QUDV. This means in the world of Eclipse that it is implemented as
an independent set of plug-ins. It is a modular approach allowing reuse of the QUDV in various
projects.

Virtual Satellite’s System Model. The system model of Virtual Satellite is designed to
support the engineers work. One instance of it is running on each workstation within the CEF.
Modifications of the model are exchanged using a version control system. Figure 1 provides a
simplified class diagram introducing the main elements and dependencies. All the data of the
study is stored in a so called Repository. The model itself provides functionalities to

decompose the system as well as to save individual data attached to each of such
SystemComponents. The decomposition is achieved by a parent child relation that allows each
SystemComponent to contain further multiple SystemComponents. This allows the engineers to
subdivide the investigated spacecraft into so called elements like the power or data-handling
subsystem. Usually this is prepared by the team leader of the study, but the individual domain
experts use the decomposition to individually describe necessary equipment and
sub-equipment such as computers, sensors or solar arrays. The design information is stored as
Parameters. Each SystemComponent may contain an individual set of Parameters. The
characteristics of the Parameters are depending on the study itself and are usually agreed on
beforehand. The engineers can assign a value to each parameter to represent properties like the
mass or the dimensions of equipment or the total power demands of their respective
sub-system. To achieve the accumulation of parameters and their values on sub-system or
system level the model provides Calculations. The user defines source and target relations
which are pointing to parameters. Additionally the type of Calculation can be specified. A
solver performs the evaluation of the calculations, for instance calculating the sum of several
parameters. When finished, the results are written back to the system model (Fischer, et al.
2011) (Schaus, et al. 2012).

Figure 1. Class diagram of the internal system model of Virtual Satellite.

EMF Implementation of the QUDV. The EMF implementation of the QUDV was performed
by redesigning the class diagram following the descriptions of the standard. EMF uses Ecore
class diagrams to represent the model and it provides code generators to easily create a Java
implementation of the data model (Steinberg, et al. 2009). Based on the EMOF, the Ecore
models offer all the features necessary to implement the standardized QUDV model. As
mentioned earlier, all the implementation has been targeted into an individual set of plug-ins
focusing on the QUDV model and its functionalities only. Keeping it separated from Virtual
Satellite’s system model allows for a later reuse in several different Eclipse based projects. The
set of plug-ins follows the Model-View-Controller pattern. One plug-in contains the EMF
Ecore model and the generated code itself. Another one is the controller which is handling the
interactions with the data model. Yet another plug-in defines the user interfaces that provide a
set of wizards offering a simple way to add and/or remove units from the QUDV model. Last
not least, a helper plug-in holds the algorithms to perform the unit handling and conversions.

QUDV Integration with the System Model. The integration of the QUDV model and the
corresponding plug-ins is constituted on various levels. Framework-wise, the newly created
QUDV plug-ins have been added as integral part of the Virtual Satellite. This is naturally
supported by the underlying OSGi/Equinox architecture enabling a plug-in reuse concept
(OSGi Alliance 2012) (Clayberg and Rubel 2006). The integration allows other plug-ins like
the one containing the system model to access and use the new QUDV features. Figure 2
depicts the actual integration on model level. The left side illustrates the system model with the
aforementioned ProjectRepository. It has been extended to contain the SytemOfUnits from the
QUDV within its UnitManagement. The SystemOfUnits is illustrated on the right hand side of
Figure 2 and shows the many necessary classes defining the QUDV in EMF Ecore. The actual
containment relation between the two models allows the storage of specific sets of units
depending on the studies. Within Virtual Satellite the dedicated team leader is in charge of
maintaining and updating the set of units whereas the software takes care of distributing the
UnitManagement in the shared CEF environment. Additionally, each new study is initialized
with a standard set of units. In order to allow the individual engineers to make use of the units,
the Value of the Parameters have been extended to reference the abstract super class of all units
AUnit. All other units inherit from this super class. In practice this means that each engineer
can specify a unit together with each Parameter referencing to the accompanied set of units.

Figure 2. The Ecore implementations of the system model and the QUDV model

Algorithms for Unit Checking and Conversion
The aforementioned implementation of the QUDV model as well as modifications to the
system model allows the engineers assigning units to their design parameters. But so far this
just concerns the modeling side and is not exploiting the full potential such as automatic unit
checking. To achieve the next step of taking advantage of the modeled units an algorithm that
knows how to read and understand the semantics is mandatory. In conjunction with the

Calculation types of the system model it needs to analyze source and target Parameters and
make sure that they fit correctly together. It implies that a multiplication of a force in Newton
times a lever with a certain length leads to a torque in the appropriate unit. This method is
implemented in three steps. The first step processes all source Parameters one after the other.
Each Parameter is checked for its source unit and is transferred to its SI components which are
stored as SimpleUnits. Necessary scaling and conversions on the Parameter’s Value are
applied as well. The second step merges all source Parameters depending on the type of
calculation as well as it is taking care of reducing fractions. The third step finalizes the
conversion by transferring the merged SI-units and converted value back to its target unit.

Step 1 – Factorizing Source Parameters to SI-Units. Figure 3 and Figure 4 outline the
algorithm for the Parameter’s Value conversion and Unit factorization. Figure 3 shows how
the Value and its according unit is given to the algorithm. Depending on the type of unit the
algorithm performs the conversion in five different ways. The first category of these five
options handles the SimpleUnit itself. In case the source Parameter assigns already a
SimpleUnit no further conversions need to be applied. The second category describes the
conversion from an AffineConversionUnit, a LinearConversionUnit or a PrefixedUnit. In all
three cases the offsets and factors are applied to the Value and the algorithm gets recursively
called with the type of AUnit the current unit is derived from. The third category describes
DerivedUnit which allows creating a kind of composition of all other units. Figure 4 shows this
nested algorithm in detail. It is first parsing all referenced units and then calling itself
recursively on each of them one after the other. It also takes care of applying potential
exponents as well accumulating the right conversion that need to be applied to the Value.

convertToBaseUnits

unit and value
[not converted]

calculate conversion value
value = value * factor + offset

[SimpleUnit]

[AffineConversionUnit] [LinearConversionUnit] [DerivedUnit] [PrefixedUnit]

value
[converted]

recursive call to convertToBaseUnits
with referenced unit and current value

calculate conversion value
value = value * factor

calculate converted value
value = value * prefixFactor

calculate conversion value
for derived units

Figure 3. UML activity diagram showing the algorithm to convert a given value with
associated unit recursively to a value with just base units.

DerivedUnit and value
[not converted]

value
[converted to base units]

Get list of units that define the
derived unit

recursive call to convertToBaseUnits
with current unit of the list and the value 1

apply the exponent to calculated conversion
value of the previous step

accumulate conversion factor in local variable

[has next entry]

apply accumulated conversion factor of all
units describing the derived unit to the value

[reached end of list]

calculate conversion
value for derived units

Figure 4. UML activity diagram showing the algorithm to convert a given value with

associated unit recursively to a value with just base units.

Step 2 – Merging SI-Units of Source Parameters. In case the conversion is applied to either
an addition or a subtraction merging the units is not necessary. It is enough to check the source
and target units’ QuantityKinds for equality. For example, a calculation adding up the masses
of a spacecraft should verify that all inputs are mass quantities. The conversion that has been
applied before already assures that all Values and Units are converted to SimpleUnits. In case
of a multiplication or a division, a more complex algorithm is needed beforehand. Considering
two multiplicands are used and have to be combined, their QuantityKinds have to be added up.
Accordingly, when doing the division, they have to be subtracted. It means that the
QuantityKinds of the SimpleUnits are merged with respect to the specified exponents. This is
important to show that an area A which is the multiplication of two lengths L, sums up to the
volume V which is equal to a cubic length L³. Once all QuantityKinds and their exponents are
merged the algorithm has to check for QuantityKinds with a combined exponent of 0. Similar
to the dimensionless QuantityKind they are not important for the subsequent conversion and
have to be removed. Besides the checking and merging of the units and their respective
QuantityKinds, the algorithm also has to add, subtract, multiply or divide the associated
Values.

Step 3 – Factorizing Merged SI-Units to Target Parameter. Right after the units, their
Values and the associated QuantityKinds have been calculated, factorized and merged, the
result of the calculation has to be transformed back to the unit of the target Parameter. In fact
this is performed analog to the algorithm described in Step 1, but in inverse order. The inversed
algorithm is fed by the target unit as well as the result Value of the actual Calculation. The
inverse algorithm factorizes the unit to its SimpleUnits using again the recursive approach.
However, instead of applying the unit’s factors and offsets before the recursion they are applied
afterwards. This is necessary to respect mathematic laws like operator precedence since
obviously 10kg times 3 plus 2 kg is not the same as 10kg plus 2kg times 3.

Usage of QUDV in Virtual Satellite
Together with the implementation of the model as well as the algorithm to check and convert
the units, it is also important to provide the appropriate user interfaces. Figure 5 shows the
application Virtual Satellite with an opened study. The navigator on the left hand side reflects
the ProjectRepository from the system model and the decomposed spacecraft. Additionally, it
shows an item Unit Management which is opened in the editor on the right hand side. The
editor provides access to the units as well as to the quantities.

Figure 5. Screenshot of the software showing the management of Units and Quantities

and the Wizard to create and change them.

Only the team leader has the rights to apply changes to the Unit Management by adding
removing or altering units. As mentioned, the QUDV implementation provides wizards that
help the team leader to enter new units. The wizard in the foreground shows an example of
adding a DerivedUnit. Besides entering the units and also applying those to the parameters the
engineers need to be provided with appropriate messages concerning issues with the units. Two
use cases will illustrate how these mechanisms are implemented into the software.

Use Case I – Unit Conversion. Figure 6 illustrates the example of unit conversion. This is a
typical issue that arises in international projects. Different nations use different units for
various reasons; just agreeing on using the same unit like kilograms might confuse engineers
which are trained in using pounds. This is also apparent for datasheets which often reflect
national customs in the used units. Therefore the application of QUDV allows each engineer to
work in the unit they are confident with, thus avoiding unnecessary conversion mistakes. The
example shows an addition of two masses in two different units summing up to an overall mass
converting to yet another unit. Since units can be specified individually for each parameter, the
engineers are free to decide which unit they want to use. Additionally, they are able to change
the output unit of a calculation according to their preference.

Figure 6. The Calculations table shows one entry that sums kilograms and pounds.
The result is displayed in grams.

Use Case II – Unit Checking. Figure 7 shows the use case of applying an incorrect unit within
the calculation. Same as the other example it is an often appearing case where incorrect values
are applied to calculation by accident. The example shows that an input parameter’s unit is
changed to a force instead of a mass. The check of the QuantityKinds as described in the second
step of the algorithm is realizing this issue and is reporting a problem through the graphical
user interface. Since the problem view is part of each Virtual Satellite instance within the CEF
an issue in the system model is addressed to all engineers in the session, thus reduces the risk of
being disregarded.

Figure 7. The same addition as before, but mass2 is given in Newton now. The

automatic unit/quantity check raises a warning in the problem, pointing the user to the
right location to resolve this issue.

Conclusion
As introduced, just having the QUDV model applied to a system model is not sufficient.
Modeling itself offers the baseline for consistency, but it needs some checking as well.
Accordingly, the QUDV needs to be well integrated into the application where it is used. This
includes capabilities for the modeling itself but also algorithms for the verification of what has
been modeled using the units. This paper highlights the approach of integrating the QUDV into
the software Virtual Satellite. Being based on Eclipse and EMF, the QUDV is also
implemented as Ecore model. EMF allows connecting and integrating the QUDV easily into
the existing system model. Additionally, wizards have been implemented as well to give an
easy to use and accessible interface to the engineers to either add new units or to actually assign
them to parameters in their design. Beyond the point of pure modeling, we showed how it is
possible to take advantage of the modeled unit relations by automatic unit checking and unit
conversions. The algorithm behind that functionality is based on a pragmatic approach staying
completely in the background of software. Only in case the algorithm detects issues while
checking the coherence of input and output parameters of a calculation it informs the design
team through the graphical user interface. Altogether this work shows that the integration of the
QUDV standard is a true advantage for the system modeling and realizable following a
pragmatic approach.

References
Bandecchi, M., B. Melton, B. Gardini, and F. Ongaro. "The ESA/ESTEC concurrent design facility."

Proceedings of the 2nd European Systems Engineering Conference (EuSEC). Munich, 2000.
329-336.

Braukhane, Andy, Volker Maiwald, Dominik Quantius, and Oliver Romberg. "Statistics and Evaluation
of 30+ Concurrent Engineering Studies at DLR." Proceedings of the 5th International
Workshop on System & Concurrent Engineering for Space Applications (SECESA 2012).
Lisbon, 2012.

Bureau International des Poids et Mesures. The International System of Units (SI). 8th edition. 2006.

Clayberg, Eric, and Dan Rubel. Eclipse: Building Commercial-quality Plug-ins. 2nd edition.
Addison-Wesley, 2006.

Deshmukh, Meenakshi, Volker Schaus, Philipp M. Fischer, Dominik Quantius, Volker Maiwald, and
Andreas Gerndt. "Decision Support Tool for Concurrent Engineering in Space Mission
Design." In Concurrent Engineering Approaches for Sustainable Product Development in a
Multi-Disciplinary Environment, by Josip Stjepandić, Georg Rock and Cees Bil, 497-508.
London: Springer, 2013.

Fischer, Philipp M., Volker Schaus, Daniel Lüdtke, and Andreas Gerndt. "Design Model Data Exchange
Between Concurrent Engineering Facilities by Means of Model Transformation." Proceedings
of the 13th NASA-ESA Workshop on Product Data Exchange (PDE 2011). Los Angeles/USA,
2011.

International Organization for Standardization. ISO 80000-1 : Quantities and Units: Part 1: General.
ISO, 2009.

NASA. "Mars Climate Orbiter Mishap Investigation Board Phase I Report." 1999.

Object Management Group. OMG Systems Modeling Language (OMG SysML™). Version 1.3. June
2012.

OSGi Alliance. OSGi Alliance Homepage. 11 7, 2012. http://www.osgi.org/Main/HomePage.

Schaus, Volker, Philipp M. Fischer, Dominik Quantius, and Andreas Gerndt. "Automated Sensitivity
Analysis in Early Space Mission Design." Proceedings of the 5th International Workshop on
System & Concurrent Engineering for Space Applications (SECESA). Lisbon: ESA, 2012.

Steinberg, David, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF Eclipse Modeling
Framework. 2nd edition. Addison-Wesley Professional, 2009.

Biography

Volker Schaus is working as a research scientist at the DLR Institute for
Simulation and Software Technology and is responsible for the Virtual
Satellite project. He holds a Master Degree in aerospace engineering from
the University of Stuttgart, Germany. He did his Master Thesis at the
University of Sydney, Australia working adaptive neural network control
algorithms for unmanned aerial vehicles. Before joining the DLR in 2010
he worked in VIP outfitting projects of wide body aircrafts as Mechanical
Engineer. His research interests are digital product design and evaluation,

Model-based Systems Engineering and Concurrent Engineering.

Philipp M. Fischer is currently employed as a research scientist at the
German Aerospace Center (DLR) in the department "Software for Space
Systems and Interactive Visualization" and is focusing on activities of
model based software and systems engineering. He received his Diploma
in electrical and computer engineering from the Leibniz Universität
Hannover in Germany in 2007. Meanwhile he spent one year of studies in
Computer Science at the Swinburne University of Technology in
Melbourne, Australia. From 2007 until 2009, he supported Toyota's

Formula One activities within the Department of Simulation and Performance Analysis at the
motor sports headquarters in Cologne, Germany.

Andreas Gerndt is the head of the department "Software for Space
Systems and Interactive Visualization" at the German Aerospace Center
(DLR). He received his degree in computer science from Technical
University, Darmstadt, Germany in 1993. In the position of a research
scientist, he also worked at the Fraunhofer Institute for Computer
Graphics (IGD) in Germany. Thereafter, he was a software engineer for
different companies with focus on Software Engineering and Computer
Graphics. In 1999 he continued his studies in Virtual Reality and

Scientific Visualization at RWTH Aachen University, Germany, where he received his
doctoral degree in computer science. After two years of interdisciplinary research activities as a
post-doctoral fellow at the University of Louisiana, Lafayette, USA, he returned to Germany in
2008.

	Introduction
	EMF Implementation of QUDV and System Model Integration
	Algorithms for Unit Checking and Conversion
	Usage of QUDV in Virtual Satellite
	Conclusion
	References
	Biography

