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[1] Analysis is presented of airborne lidar measurements of water vapor, covering a
height range from 1.5 to 10.4 km, from three field campaigns (midlatitude summer, polar
winter, and subtropical summer). The lidar instrument provides two-dimensional cross
sections of absolute humidity, with high accuracy (errors less than 5–7%) and high
vertical (� 200 m) and horizontal (� 2 km) resolution. Structure functions, i.e., statistical
moments up to the fifth-order of absolute increments over a range of scales, are
investigated, and power law scaling or statistical-scale invariance was found over
horizontal distances from 5 to 100 km. The scaling exponents are found to take different
values, depending on whether or not the observations were taken in an air mass where
convective clouds were present. The exponent of the first-order structure function in
nonconvective regions, H = 0.63˙ 0.10, is large indicating a smooth series with
long-range correlations, in contrast to the lower value H = 0.35˙ 0.11 found in
convective air masses. Correspondingly, the moisture field in the convective regime was
found to be more intermittent than for the nonconvective regime, i.e., water vapor
structures in convectively influenced air mass show more jump discontinuities, which
could be explained by the moistening and drying effects of updrafts and downdrafts in
convective air mass. Within each regime (convective or nonconvective), the values
appear to be universal, with no significant dependence on the season, latitude, or height
where the observations were made. Furthermore, some evidence is found that vertical
correlation lengths are longer in convective air masses.
Citation: Fischer, L., G. C. Craig, and C. Kiemle (2013), Horizontal structure function and vertical correlation analysis of
mesoscale water vapor variability observed by airborne lidar, J. Geophys. Res. Atmos., 118, doi:10.1002/jgrd.50588.

1. Introduction
[2] Water vapor variability on scales comparable to the

finest resolution of climate and weather models is not yet
well characterized and understood, despite its great influence
on the development of cloud and precipitation processes
[Sherwood et al., 2010; Wang et al., 2010]. The lack of
understanding of the small-scale dynamics of water vapor
throughout the troposphere leads to strong limitations in
predicting localized phenomena in weather models. It is
known, for example, that forecasting the initiation of deep
convection in a cloud-resolving model is highly dependent
on high-quality water vapor observations [e.g., Kottmeier
et al., 2008]. Furthermore, Tompkins and Berner [2008] and
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Zhang et al. [2003] have shown that the lack of knowledge
of water vapor fluctuations on scales smaller than the model
grid leads to errors in the development of deep convection.
An important prerequisite for improving the representation
of moist processes in weather and climate models is an accu-
rate characterization of tropospheric small-scale water vapor
variability, including subgrid-scale humidity fluctuations.

[3] A well-established method for describing the vari-
ability of atmospheric parameters is scaling analysis, i.e.,
scaling behavior is identified in time series as a power law
dependence with length scale of structure functions. Numer-
ous studies have presented scaling analyses of atmospheric
wind, energy, and temperature, notably a recent study by
Waite and Snyder [2012] which has shown that the dynam-
ics of moist processes have a strong impact on the slope
of mesoscale kinetic energy spectra. This provides a moti-
vation to investigate water vapor spectra directly. Naively,
one might expect water vapor to be transported as a pas-
sive scalar, which would lead to a 5/3 slope in the variance
spectrum in three-dimensional turbulence [Corrsin, 1951].
However, an increasing number of observational studies
shows deviations from this expectation whereby the mech-
anisms remain controversial [Lovejoy et al., 2010; Kahn
et al., 2011; Fischer et al., 2012; Pressel and Collins, 2012].
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[4] Structure functions and power spectra are often used
as powerful tools to characterize scale-dependent variabil-
ity of an atmospheric field (e.g., horizontal wind, kinetic
energy, potential temperature, and water vapor), as men-
tioned above. In particular, if the structure function or power
spectrum of an atmospheric field has power law dependence
over a range of spatial scales, then scaling is an indicator of
statistical scale invariance, e.g., an atmospheric field can be
described by a certain cascade. While the power spectrum
method only describes variance spectra (i.e., second-order
functions) for stationary time series, structure functions can
be used to explore scaling laws of higher orders, in nonsta-
tionary, intermittent situations [e.g., Pierrehumbert, 1996;
Cho et al., 2000; Lovejoy et al., 2010; Fischer et al., 2012].

[5] To date, there are only few studies analyzing the
spatial-scale dependence of tropospheric water vapor fluc-
tuations in terms of scaling exponents. In the following, we
apply the Wiener-Khinchin Theorem to transform the spec-
tral slope values into second-order structure function scaling
exponents by subtracting the value one [Monin and Yaglom,
1975]. In the late 1980s, Nastrom et al. [1986] computed
power spectra of water vapor mixing ratio airborne in situ
measurements at heights from 9 to 14 km. They found a
range of values from two thirds (the predicted value for a
passive tracer in three-dimensional turbulence) up to one
from 150 to 1500 km in horizontal range. In the 1990s,
Tjemkes and Visser [1994] analyzed satellite measurements
of specific humidity and found exponents similar to those of
Nastrom and Gage. Cho et al. [1999, 2000] enlarged the set
of mesoscale scaling exponents (6–60 km and 0.05–100 km)
in two aircraft studies with in situ measurements, suggesting
that the values of the exponents differ between the boundary
layer, the tropical free troposphere, and the extratropical free
troposphere. In summary, they found values from two thirds
up to values larger than one with different intermittency in
different regions, e.g., higher values in the tropics. In the last
3 years, several studies have been published where satellite
data for water vapor from the Atmospheric Infrared Sounder
were analyzed [Kahn et al., 2009, 2011; Pressel and Collins,
2012]. In particular, Pressel and Collins [2012] show the
presence of two distinct scaling regimes, one which charac-
terizes the spatial variability of water vapor in the boundary
layer and one in the free troposphere. Boundary layer expo-
nents in the horizontal range from 50 to 500 km are found to
be near two thirds, while free tropospheric scaling exponents
are found to be generally greater than one. In the same year,
Fischer et al. [2012] examined airborne lidar water vapor
time series classified according to whether or not convec-
tive clouds occurred in the observed air mass. They found a
separation of the scaling exponents with values close to two
thirds in the convective air masses and values around one in
other air masses (usually at upper levels).

[6] The flatter spectral slope observed in boundary layer
and convective air masses could be a consequence of ver-
tical injection of moisture anomalies on small scales by
convective eddies, leading to greater variability on small
scale than is found in air masses that are dominated by
large-scale advective processes. However, much uncertainty
remains in the details of such a mechanism, particularly
concerning a quantitative theory for the scaling exponents.
Nevertheless, a height-resolved scaling law statistic can be
of practical use for improving stochastic parameterizations

that attempt to explicitly describe subgrid variability [e.g.,
Calif, 2011], for example, the development of cascade-based
stochastic downscaling methodologies [Harris et al., 2001].
Cusack et al. [1999] showed that the use of scaling laws
to extrapolate variability to unresolved scales can reduce
model biases concerning water vapor, temperature, and
cloud amount in the troposphere.

[7] The previous studies of water vapor variability dis-
cussed above have important limitations. Airborne in situ
measurements provide a single time series at nearly con-
stant height, which can only be compared to data from
other heights taken at different locations or times. In con-
trast, two-dimensional airborne lidar observations can be
analyzed throughout the troposphere, i.e., a height-resolved
analysis of scaling exponents with a vertical resolution of
150–200 m is possible. But data coverage is limited to par-
ticular measurement campaigns where the instrument was
deployed. Satellite observations provide global coverage and
are height-resolved, but the horizontal (� 50 km) and ver-
tical resolution (� 3 km) is much coarser than for airborne
lidar measurements and also coarser than the grid scale of
most weather and climate models for which one would like
to have data. A full understanding of water vapor variability
in the troposphere will draw on the complementary strengths
of the various data sources.

[8] The paper focuses on the particular strengths of air-
borne lidar data, namely high horizontal and vertical reso-
lution, to characterize the scaling behavior of water vapor
in different air masses. The work extends the preliminary
results of Fischer et al. [2012] who identified different
scaling laws for convective and nonconvective air masses
sampled during a field campaign over western Europe in
summertime. Here the analysis is extended to include data
from subtropical and polar regions in autumn and winter,
respectively. This increases the total amount of data by a
factor of 5, but more importantly, samples different atmo-
spheric regimes. The conclusion of Fischer et al. [2012]
that the scaling exponents of water vapor structure functions
showed two regimes, often separated by a sharp boundary in
height, will be reassessed in this larger data set. The primary
scientific objective will be to determine whether these two
regimes are universal, or if additional behaviors are found
in other meteorological situations. In addition, a prelimi-
nary analysis of vertical correlations for two flight segments
will be presented, to test the hypothesis that vertically
coherent injections of moisture in convective air masses
will lead to stronger vertical correlations than those found
in nonconvective air masses where advection shears out
vertical structures.

[9] After giving an overview on the airborne lidar data set
in section 2, the structure function method will be discussed
in section 3. The results of three campaigns in different
regions of the world and times of the year are subsequently
shown in section 4. Section 5 presents a height-correlation
analysis of airborne lidar observations. In section 6, the
results of the campaigns are discussed and conclusions
are stated.

2. The Airborne Lidar Data Set
[10] The airborne differential absorption lidar (DIAL)

instrument for water vapor observations was developed at
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Table 1. Overview of the Three Campaigns COPS/ETReC, T-PARC, and IPY-THORPEX

COPS/ETReC T-PARC IPY-THORPEX Total

Latitude/longitude 41ıN–49ıN/7.5ıW–10ıE 24ıN–40ıN/129ıE–152ıE 53ıN–81ıN/2ıE–25ıE
Date 8 Jul 2007 to 1 Aug 2007 1 Sept 2008 to 1 Oct 2008 25 Feb 2008 to 17 Mar 2008
Number of flights 7 6 7 20
Segments 97 265 160 522
Height range (km) 2.0–9.8 2.0–10.4 1.5–9.3
Segment length (km) 225–700 350–1300 330–800
Total length of time series (km) 44,560 190,560 134,010 369,130

the Deutsches Zentrum für Luft- und Raumfahrt (DLR).
The DIAL technique makes use of laser probing of the
atmosphere at two wavelengths, including an online
wavelength which is placed at an absorption line of water
vapor and an off-line wavelength positioned outside of the
absorption line to serve as a reference. Specific humidity
can be derived from the difference of the backscatter signal
received at the two wavelengths using the DIAL equation
[Schotland, 1974]. The DIAL technique is described
in detail by, e.g., Werner and Herrmann [1981] and
Bösenberg [1998]. In 2007, the newly developed “WALES”
four-wavelength water vapor DIAL [Wirth et al., 2009] was
deployed for the first time. The WALES (Water Vapour Lidar
Experiment in Space) system with three online (two addi-
tional) and one off-line wavelengths was built as an airborne
demonstrator for a future spaceborne system and has the
potential to cover the large humidity variations encountered
throughout the troposphere.

[11] In this paper, we analyze the water vapor data
sets of three campaigns (Convective and Orographically-
induced Precipitation Study (COPS)/ETReC, THORPEX
(The Observing System Research and Predictability Exper-
iment) Pacific Asian Regional Campaign (T-PARC), and
International Polar Year (IPY)-THORPEX), generated by
the WALES DIAL which was installed nadir-viewing on
board the DLR Falcon research aircraft. The data sets start
600 m below the aircraft where full overlap between the
laser beam and the telescope field of view is given. Spec-
tral impurity of the laser [Wirth et al., 2009] is corrected
taking advantage of all three online wavelength return sig-
nals. Profiles with ambiguous results between the different
online signals or with unstable laser operation, which is
monitored and recorded together with the data, were dis-
carded at this stage. Before calculating the humidity profiles
from the DIAL equation, uncorrelated instrumental noise
was reduced by averaging the returned online and offline
signals. In this study, measurements are horizontally aver-
aged to 2–7 km. Based on the fact that the DIAL cannot
perform measurements under optically thick clouds, small
data gaps were filled by linear interpolation. The resulting
data set comprises 20 flights with lengths ranging from 225
to 1300 km. The DIAL equation is applied with an effec-
tive vertical resolution of 150 m, and the vertical range of
water vapor profiles starts from 1.5 km up to a maximum of
10.4 km height. Considering all levels of all flights, we ana-
lyzed 522 water vapor time series with a total length of about
370,000 km throughout the troposphere (see also Table 1).
The measurements of specific humidity are of high accu-
racy, with errors expected to be less than 5–7% [Bhawar
et al., 2010]. In principle, the signal quality decreases with
increasing distance from the aircraft. By using the lagged

autocorrelation method [Kiemle et al., 1997; Lenschow
et al., 2000] by which fictitious from natural variance can be
separated, we have found that in the analyzed vertical range
between 1.5 and 10.4 km, this decrease is nearly fully com-
pensated by increasing water vapor and aerosol densities, as
observed in earlier studies [cf. Kiemle et al., 2011]. On aver-
age, over all 20 flights, the statistical uncertainty caused by
uncorrelated instrumental noise lies around 5% and shows
only a weak height dependency.

2.1. COPS/ETReC (2007)
[12] The aim of the Convective and Orographically-

induced Precipitation Study (COPS), which took place
in summer 2007 in middle and southwest Europe, was
to improve the skill to forecast convective precipitation
over complex mountainous terrain in the summer season
[Wulfmeyer et al., 2011]. Therefore, the influence of small-
scale inhomogeneities of humidity, temperature, and wind
on convection initiation was observed and investigated. For
this study, we use the water vapor measurements performed
during flights of the DLR Falcon equipped with nadir-
pointing water vapor lidar [Kiemle et al., 2011]. The seven
flights analyzed in this study took place in the period 8
July to 1 August 2007 (see also Figure 1a). The typical
weather situations during the campaign included cases with
surface-forced convection in high pressure and synoptically
forced convection in warm advected air masses ahead of an
upper-level trough.

2.2. IPY-THORPEX (2008)
[13] The 3 week Norwegian IPY-THORPEX campaign

which was part of the International Polar Year (IPY) took
place between 25 February and 17 March in 2008 with the
DLR Falcon as the main measurement platform of the field
campaign [Wagner et al., 2011]. Most flights took place
over Scandinavia and near Spitzbergen (see Figure 1b). The
aim was to yield detailed observations of polar lows, Arc-
tic fronts, and orographic low-level jets near Spitzbergen,
the coast of Northern Norway, and the east of Greenland
[Kristjansson et al., 2011]. In particular, the DIAL system
on board the DLR Falcon served for investigations of Arc-
tic humidity structures. The seven analyzed flight segments
with 160 time series have a total length of 134,010 km and
cover a vertical range from 1.5 to 9.3 km.

2.3. T-PARC (2008)
[14] During the THORPEX (The Observing System

Research and Predictability Experiment) Pacific Asian
Regional Campaign (T-PARC), which took place in the
western North Pacific basin from August to October 2008,
the WALES demonstrator collected a unique set of water
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Figure 1. Falcon flight paths of the analyzed segments of (a) the COPS/ETReC campaign in 2007, (b)
the IPY-THORPEX campaign in 2008, and (c) the T-PARC campaign in 2008.

vapor profiles [Harnisch et al., 2011]. T-PARC focused on
various aspects of typhoon activity, including formation,
intensification, structure change, motion, and extratropical
transition. The 25 research flights during the period 26
August to 1 October 2008 were undertaken. Six flights
(Figure 1c) with largest horizontal and vertical observational
coverage were selected for the present study, giving 267 time
series with a total length of 173,480 km and a vertical range
from 2 to 10 km.

3. The Structure Function Method
[15] As a basis for our analysis, we calculate the one-

dimensional horizontal structure function [e.g., Davis et al.,
1994]

Sq(r) = h| f (xi + r) – f (xi)|qi (1)

for different orders q. hi denotes an ensemble mean over
all pairs of points separated by a distance r. In detail, we
started the calculation of structure function by using a dis-
tance r = 1, which is the flight distance covered by the DLR
Falcon between two adjacent elements of the time series f(xi)
with N equidistant elements. In general, for a separation r,
the absolute values of N – r pairs of points, the so-called
increments, are calculated. In practice, because of the finite
size of flight segments, the ensemble mean is approximated
by the arithmetic mean:

Sq(r) =
1

N – r

N–rX

i=1

| f (xi + r) – f (xi)|q. (2)

This routine is repeated for increasing r from 1 up to N – 1
and for higher orders q, ending with q = 5. Finally, we iden-
tify scaling behavior as a power law dependence of structure
functions on length scale (Sq(r) / r�q ). The structure func-
tion exponent �q is determined by linear least square fits to
the log-log structure functions of all orders between 5 to 100
km. To check whether the power law fit is exact enough to
indicate scaling, Pressel and Collins [2012] introduced an ad
hoc lower bound on the coefficient of determination R2. This
method is also known as R-squared and can be interpreted
as the goodness of fit of a linear regression. In this study, the
lower bound on R2 of 0.95 is adopted for the analysis.

[16] As shown in Figure 1, many flight tracks con-
tain aircraft direction changes which lead to nonuniform

sampling and therefore influence the structure function anal-
ysis (see equation (1)). We have found, by eliminating the
changes of direction that the statistical uncertainty of the
scaling exponents due to aircraft direction changes is at most
about 5%.

[17] Figure 2 (middle) shows two examples of structure
functions up to fifth-order, computed as described above.
The red lines are the least square fit results, with slope
�q and goodness of fit R2. For estimating the uncertainties
of the slope �q, we calculate the variance of the slope �q
by using the chi-square merit function [Press et al., 2007].
Since for increasing values of r, the number of increments
| f (xi + r) – f (xi)| decreases, the weighting goes in favor of the
smaller scales. On the other hand, Figure 2 (middle) shows
that for increasing values of r, the density of sampling points
increases in the log-log plot, giving more robustness to the
linear fit and the scaling exponent in the larger scales. Also
apparent is the increasing uncertainty of the scaling exponent
and of the linear fit for increasing order q.

[18] In this study, we focus the discussion on the first-
order scaling exponent �1 for two reasons. First, the first-
order structure function is more robust than higher-order
structure functions with respect to outliers in the increment
| f (xi + r) – f (xi)|. Second, the first-order structure func-
tion allows for scaling relations that are naturally connected
to the Hurst exponent H in the theory of turbulence which
aids the physical interpretation. In the following, we use H
instead of �1.

[19] Less emphasis will be placed on the second-order
structure function scaling exponent of water vapor which is
equivalent to the slope of the power spectrum, although the
values are included in Tables 2 and 3, to permit comparisons
with previous studies. As noted by Marshak et al. [1997],
different processes can have identical spectra. For example,
white noise and randomly positioned delta functions exhibit
both a flat Fourier spectrum, but their spatial structure is
completely different, with very intermittent variability in the
latter case.

[20] Scaling exponents of higher-order structure func-
tions can be used to characterize intermittency. In Figure 2
(bottom), intermittency is described by the deviation of
the parameterized dashed curve from the linear curve. By
using an empirical two-parameter function introduced by
Pierrehumbert [1996], we fit the dashed curve through the

4



FISCHER ET AL.: SCALING EXPONENTS STATISTIC

Figure 2. Structure function analysis of two example time series in the (a) convective and (b) noncon-
vective regime at (Figure 2a) 2.4 and (Figure 2b) 4.1 km height. (top) Representative specific humidity
data samples, (middle) structure functions of the time series up to fifth-order, and (bottom) average slopes
�q versus order q. The intermittency 1/�1 is calculated using a parameterization of Pierrehumbert [1996];
lower values indicate lower intermittency.

different order scaling exponent values, in order to obtain
the intermittency parameter 1/�1. This value provides a
compact proxy for the evolution of the scaling exponents
of structure functions of orders higher than 3. One can say
that the more concave the curve is, the more intermittent
the process [Calif and Schmitt, 2012]. If 1/�1 goes to zero,
the dashed curve in Figure 2 (bottom) tends toward a lin-
ear slope, and intermittency becomes also zero, which is
known as monoscaling or monofractal behavior. Increasing
values of 1/�1 correspond to larger probabilities that the
field contains jump discontinuities.

4. Results
4.1. Factors Influencing the Scaling Exponents

[21] The two-dimensional water vapor lidar cross sections
of 20 flights collected in different regions of the world and
during different seasons of the year contain a multitude of
meteorological weather situations. The complex dynamics
of water vapor in the troposphere are linked to the weather
situations in terms of source and sink processes from con-
vective clouds on the kilometer scale to cloud systems

associated with motions on scales of thousand or more
kilometers, as well as advection of water vapor as a pas-
sive tracer outside of clouds [Emanuel and Pierrehumbert,
1996]. In Figure 3, a variety of tropospheric water vapor
structures can be seen in the two-dimensional water vapor
scans made by the DIAL on board the DLR Falcon.
Figure 3a shows a very dry polar air mass with a shallow
convective layer underneath a stable stratified troposphere.
In contrast, the water vapor section in Figure 3b shows
the influence of a tropical cyclone, with large and variable
moisture content throughout the troposphere. Figure 3c was
observed in midlatitude summer over land and shows large,
vertically coherent moisture anomalies. A final example is
shown in Figure 3d, where a filament of dry air extends from
the upper troposphere to the boundary layer in a subtropi-
cal region. Such a large range of behaviors is not surprising
given the various latitudes, seasons and orographic condi-
tions of the field campaigns where the measurements were
made. With this large data set, we will reexamine the conclu-
sion of Fischer et al. [2012] that there is a clear distinction
of the scaling exponents between air masses with and with-
out convective clouds, and consider the possibility that other

Table 2. Characteristics and Statistical Properties (Arithmetic Mean With Standard Deviation)
of the Time Series in Convective Air Massesa

Campaign L (km) N �1 (H) �2 1/�1

COPS/ETReC 21,975 58 0.32˙ 0.12 0.61˙ 0.22 0.34˙ 0.19 (N = 34)
T-PARC 22,630 34 0.36˙ 0.08 0.67˙ 0.15 0.25˙ 0.12 (N = 19)
IPY-THORPEX 10,110 19 0.43˙ 0.08 0.74˙ 0.16 0.23˙ 0.09 (N = 12)

Total/averages 54,715 111 0.35˙ 0.11 0.65˙ 0.20 0.30˙ 0.16 (N = 65)

aL is the total length of the time series, N is the number of time series.
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Table 3. As Table 2 in Nonconvective Air Masses

Campaign L (km) N �1 (H) �2 1/�1

COPS/ETReC 22,585 39 0.57˙ 0.13 1.04˙ 0.25 0.12˙ 0.09 (N = 33)
T-PARC 167,930 231 0.63˙ 0.10 1.20˙ 0.19 0.09˙ 0.07 (N = 132)
IPY-THORPEX 123,902 141 0.65˙ 0.09 1.20˙ 0.18 0.13˙ 0.11 (N = 87)

Total/averages 314,417 411 0.63˙ 0.10 1.19˙ 0.19 0.11˙ 0.09 (N = 252)

Figure 3. Lidar measurements of the water vapor field of four different flight segments from three
campaigns.
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Figure 4. (top) First-order scaling exponents of (left) convective and (right) nonconvective time series
of all three campaigns. The x axis is the height relative to cloud top height. Horizontal line is the mean
value with the standard deviation (shadowed area). (bottom) The associated histograms, which are normed
to unity integral, for the two regimes. Vertical solid line is the mean value; dashed line is the fitted normal
distribution.

differences between the campaigns could play an equal or
more important role.

4.2. Distribution of Scaling Exponents
[22] Air masses are classified into convective or non-

convective categories using the lidar backscatter intensity
[Fischer et al., 2012]. In a first step, we identify the cloud
top level by using the off-line reference wavelength. In a
second step, we divide the observed water vapor time series
into two categories. One category contains all time series
below and the other all time series above the top of the
highest cloud (note that some lidar cross sections contain
only one category). Figure 2 (top) shows typical examples
of time series from each of the two regimes. The qualita-
tively different appearance of the two series in the top panels
is confirmed by smaller scaling exponents and larger inter-
mittency for the convective air mass (left panels). Note that
the number of time series in nonconvective air masses (411)
is almost 4 times higher than in convective air masses (111)
because the flight campaigns intentionally avoided cloudy
regions and because the vertical range of convection is often
much smaller than the vertical range of the nonconvective
air masses.

[23] The distribution of values for the scaling exponent H
of the first-order structure function over a range of scales
from 5 to 100 km is shown in Figure 4 (top). The x axis is the
height relative to cloud top level where negative values stand

for the convective layers and positive values for the layers
above convection. In clear-sky case, the surface height was
used as the cloud top height. Figure 4 (top left) represents all
scaling exponents in convective air masses, while Figure 4
(top right) plots all scaling exponents in nonconvective air
masses. The mean value in the convective regime, H =
0.35˙0.11, is smaller than that of the nonconvective regime,
H = 0.63˙0.10, i.e., the mesoscale variability of water vapor
on horizontal scales from 5 to 100 km is clearly different
from the observed universal scaling law behavior on larger
scales [e.g., Nastrom et al., 1986]. We hypothesize that the
water vapor fluctuations in convective air masses result from
convective plumes and motions. Therefore, a smaller Hurst
exponent as expression of a rougher water vapor field with
higher small-scale variance can be expected. On the other
hand, in free tropospheric layers without convection, water
vapor can be regarded as an advected, conservative tracer
which leads to a drop off of small-scale humidity variance
and thus steepens the spectrum and structure function slopes.
Also significant is the fact that the change in mean value
occurs abruptly at the cloud top height. There is no evidence
of a gradual transition in these high-resolution data. This
supports our hypothesis that the different Hurst exponents
are caused by different physical mechanisms.

[24] There is some overlap in the distributions between
the two regimes, raising the question of whether the dif-
ference is statistically significant [Press et al., 2007]. A
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difference of means can be very small compared to the stan-
dard deviation, and yet very significant, if the number of data
points is large. Conversely, a difference may be moderately
large but not significant, if the data is sparse. We use the F
test and the Student’s t test to decide if the mean values of
both distributions are significantly different. In our data set,
the high P value (0.86) of the F test means that the two dis-
tributions have the same variances. The Student’s t test gives
us a very low P value (<< 0.001) which means that the dif-
ference of the means of the first-order structure function is
highly significant.

[25] Testing the significance of the difference between the
scaling exponents of the two regimes has been accomplished
successfully up to the fifth-order function. For complete-
ness, the mean value of the second-order scaling exponent
which is the equivalent of the slope of the power spectrum
is presented for the two regimes. The mean exponent value
in the convective regime is found to be close to two thirds.
In contrast, the mean value in the nonconvective air masses
is approximately twice that value (1.19) (see also Tables 2
and 3).

[26] The distribution of the observed intermittency is also
found to be significantly different between the two regimes:
high intermittency prevails in convective air masses (�1 =
0.30) and low intermittency in nonconvective air masses
(�1 = 0.11). These results give evidence that in con-
vective air mass, injection of humidity plumes leads to
a highly intermittent water vapor field, in contrast to the
more monoscaling behavior found in nonconvective air mass
where cascading to smaller scales does homogenize the
water vapor field on scales up to 100 km.

4.3. Structure Functions in Convective Air Mass
[27] The histogram of the first-order scaling exponents

H of the convective air masses (see Figure 4, bottom left)
has a maximum near the mean value of H = 0.35 ˙ 0.11.
Splitting up the scaling exponent into the three campaigns
shows that the values observed for IPY-THORPEX (H =
0.43˙0.08), T-PARC (H = 0.36˙0.08), and COPS/ETReC
(H = 0.32 ˙ 0.12) are very similar (see Table 2). There
is only a very small tendency (approximately as large as
the standard deviation) for larger scaling exponents during
winter in polar regions (IPY-THORPEX) in contrast to T-
PARC and COPS/ETReC in summer, but it is not clear if
this has a seasonal, latitudinal, or even topographical (differ-
ence between land and ocean) origin (see also Figure 4, top
left). Pressel and Collins [2012] showed in a global anal-
ysis of AIRS data that there is little seasonal variability in
the scaling exponents. The results of the present study sug-
gest that latitudinal, seasonal, and topographical influences
on the scaling exponents are small in comparison to the
impact of the different dynamical processes in convective
and nonconvective air masses. Such influences could exist,
but the present data set does not allow their verification.
Apparently, the physical mechanism of convection in differ-
ent environments produces very similar power laws with a
Hurst exponent H of about one third. Interestingly, the low
value of the scaling exponent H found for the convective
regime Rconv is similar to values observed for mesoscale vari-
ability in the convective boundary layer [Cho et al., 2000;
Kahn et al., 2011; Pressel and Collins, 2012]. It is unlikely
that our data set contains any significant contribution from

Figure 5. The intermittency of convective and nonconvec-
tive time series of all three campaigns. The x axis is the
height relative to cloud top height.

the boundary layer, since the lowest 2–3 km of the tropo-
sphere are generally excluded due to low data quality and the
top of the boundary layer is usually characterized by shallow
convective cumulus. It appears that the dynamics of con-
vective clouds in the free troposphere generate water vapor
structures similar to the boundary layer, resulting in a similar
scaling exponent.

[28] The structure function method has the potential to
describe the intermittency of water vapor distributions, as
1/�1 quantifies the intermittency, whereby the full hierarchy
of exponents �q is necessary to qualify it [Davis et al., 1994].
In principle, intermittency has been used as a description
of the tendency of passive tracers to concentrate in local-
ized structures separated by jump discontinuities [Shraiman
and Siggia, 2000; Tuck et al., 2003]. Similarly, Calif and
Schmitt [2012] define intermittency as a property exhibit-
ing large fluctuations at all scales, with correlated structure.
Such properties would be expected as a result of injection
of moisture by coherent vertical plumes in a region of con-
vection. On the other hand, if intermittency is low, the water
vapor field has monoscaling behavior which is expected for a
passive tracer advected by a spatially smooth flow [Chertkov
et al., 1995; Pierrehumbert, 1994].

[29] By using the parameterization of Pierrehumbert
[1996], intermittency 1/�1 could be calculated for 65 time
series of the convective regime. Note that this is only about
60% of the available time series because the remaining 40%
did not achieve the lower bound on R2 of 0.95 which was
defined to identify power law scaling. The mean value of
intermittency in the convective regime, which is nearly iden-
tical in all three campaigns, is 0.30˙ 0.16 (see Table 2). In
Figure 5, some outliers in the convective regime with val-
ues lower than 0.1, i.e., low intermittency, become apparent,
although the majority of the time series are described by high
intermittency (1/�1 > 0.2). Note that despite the appear-
ance of larger scatter in Figure 5 for the convective cases, the
relative standard deviation is only 10% larger than for the
nonconvective cases. In summary, these results show that the
water vapor field in convectively influenced air mass in three
very different geographical regions behaves similarly with
respect to intermittency on horizontal scales up to 100 km.

4.4. Structure Functions in Nonconvective Air Mass
[30] The distribution of first-order scaling exponents for

the time series of nonconvective air masses, shown in
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Figure 6. Dots depict the mean correlation coefficient of water vapor versus vertical separation. (a)
Results for a 250 km segment on 30 July in 2007 between 1.3 and 3.6 km (convective case). (b) Results
for a 250 km segment on 17 March in 2008 between 6.8 and 9.0 km (nonconvective case). The error bars
indicate the standard deviation of the raw data. The vertical solid line shows the e–1 threshold value. The
correlation length is calculated by the linear fit between two points above and below the threshold value.

Figure 4 (bottom right), are unimodal with a peak occur-
ring very near to 0.6. Averaged over the whole data set of
the nonconvective regime, we find a mean value of H =
0.63 ˙ 0.10. As in the convective regime, the observations
of the three campaigns agree within their uncertainty ranges
(see Table 3). These results confirm that there is remarkably
little regional variation in the observed exponents. Further-
more, the Hurst exponents found in this study are consistent
with the results of Pressel and Collins [2012], who report
values around 0.55 in the free troposphere (500 hPa level)
over horizontal scales from 50 to 500 km. Our findings are
consistent with the hypothesis that the absence of small-
scale convective sources in the nonconvective regime lead
to fewer small-scale water vapor fluctuations, generating
smoother time series and therefore higher scaling exponents.

[31] The intermittency is very small in the nonconvec-
tive regime (1/�1 = 0.11 ˙ 0.09) (see also Figure 5). A
fraction of 40% of the calculated fifth-order structure func-
tions does not exhibit power law dependence according to
the criterion of R2 � 0.95. Approximately 75% of the inter-
mittency values are smaller than 0.2. Nevertheless, there are
some outliers with values larger than 0.3 (see Figure 5), but
a physical explanation is still not evident. At least, we can
exclude that these measurements are from inside the bound-
ary layer. In principle, the observed intermittency values are
mostly lower (less intermittent time series) than the values
found by Cho et al. [2000] for the extratropical free tropo-
sphere (1/�1 = 0.21). It should be noted, however, that Cho
et al. [2000] investigated only 11 free tropospheric extrat-
ropical time series, which may have partly been influenced
by convection.

5. Vertical Correlation Length of Water
Vapor Structures

[32] Taking advantage of the high vertical resolution
(200 m) and accuracy (5–7%) of the water vapor observa-
tions from DIAL, in this section, we focus on the vertical
structure of humidity. In principle, we quantify the corre-
lation between water vapor time series at varying heights,
comparable to the method used by Thurai et al. [2011].
Therefore, we calculate the vertical correlation length of
vertically adjacent levels, i.e., the depth over which the cor-
relation coefficient of water vapor time series in separate
levels falls to e–1 [Hogan and Illingworth, 2002]. Note that

the exponential decay of humidity in the vertical would
tend to dominate the computed length scale even in the
presence of convectively induced vertically coherent struc-
tures. We counter this problem by subtracting the mean
humidity value from each horizontal time series before cor-
relating. From simple physical reasoning, we hypothesize
that water vapor features are correlated over longer vertical
distances in the vicinity of convective clouds where ver-
tical up and downdrafts dominate. In contrast, in regions
without convective clouds, the water vapor field might have
short vertical correlation lengths due to vertical shear in the
large-scale advecting winds.

[33] The analysis of the vertical correlation length
between time series at different heights of the three cam-
paigns is carried out for the convective and nonconvective
regimes. The average correlation length for the convective
regime (Lconv = 0.39 ˙ 0.14 km) is longer than that of
the nonconvective regime (Lnonconv = 0.31 ˙ 0.12 km), but
with low significance. This may mean that vertical coher-
ent water vapor structures caused by convection have only
weak influence on the vertical correlation length in the water
vapor field. On the other hand, the technical restriction that
the DIAL water vapor observations are missing directly
below optically thick clouds may mean that the observed
water vapor field does not fully describe the existing vertical
coherences, despite the fact that convective turbulence with
upward and downward motions of water vapor is also active
in the atmosphere around convective clouds [Kottmeier et
al., 2008], where the water vapor field is observed by the
DIAL. It is also possible that the reduction of vertical coher-
ence by advection in a flow with vertical shear, which is
also active in convective regions, may act rapidly enough to
reduce the correlation length to values similar to those found
in nonconvective air masses [see also Cho et al., 2003]. The
results might be clearer if we had data in and beneath the
clouds, where correlation should be strongest. For that rea-
son, a future campaign with additional flight-level aircraft
data could widen the frame of the results of this study.

[34] While the difference in vertical correlation length
between convective and nonconvective air masses is small
when averaged over the entire data set, it can be more appar-
ent when comparing individual case studies, such as the
examples shown in Figures 2 and 6. On 30 July in 2007
(see Figure 3c), the DLR Falcon measured water vapor
over southwest Germany. The weather during the flight is
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characterized by shallow cumulus up to a height of 3.5 km.
Figure 3c shows the two-dimensional water vapor field after
interpolating the gaps caused by clouds and horizontal aver-
aging to about 5 km resolution. Figure 6a shows the mean
correlation coefficient between water vapor time series at
varying heights. On 17 March in 2008 (see Figure 3a),
the DLR Falcon collected data between South-Norway and
North-Germany. Above shallow cumulus, very dry air is
advected. As seen in Figure 6b, the correlation decreases
rapidly with height in this nonconvective air mass. To facil-
itate comparison, we consider data over a vertical range of
2.25 km in both cases. The correlation lengths Lconv and
Lnonconv estimated from these figures are 0.60 and 0.23 km,
showing a much longer vertical correlation length for the
convective case.

6. Discussion and Conclusion
[35] In this study, structure functions throughout the tro-

posphere (from 1.5 up to 10.4 km height) are computed
from spatial increments of the instantaneous water vapor
field observed by airborne DIAL. Water vapor structures
of wintertime polar, summertime midlatitude, and subtrop-
ical regions are analyzed. The high horizontal (2–7 km)
and vertical resolution (0.2 km) is sufficient to show hori-
zontal structure function scaling from about 5–100 km. By
using scaling exponents up to the fifth-order, intermittency
is also calculated. Finally, the airborne DIAL water vapor
observations are highly enough vertically resolved to cal-
culate vertical correlation lengths in the tropospheric water
vapor field.

[36] The analyzed observations in the paper of Fischer
et al. [2012] show that first-order scaling exponents and the
intermittency exhibit significant vertical variability during
summertime over Europe. The present work gives an anal-
ysis of a much larger data set with a larger geographical
extent, including data from a polar region and from a sub-
tropical region. The conclusion of the earlier study that there
exist two distinct scaling regimes, one in air masses where
convection is present, and another where only large-scale
advective processes occur, is confirmed. The analysis of the
larger data set which includes substantially more weather
situations at different geographical regions strengthens sig-
nificantly the conclusions of the previous paper.

[37] The presence of convection at given height is deter-
mined through examination of the cloud tops seen by the
lidar. The average first-order scaling exponent in convective
air masses is lower than that of the nonconvective regime
(Rconv: H = 0.35˙ 0.11 and Rnonconv: H = 0.63˙ 0.10). Con-
versely, the intermittency in convective air masses is higher
(Rconv: 1/�1 = 0.30˙0.16 and Rnonconv: 1/�1 = 0.11˙0.09).
Within the data set considered here, the scaling behaviors
within the two regimes appear to be independent of lati-
tude and height. In general, scaling exponents < 0.5 have a
rougher, more space filling appearance, while scaling expo-
nents > 0.5 are smoother and longer range correlated (see
Figure 2). H � 1

3 seems to be a relatively universal charac-
terization not only for the atmospheric boundary layer [Cho
et al., 2000] but also for layers above where the water vapor
field is locally influenced by convective clouds.

[38] The physical picture that emerges is that small-scale
motions in the boundary layer or in cumulus convection

above introduce localized, small-scale structures into the
atmosphere, leading to a rougher, more intermittent mois-
ture field. In contrast to the convective regime, where local
variations establish the spatial variability of water vapor, the
nonconvective regime is dominated by the large-scale flow.
These passively advected layers exhibit first-order scaling
exponents around 0.6. The intermittency is very low, i.e.,
there is a tendency of water vapor to exhibit monoscaling
in nonconvective air masses as expected for a passive tracer
advected by a spatially smooth flow [Chertkov et al., 1995;
Pierrehumbert, 1994].

[39] The scaling exponents determined here are not
enough to clearly establish the underlying physical process.
In contrast to turbulent cascade processes of kinetic energy
where several theories exist, a quantitative theory that pre-
dicts the scaling exponents in a convectively influenced air
mass is lacking. It is even possible that different physical
mechanisms may result in a similar scaling exponent. On
the other hand, the different scaling parameters identified
here are strong evidence that the two regimes are domi-
nated by different physical processes on spatial scales from
5 to 100 km.

[40] The results show that our physically based classifica-
tion of the data set into convective versus nonconvective air
masses leads to two scaling exponent regimes. We hypoth-
esize that more small-scale variability due to convection,
primarily localized, vertical convective moisture injection,
leads to smaller scaling exponents and higher intermittency
values than in nonconvective air masses. An alternative
approach would be to apply thresholds to the scaling expo-
nent values to separate the data into two classes. The scatter
plots (Figures 4 and 5) show that the difference of the first-
order scaling exponents between the two regimes is clear
enough to make such an approach feasible. However, the
determination of thresholds is subjective, and the intermit-
tency value is quite scattered, since it is the result of two
fitting procedures. We therefore did not select this approach.

[41] As a final test of the physical picture gained by the
structure function analysis, we have computed vertical cor-
relation lengths, in the expectation that the local convective
circulations will produce structures that are more vertically
coherent. A comparison of two case studies showed a longer
correlation length for a convective situation than for a non-
convective one. Averaged over the entire data set, a longer
mean correlation length was again found for the convective
regime; however, the difference was not statistically signif-
icant. A larger data set will be required to definitively test
the hypothesis.

[42] In the future, it would be helpful to collect more
water vapor data in convective regimes, especially in and
beneath clouds. While it is impossible for the DIAL sys-
tem to measure through optically thick clouds, aircraft in
situ measurement could also provide water vapor series in
and beneath clouds. We would advocate a flight campaign
where aircraft in situ measurements would be combined
with airborne DIAL measurements. In an ideal case, the air-
borne DIAL would measure the water vapor field from the
tropopause down to and in between convective clouds, while
another aircraft would fly directly through the convective
clouds measuring water vapor in the clouds and beneath.
Since deep convection poses extended risks for aviation,
the weather situation should be characterized by scattered,
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developing moist convection. Such a campaign configura-
tion could help to gain further insights on how the water
vapor distribution in the free troposphere is affected by
small-scale convective processes.

[43] Height-resolved structure functions of the tropo-
spheric water vapor field could serve as an important
diagnostic of numerical model performance. Waite and
Snyder [2012] have shown a strong influence of moist
processes on the mesoscale dynamical structures in sim-
ulations of an idealized baroclinic wave. The ability of
a high-resolution numerical weather prediction model to
reproduce the observed universal scaling behavior of the
water vapor distribution will provide a strong test of the rep-
resentation of dynamical and moist processes, independent
of initial conditions.
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