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Density-feedback control in traffic and transport far from equilibrium2
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A bottleneck situation in one-lane traffic flow is typically modelled with a constant demand of entering cars.
However, in practice this demand may depend on the density of cars in the bottleneck. The present paper studies
a simple bimodal realization of this mechanism to which we refer to as density-feedback control (DFC): If the
actual density in the bottleneck is above a certain threshold, the reservoir density of possibly entering cars is
reduced to a different constant value. By numerical solution of the discretized viscid Burgers equation a rich
stationary phase diagram is found. In order to maximize the flow, which is the goal of typical traffic-management
strategies, we find the optimal choice of the threshold. Analytical results are verified by computer simulations of
the microscopic totally asymmetric exclusion process with DFC.
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I. INTRODUCTION15

In the physical literature, traffic flow is modelled from16

different viewpoints as hydrodynamic models (on a macro-17

scopic scale) or microscopic stochastic models. Microscopic18

approaches usually can be considered as a generalization of19

the so-called totally asymmetric exclusion process (TASEP).20

The model is defined on a discrete one-dimensional lattice21

that represents the road. Each lattice site can either be empty22

or occupied by exactly one particle (car). If the site in front23

is empty, cars move to the next site at a certain rate or prob-24

ability depending on the dynamics (either random-sequential25

or parallel). This process is widely studied mathematically26

and due to its exact solvability it is of great interest for27

nonequilibrium statistical physics; see Ref. [1] for a recent28

review. Of particular mathematical interest is the model with29

open boundaries, where particles may enter the first site at30

rate α and leave the last site at rate β that differs from the31

bulk-hopping rate in general. Depending on the values of32

those parameters one finds that the system can be in either33

of three phases, a low-density phase, a high-density phase, or34

a maximum-current phase. For traffic applications one often35

uses a parallel update instead of the generic random-sequential36

update studied here. Note that if cars are allowed to move37

further than a single site under such a parallel update scheme38

this leads to the so-called Nagel-Schreckenberg model [2].39

On the other hand, the macroscopic approaches are typically40

based on investigations of Lighthill and Witham [3], who41

described the effect of moving traffic jams by traveling-wave42

solutions of a simple partial differential equation. Since this43

inital work, there have been a number of generalizations of the44

hydrodynamic approach [4,5]. For example, the viscid Burgers45

equation is a generalization of the Lighthill-Witham equation46

with an additional diffusive term. This modification is enough47

to describe qualitatively on a hydrodynamic Eulerian scale the48

TASEP phase diagram; see Ref. [6] for further references.49

By discretization of space, the Burgers equation recovers50

the mean-field equations of the TASEP in which correlations51

between neighboring sites of the lattice are neglected [7].52

*marko.woelki@dlr.de

The present paper models a road section to which cars 53

can enter at the left end and leave at the right end. Common 54

physical approaches of microscopic and macroscopic models 55

assume a constant demand for entering the lattice. In the 56

TASEP this is reflected by a constant rate α at which a particle 57

enters the first lattice site if it is empty. From the viewpoint 58

of the Burgers equation this corresponds to a constant left 59

reservoir density ρl = α of customers. This fact will be 60

changed in our investigations; see Refs. [8–11] for related 61

approaches. One way to think about it is to assume that those 62

customers have a route alternative [12–14] and that they can 63

anticipate the density of cars on the road section, and then 64

a fraction of those customers will take an alternative if the 65

density ρ exceeds a certain threshold ρ∗. Thus, the density 66

of potential customers is reduced from ρl = ρ− to ρl = ρ+ 67

if ρ > ρ∗. In TASEP, this change of the reservoir density is 68

reflected by different insertion rates α− = ρ− and α+ = ρ+. 69

The same scenario can be transferred from the viewpoint of 70

individual drivers to the viewpoint of a traffic-management 71

center that tries to control the density in the system in order, 72

for example, to maximize the flow. At both ends of the road 73

section there might be sensors that count entering and leaving 74

cars and the controller is able to change the inflow if a 75

certain number of cars is exceeded. Obviously if one does 76

not control the outflow from the bottleneck as well, one will 77

not generally be able to keep a desired density in the system. 78

However, it is interesting to decide whether this incomplete 79

regulation can be appropriate for real traffic situations in 80

certain parameter regions. The scenario can be interpreted 81

as a sort of ramp metering and reflects a common way of 82

flow maximization in practice [15–17]. One way to reduce 83

the time-averaged inflow is by a traffic light that switches 84

the effective left-reservoir density to zero from time to time 85

[7,18,19]. Another possible application of this varying input 86

rate is the concept of dynamic toll: At the entrance (which 87

plays the roll of a toll booth) a prize for passing the road 88

section is computed in dependence of the current occupation 89

of vehicles [13,20,21]. While those problems are specially 90

dedicated to traffic, the considerations of the present paper are 91

quite general so results apply not only to traffic but also to other 92

transport scenarios far from equilibrium (see Ref. [6] for an 93

overview of applications in other research areas as intracellular 94

transport) with density-feedback control as well. 95
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The remainder of the paper is as follows. In Sec. II,96

we define the TASEP with density-feedback control (DFC)97

that generalizes the particle-insertion procedure of the usual98

TASEP. We continue by deriving its mean-field equations99

from the Burgers equation with the modified boundary100

condition. The following Sec. III presents analytical results101

from numerical solutions of the mean-field equations. Special102

interest is given to the phase diagram of the TASEP influenced103

by DFC. Section IV shows how DFC can be used for flow104

optimization in TASEP and highlights the benefit of DFC in105

contrast to the generic TASEP. In Sec. V computer simulations106

of TASEP with DFC are presented and compared to the107

analytical predictions before we formulate our conclusions.108

II. MODEL DEFINITIONS109

First, the mechanism of density-feedback control is defined110

from the microscopic and macroscopic viewpoints and how111

they translate into each other is discussed.112

A. Density-feedback control TASEP113

The microscopic TASEP model is defined on a one-114

dimensional lattice with L sites, labeled from left to right115

as l = 1, 2, . . . , L. Each site is either occupied by a single116

particle or is empty; this defines its time-dependent states,117

τl(t) = 1 (occupied) and τl(t) = 0 (empty). Particles whose118

right neighboring site is vacant may move onto this site at rate119

p. From the last site a particle leaves the system at constant120

rate β, while particles enter the system on site 1 at rate α. The121

process is considered in continuous time, where we can set the122

time scale by taking p = 1. In the following we consider the123

TASEP with DFC, which implies modified particle insertion124

as follows:125

α(N ) =
{
α−, for N < N∗
α+, for N � N∗ . (1)

Hence, the probability that a particle enters the lattice at site 1126

takes a different value if the actual particle number N is above127

or below a threshold N∗.128

We note certain limits of this process: if ρ∗ = 0 (ρ∗ = 1)129

one recovers the TASEP with α = α+ (α = α−). If we take130

α+ = 0 the process is very related to the works of Refs. [9–11].131

In those works, however, the TASEP is considered with a132

constrain on the overall particle number, including the single133

reservoir from which particles are injected and to which134

particles leave the lattice.135

B. Burgers equation approach136

The starting point for the macroscopic description is the137

viscous Burgers equation,138

∂ρ

∂t
+ ∂[ρ(1 − ρ)]

∂x
= D

∂2ρ

∂x2
, (2)

for the density ρ = ρ(x,t) with the right boundary condition139

x(L,t) = ρr . Instead of the generic left-hand boundary condi-140

tion141

ρ(0,t) = ρl, (3)

we use a dynamical density ρl(t) that depends on the (spatially) 142

averaged density ρ̄(t) at time t as 143

ρl(t) =
{
ρ−, for ρ̄(t) < ρ∗
ρ+, for ρ̄(t) � ρ∗ . (4)

Here ρ∗ is a limiting density beyond which ρl is reduced in 144

order to control the average density ρ̄. Note that all densities 145

are normalized to remain in the interval [0; 1]. For numerical 146

simulations we chose an initial linear profile ρ(x,0) = (ρr − 147

ρ−)x/L + ρ− and let the system evolve into the steady state. 148

We emphasize that the phase boundary between the HD+ and 149

HD− phases depends on the initial condition. 150

The numerical results for the Burgers equation are obtained 151

by spacial discretization. This leads to [7] 152

∂

∂t
ρi = −(1 − 2ρi)

ρi+1 − ρi−1

2
+ D(ρi+1 + ρi−1 − 2ρi).

(5)

In the remainder of the paper the diffusion constant is set to 153

D = 1/2. This equation then turns into 154

∂ρi

∂t
= ρi−1(1 − ρi) − ρi(1 − ρi+1), (6)

which is nothing but the mean-field equation for the micro- 155

scopic dynamics of the TASEP. The following section presents 156

the results from numerical solutions of those mean-field 157

equations. 158

III. ANALYTIC RESULTS 159

The mean-field theory assumes that correlations between 160

neighboring sites vanish, so the probability to find a certain 161

lattice configuration factorizes into simple on-site factors, 162

namely ρi if site i is occupied and 1 − ρi if site i is empty; 163

compare [6]. In the present realization the boundary conditions 164

are ρL+1 = ρr = const and 165

ρ0 = ρl =
{

ρ−, for ρ̄ < ρ∗,

ρ+, for ρ̄ � ρ∗,
with ρ̄ = 1

L

L∑
i=1

ρi.

(7)

Further, 166

ρ1(1 − ρ2) = ρl(1 − ρ1) and (1 − ρr )ρL = ρL−1(1 − ρL).

(8)

The general solution for 1 < i < L is [22] 167

ρi = −ρsρu

(
ρi−1

s − ρi−1
u

) + (
ρi

s − ρi
u

)
ρ1

−ρsρu

(
ρi−2

s − ρi−2
u

) + (
ρi−1

s − ρi−1
u

)
ρ1

. (9)

Here ρs and ρu are the solutions of J = ρ(1 − ρ). From 168

Fig. 1(a) we can identify the well-known phases: low-density 169

(LD) phase: ρ̄ = ρl for 1 − ρr > ρl and ρl < 1/2; high- 170

density (HD) phase: ρ̄ = ρr for 1 − ρr > ρl and 1 − ρr < 171

1/2; and maximum-current (MC) phase: ρ̄ = 1
2 for ρl,1 − 172

ρr > 1/2. Now we investigate the new boundary condition (4). 173

Table I shows the phases that can be identified. 174

Before we turn into details, we emphasize that the various 175

phases in Table I indicated by − and + are coupled effectively 176

by either of the left reservoirs at densities ρ− and ρ+, 177
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EA10916 PRE June 19, 2013 22:52

DENSITY-FEEDBACK CONTROL IN TRAFFIC AND . . . PHYSICAL REVIEW E 00, 002800 (2013)

FIG. 1. (Color online) Phase diagrams. (a) Generic left boundary
condition (3) corresponding to ρ− = ρ+ = ρl and below (b)–(d) for
the dynamic boundary condition (4). The coloring encodes the value
of the average density ρ̄. (b) α− = 0.6 and α+ = 0.2 so ρ+ < 1/2 <

ρ−; (c) α− = 0.8 and α+ = 0.6 (1/2 < ρ+ < ρ−); (d) α− = 0.4 and
α+ = 0.2 (ρ+ < ρ− < 1/2).

respectively. Additionally, two phases are observed that are178

completely new compared to the generic TASEP; see Table I.179

Those are the controlled-density (CD) phase and the co-180

existence (CE) phase. Figure 2 shows typical density profiles181

TABLE I. Average left-hand and overall density in the various
phases.

Phase ρeff
l ρ̄

Low-density (LD+) ρ+ ρ+
Low-density (LD−) ρ− ρ−
High-density (HD+) ρ+ ρr

High-density (HD−) ρ− ρr

Maximum-current (MC−) ρ− 1/2
Maximum-current (MC+) ρ+ 1/2
Controlled-density (CD) ρ∗ ρ∗

Coexistence (CE) phase 1 − ρr ρ∗

of those phases. One sees that the CE phase exhibits a stable 182

upward shock that separates a high-density region and a 183

low-density region. In both phases the system is not dominated 184

by contact with either of the two left reservoirs but both 185

reservoirs are coupled in rapid alternation to the system. 186

Summarizing, the stationary system behaves as if it would be 187

coupled to an effective left boundary reservoir with constant 188

density ρeff
l that differs from phase to phase; see Table I. In each 189

phase, it is helpful to have in mind where on the horizontal axis 190

of the generic phase diagram from Fig. 1(a) the values of ρ−, 191

ρ+, and ρeff
l locate. One then can imagine in each case which 192

phases are reached by variation of ρr , i.e., by moving vertically 193

through the generic phase diagram. The reader shall imagine 194

those vertical lines for ρ− and ρ+ in order to understand 195

phenomenologically the value of ρeff
l in the different cases 196

shown in Fig. 1(b)–1(d) that are explained in the following. 197

We begin with Fig. 1(c): If both ρ+ and ρ− exceed 1/2, both 198

those lines cross the MC-HD transition line. In both cases, MC 199

and HD phases appear for 1 − ρr greater or smaller than 1/2, 200

respectively. In the MC phase, for ρ∗ < 1/2 (ρ∗ > 1/2), the 201

average density ρ̄ = 1/2 is smaller (greater) than ρ∗. Therefore 202

ρeff
l equals ρ+ (ρ−) for ρ∗ < 1/2 (ρ∗ > 1/2) and the MC 203

phase is distinguished in MC+ and MC−. Also the HD phase 204

is distinguished further: Both (sub-)phases are separated by 205

FIG. 2. Density profiles for typical values of ρl and ρr . Top
figures: CD phase; bottom figures: CE phase.
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the line ρr = ρ∗. Since ρr is the bulk density, in the region206

ρr < ρ∗ one finds ρeff
l = ρ− with the help of (4). Therefore,207

this is the HD− phase. Similar arguments hold for the HD+208

phase.209

If ρ+ < 1/2 and ρ− > 1/2, one arrives at the phase diagram210

in Fig. 1(b). The location of the LD+ phase is explained as211

follows: First, from the TASEP phase diagram Fig. 1(a) it212

is known that a low-density state is reached for 1 − ρr > ρl ;213

second, if ρ∗ < ρ+ then it is evident from (4) that the system214

behaves as if there would be a left boundary reservoir with215

density ρeff
l = ρ+. In case of Fig. 1(b) only ρ− is large enough216

to lead to an MC phase. Hence, the occurring phase has ρeff
l =217

ρ− and is referred to as the MC− phase. The imaginary vertical218

line ρ+ in Fig. 1(a) crosses the coexistence line between the219

high- and low-density phases where ρl = 1 − ρr in the generic220

TASEP. This crossing leads to the CE phase, consequently,221

with ρeff
l = 1 − ρr . The CD phase is in fact a low-density222

phase with ρeff
l = ρ∗, appearing here for ρ+ < ρ∗ < 1/2.223

What happens is quite intuitive: The system is equilibrated at224

the left end due to permanent change of contact with reservoir225

densities ρ+ and ρ− around the control value ρ∗. In the same226

way one can explain the phase diagram Fig. 1(a). Regarding227

the appearance of the LD− phase, if ρ∗ > ρ−, it is expected228

with (4) that the average density becomes ρ− and the system229

remains in contact with the ρ− reservoir. Finally, we stress that230

the bulk density ρ̄, given in Table I, can be deduced from the231

maximum-current principle [6,7] which takes here the form232

J = ρ̄(1 − ρ̄) =
{

min[ρeff
l ,ρr ]ρ(1 − ρ), if ρeff

l < ρr

max[ρeff
l ρr ]ρ(1 − ρ), if ρeff

l > ρr
.

(10)

In the CE phase one finds coexistence of an HD phase at233

density ρr and a CD phase at density 1 − ρr . Where both234

regions merge a shock is formed; see Fig. 2. Since the average235

density remains ρ̄ the position xs of the shock is given by236

ρ∗ = (1 − ρr )xs + ρr (L − xs). The phase diagram as depicted237

in Fig. 1(b) obviously holds only if we take ρ− > 1/2 and238

ρ+ < 1/2. If both values exceed 1/2 the system is in HD239

phases for ρr > 1/2 and MC phases otherwise [23]. If both240

ρ+ and ρ− have values below 1/2, then obviously MC phases241

are suppressed. The results are shown in Fig. 1(c) and 1(d).242

IV. FLOW OPTIMIZATION BY DFC243

A. Optimal choice of ρ∗
244

The phase diagram of the TASEP with DFC (see Fig. 1)245

and the values of ρ̄ in the various phases (see Table I) give246

an idea how to set the threshold ρ∗ in order to keep the flow247

as large as possible. One can think of α− being given by the248

(constant) demand of incoming drivers and β being given by249

the characteristics of the outflow region of the bottleneck.250

We consider the scenario of Fig. 1(b) and, thus, argue from251

the viewpoint of the mean-field description. We move through252

the phase diagram on a virtual horizontal line for constant253

β. Here one can distinguish the following three cases: The254

bulk density starts at α+ and then takes the value of ρ∗ and255

increases until it reaches the value of 1/2 (case 1: for 1/2 <256

β < 1) or 1 − β (case 2: for α+ < β < 1/2). In case 3 (for257

0 < β < α+) the bulk density remains at 1 − β for all choices258

of the threshold ρ∗. From a traffic viewpoint, the interest is in 259

maximizing the flow. The closer the density is to 1/2, the higher 260

the flow becomes, due to the relation J = ρ(1 − ρ). Thus, in 261

case 1 the flow is maximized for ρ∗ � 1/2 and in case 2 for 262

exactly 1/2 (in case 3, remember, it is independent of ρ∗). Now 263

consider Fig. 1(c). In case 1 the flow is maximized for ρ∗ � 264

ρr (= 1 − β) and in case 2 for ρ∗ = 1/2. Finally, consider 265

Fig. 1(d). For β > 1/2 (β < 1/2) the flow is independent of 266

ρ∗ equal to 1/2 [β(1 − β)]. Thus, concluding, one can say that 267

the choice ρ∗ = 1/2 theoretically is always the best in order 268

to maximize the flow. This result is expected since this is the 269

density at which the flow has its maximum. Therefore, in the 270

following we restrict ourselves to this case, noting that results 271

easily convert to the general case. 272

B. Benefit by DFC 273

Figure 3 illustrates the benefit of DFC. The dashed red 274

(continuous green) objects correspond to the case where ρ− > 275

1/2 (ρ− < 1/2). In Fig. 3(a) we draw an analogy to the generic 276

system in assuming that ρ− corresponds to the generic left 277

reservoir density. The figure then shows that the switching to 278

a lower density ρ+ leads to a conversion of a high density 279

to density 1/2. Figure 3(b) shows the benefit of DFC in the 280

FIG. 3. (Color online) (a) Optimization of density and flow by
conversion of high density into density 1/2 by DFC. (b) Phase
diagram showing the benefit of DFC. The dashed red (continuous
green) triangle is the region that is optimized to a maximum-current
region by density-feedback control for ρ− > 1/2 (ρ− < 1/2).
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(ρ+,β) plane. For simplicity we write β instead of 1 − ρr . One281

sees the according additional triangular MC region belonging282

to this benefit.283

Above the dashed line (and ρ− > 1/2) the system is in284

the MC phase. The outflow is high enough (β > 1/2) to285

suppress HD phases and therefore no optimization is possible286

there. Similarly, above the continuous line (and ρ− < 1/2) the287

system is in the LD phase where the density is smaller than288

1/2. Since DFC can only lower the density, the flow can never289

be optimized. To the right of the triangles (ρ+ > β) and below290

the line (β < 1/2 or β < ρ−, respectively) one finds the HD291

phase. Since both ρ− and ρ+ are larger than β, the inflow292

is always higher than the outflow and the high-density phase293

cannot be left by variation of ρ+.294

V. SIMULATION RESULTS295

We repeat that the results of Sec. III are exact consequences296

of the discretized Burgers equation (6); however, they will,297

in general, not be exact for the corresponding TASEP with298

DFC, since the latter is described by (6) on a mean-field level.299

The weakness of the mean-field approach is that it ignores300

correlations arising from spatial inhomogeneities, including301

the existence of boundaries. However, for the quantity of302

interest, namely the average density at threshold ρ∗ = 0.5,303

results will turn out to be in good agreement.304

A. Simulation of the TASEP with DFC305

Figure 4 shows space-time plots with increasing space306

coordinates in the right direction and time increasing in307

the downwards direction. Standing particles that entered at308

densities lower than ρ∗ are in red (gray) while standing309

particles that entered at higher densities are in black. Plotted310

FIG. 4. (Color online) Space-time plots for ρ∗ = 0.5 in a system
with 100 cells. In panels (a), (b), and (c): α− = 0.6, α+ = 0.2, and
β = 0.1. [(a) HD+ phase] β = 0.3, [(b) CE phase] β = 0.6, (c) MC−
phase (transition line to CD phase). α− = 0.4, α+ = 0.2, β = 0.6 in
[(d) LD− phase].

are only those time steps where a move occurs; for the moving 311

particle there is an additional color that is not important. 312

In order to average quantities in the steady state, it turns out 313

that the simulation of the TASEP with DFC converges very 314

slowly. Therefore, as in Refs. [9–11], it was chosen to feed the 315

simulation at the expected density. For our studies, thus, the 316

mean-field density serves as initial value. During 2 × 106 time 317

steps the system is let alone and afterwards every 100 time 318

steps the density is measured over 5 × 106 steps. The average 319

over the steady states of 100 different initial configurations 320

was taken. 321

B. Comparison with the mean field 322

First, we will verify that the different phases resulting 323

from the mean-field theory indeed occur in the TASEP with 324

DFC and that the physics is correctly predicted. Figure 5(a) 325

shows the simulated density profiles that correspond to the 1326

space-time plots of Fig. 4: The green circles saturating at 327

density 0.9 show the HD profile of Fig. 4(a) and reproduce the 328

mean-field density ρr of HD phases. The profile of red squares 329

corresponds to the CE phase of Fig. 4(b) and clearly shows the 330

coexistence of low and high densities so the existence of the 331

shock phase in the TASEP with DFC is verified. The profile 332

corresponding to Fig. 4(c) on the transition line between CD 333

and MC is given by the blue diamonds showing the flat profile 334

around density 1/2, which is the average density predicted by 335

FIG. 5. (Color online) The figures show simulation results in case
of ρ∗ = 0.5 for a system of length . (a) Density profiles corresponding
to Fig. 4. (b) Average density versus β. Red squares belong to
ρ+ = 0.2 and ρ− = 0.6 [parameter case as in Fig. 1(b)], green circles
correspond to ρ+ = 0.6 and ρ− = 0.8 [parameter case as Fig. 1(c)],
and blue diamonds correspond to ρ+ = 0.2 and ρ− = 0.4 [parameter
case as Fig. 1(d)].
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the mean field. Finally, the situation shown in Fig. 4(d) has a336

flat profile with a constant density of 0.4. Note that in this case337

(ρeff
l = 1 − ρr ) the mean-field becomes exact.338

Now we turn to the simulation of the average density in the339

system against β in order to verify that densities and phase340

boundaries are correctly predicted. The results are shown in341

Fig. 5(b). See the figure caption for more details. One sees342

that the green circles are on the line ρ = ρr for β < 0.5 and343

that ρ = 0.5 for β � 0.5 (which corresponds to the transition344

from HD to MC) as predicted by the mean field. The red345

squares start in HD and clearly jump at ρ+ = 0.2 to density346

1/2 (corresponding to CE and MC). The blue diamonds clearly347

show three phases [as can be seen from Fig. 1(d)]. Starting at348

HD one sees the kink at β = ρ+ to the CE phase and another349

transition at β = ρ− to MC and ρ = 1/2, which is also in350

agreement with our mean-field predictions. Of course, the351

sharpness of the transitions could be ameliorated by taking352

larger system sizes.353

VI. CONCLUSION354

This paper studied a bottleneck situation of traffic with355

inflow at the left and outflow at the right end which was356

modeled by TASEP and the Burgers equation. For this357

situation, a concept to control the overall density has been358

analyzed. The left reservoir density takes the form ρl(ρ̄(t)) and,359

thus, depends on the density at time t , generalizing the generic360

constant left reservoir density. It is reduced from ρ− to ρ+ if361

the spatially averaged density ρ̄(t) at time t lies above a certain362

threshold ρ∗. In contrast, the right end is kept in contact to a363

reservoir at fixed density ρr . The mechanism is referred to as364

DFC. The same mechanism is provided in everyday life, where365

cars enter a dense road section at a smaller rate when there366

are possible alternatives. The paper showed that DFC can be367

efficiently used to maximize the flow by converting a fraction368

of the high-density phase to a maximum-current phase.369

From numerical solution of the discretized Burgers equa-370

tion the phase diagram in the plane spanned by ρ∗ and 1 − ρr371

was derived that showed a rich phase behavior. The process372

exhibits two low-density, high-density, and maximum-current373

phases that correspond to the two left boundary reservoirs. 374

In addition, there is a phase in which high and low density 375

coexist so a macroscopic shock profile can be observed. This 376

phase corresponds to the coexistence line in the generic model 377

between the low- and high-density phases. There also is a 378

phase that is completely new compared to the generic model 379

but can be anticipated intuitively; in this phase, the repeated 380

change of the left-hand reservoir density around the threshold 381

ρ∗ leads to an effective density ρ∗. It was further investigated 382

for which choice of ρ∗ the flow is maximized. It could be shown 383

that, although in the generic TASEP the flow is monotonically 384

increasing with the left reservoir density, DFC optimizes the 385

flow if the threshold density is chosen appropriately. 386

For the optimal choice of the threshold (ρ∗ = 1/2), we 387

verified, with the help of Monte Carlo simulations, that the 388

mean field correctly predicts the average density (and therewith 389

the flow) in the system as well as the physics of the various 390

phases, including the coexistence phase. Note that simulations 391

in which the Heaviside dependence of the density was replaced 392

by a hyperbolic tangent with appropriate sharpness, inspired 393

by Ref. [9], have also been performed. This takes into account 394

a (realistic) delay of the adjustment of the left density through 395

feedback control. Further, the model with parallel dynamics 396

has been considered [24]. It turned out that results agree very 397

much with the continuous-time case studied here. Further 398

investigations could focus on the Nagel-Schreckenberg model 399

of traffic flow. It is known that the phase diagram of the 400

Nagel-Schreckenberg model remains even for larger maximum 401

velocity [18] (where cars can move more than a single site per 402

time step). While in the present model flow optimization is 403

achieved at a threshold density 1/2 one should decide whether 404

this generalizes to the density at which the flow becomes 405

maximal (as one would expect [17]). The next step is a 406

generalization to more realistic microscopic traffic models, as, 407

for example, the Krauß model [25], in order to study effective 408

traffic-management strategies based on DFC. 409
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