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ABSTRACT

The semi-geostrophic Eady problem is used as a testbed for frontogenetical calculations using
a specific numerical model. Over 3 days of integration, the numerical solutions agree very well
with their analytical counterparts. The increasing deviations in the vertical field of motion
during the last day before the analytical model breaks down are attributed to the inability of a
grid-point model to handle evergrowing contrasts correctly. The dependence of the time-scales

on the external parameters is addressed.

1. Introduction

40 years ago, Eady (1949) published a paper on
Long waves and cyclone waves in the first issue of
this journal. It is now considered as a landmark
contribution to dynamical meteorology in at least
two ways: (i) in the original quasi-geostrophic
approximation, it serves as an archetypal flow
configuration which explains the baroclinic
instability of a zonal shear flow; (ii) in the
extended semi-geostrophic version (Hoskins and
Bretherton, 1972; Hoskins, 1975), analytical sol-
utions can be obtained which develop a frontal
discontinuity within a finite time. As summarized
by Reeder and Smith (1986), the view has
emerged that middle latitude fronts are second-
ary, but nevertheless important phenomena
associated with extratropical cyclogenesis.

The latter study is one among others (e.g.,
Keyser and Anthes, 1982; Knight and Hobbs,
1988) which use the analytical solution of the
Eady problem as initial data for numerical ex-
periments that concentrate on special aspects of
frontogenesis (e.g., impact of boundary layer
turbulence, comparison with observations, role of
moisture). Although Keyser (1981) and Reeder

(1985) tested their numerical control experiments
against the analytical solution for an inviscid,
Boussinesq flow in their Ph.D. theses, compari-
sons concerning the temporal evolution and the
spatial structure at commensurable times cannot
be found in the standard literature.

This note concentrates on the, perhaps mostly
technical, issue to compare results from a particu-
lar numerical mesoscale model to analytical sol-
utions of the Eady problem. In Section 2, the
particular setting of the testbed is explained,
while Section 3 is devoted to the results. Some
conclusions terminate the paper.

2. The testbed

An idealized flow situation is considered as
sketched in Fig. 1. The domain consists of a
cross-section of length L and height H containing
as basic state a uniform zonal shear flow [#(z) =
U(z/H — 0.5)] relative to a steering level at
z= H/2 with potential temperature increasing
linearly with height [0(z) = 8, + ['(z — H/2)] and a
constant meridional temperature gradient [08/dy
= —fUB,/(gH) = —y], which is in thermal-wind
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Fig. 1. Basic state of the Eady problem.

balance with the zonal shear. This basic state is a
solution of the Boussinesq set of equations:
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In eqs. (1)(5) u, v, w denote the full velocity
components [6=w =0); p stands for the devi-
ation from a hydrostatic, basic state reference
pressure; the buoyancy term is expressed by
deviations of potential temperature from the
basic state; the forcing term in the temperature
equation (5) compensates for the steady meridi-
onal heat transport. The left hand side of eq. (3)
contains the non-hydrostatic contribution to the
vertical motion field, which is taken into account
by the numerical model (see below).

Analytical solutions for eqs. (1)-(5) can be
obtained via a transformation to geostrophic co-
ordinates, when the hydrostatic and geostrophic
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momentum approximations are envoked (the re-
sulting equations are termed semi-geostrophic;
cf. Hoskins, 1975). Details are given in Bishop
(1989), who also treats more general basic states,
e.g., by considering a combination of horizontal
shear and confluence.

Solutions to the semi-geostrophic Eady prob-
lem exist only for times t <1?_,
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when the relative vorticity in the transformed
co-ordinates equals the Coriolis parameter (f),
whereas it becomes infinite in physical co-
ordinates; s= Hn/(Lf)-(gl'/6,)'? designates the
growth rate parameter which equals 0.803 for the
fastest growing Eady wave; v, is an arbitrary
constant and stands for the maximum meridional
wind velocity at ¢t = 0. For clarity, we relabel the
time axis according to

t*=t—1,; Q)
the resulting negative values tell how close we are
to the breakdown. The values listed in Table 1
are sufficient to obtain analytical solutions for
any time t* <0 (the back-transformation onto a
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specified grid in physical space is carried out
numerically). Solutions at an early time are fed
into the numerical model; its integration results
for a later time are to be compared with the
respective solution.

3. Analytical versus numerical results

The numerical experiments were carried out
using the non-hydrostatic, primitive equation

Table 1. Independent external parameters (top)
and deduced quantities (bottom) with their numeri-
cal values; see text for explanation

Parameter Value

L 1000 km

H 10 km

U 40 ms~!
vo 1.5 m s~!
Po 0.724 kg m—3
0, 308 K

r 4 K km™!
y 1.26 x 102 K km™!
s 0.886

t, 96.6 h

model Mesoscop (Schumann et al.,, 1987) in
its two-dimensional, Boussinesq mode without
explicit diffusion. Two program changes were
necessary to sustain two-dimensional Eady wave
solutions: (a) a term p, yv was added to the source
term of the equation for the potential tempera-
ture to account for the prescribed meridional heat
flux; (b) the pressure gradient in the equation for
the meridional velocity v was augmented by the
geostrophic contribution —fp, #(z). At the lateral
boundaries, periodicity is assumed as well as rigid
lids at the bottom and top (w = 0).

The model is initialized with the basic state (cf.
Fig. 1, external parameters as in Table 1) plus an
incipient analytical Eady wave at t*=—96.6h
and integrated over 102h with a resolution of
81 x 21 gridpoints (Ax=50km, Az=0.5km).
The temporal evolution of the maxima of the
meridional (v) and vertical (w) velocity com-
ponents are displayed in Fig. 2 (left). The growth
in v is strictly exponential

v, = vy exp(ar); 8)

only the growth rate (x=1.02x 1075 s7!) is
5% less than the theoretical value [a;=
Un/(Ls)-(2s/tanh(2s) — 52 — 1) = 1.08 x 10~5 s~ !].
We note that the disturbance is not the fastest
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Fig. 2. Temporal evolution of various parameters. Left: maximal vertical (top) and meridional (bottom) velocity
components in basic integrations. Right: surface maxima of the horizontal temperature gradient (top) and of the
vorticity (normalized by the Coriolis parameter) — basic integration (dotted) and run with four-fold resolution (open

circles).
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reasonably close to it. The difference in growth
rate is small; it is attributed to the slightly
different sets of equations (there are indications
that primitive equation modes grow slower than
semi-geostrophic ones; Reeder, personal com-
munication) and to inevitable deficiencies of
grid-point models (e.g., implicit diffusion, ana-
lytical maximum not at grid-point etc.). The
maximum in w grows exponentially as well, but
with a distinct deviation at times t* > 0.

The next step is to compare the spatial
structure of the analytical and numerical sol-
utions. From Fig. 2 we see that commensurable
times (z,,1,) are those which satisfy exp(a t, =
exp(at,), e.g., t¥=-—286h and r*=-246h
(i.e., 72h after initialization). In Fig. 3, the
respective fields of vertical and meridional veloc-
ity components are juxtaposed for these times.
The agreement is very satisfactory. The v field is
quasi-symmetric with height (due to the constant
density within the Boussinesq approximation and
the rigid top and bottom boundaries). A front is
developing between the southerly and northerly
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jets which enhance the temperature contrast by
transporting warm air polewards and cold air
equatorwards. The vertical motion field is up-
ward in the warm air and downward in the cold
air (direct ageostrophic circulation). As time
progresses further towards ¢, the structure of the
analytical solution remains, but strengthens; the
extrema in w become more displaced (maximum
towards the surface front; minimum towards the
(unrealistic) front at the top).

From the evidence in Figs. 2 and 3 (and other
fields not displayed here), we conclude that
analytical and numerical solutions agree very
well, although the latter grow somewhat slower,
till at least 24 h before 7. In order to determine
whether smaller scale effects can become import-
ant at later times, a second integration with four-
fold resolution (321 x 81 grid-points; Ax=
12.5km, Az=0.125km) is initialized at
t*=—18.6h. The temporal evolution of the
surface maxima of vorticity ({ = dv/0x) and the
horizontal temperature gradient (66/0x) are com-
pared for the new and the basic run in Fig. 2

10
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Fig. 3. Comparison between equivalent times of analytical (¢ = —28.6 h; left) and numerical solutions (t¥ =
—24.6 h; right): vertical (top; isoline increment: 20 x 10~ m s~') and meridional (bottom; isoline increment:
2 m s~!) velocity components; negative values dashed.
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Fig. 4. Lower half of the domain’s central portion with vertical velocity (full lines; isoline increment: 0.01 m s™')
and potential temperature (dashed lines; isoline increment: 2K); consecutive times: (a) t*=—6.6h;
(b) t*=—4.6h; (c) t*=—2.6 h; (d) t* = —0.6 h) from run with four-fold resolution.

(right). The growth becomes more than exponen-
tial during the last day and it is significantly
greater at four-fold resolution (in which case it
started at the higher analytical level).

The vertical field of motion, as the most sensi-
tive quantity, experiences a wave-type deviation
from the analytical solution. The development of
this wave (i.e., an area where the vertical velocity
is reduced compared to the analytical solution) is
displayed in Fig. 4 for 4 consecutive times in a
blow-up of the lower part of the domain’s central
portion. This structure is amazingly similar to the
one documented by Knight and Hobbs (1988;
their Fig. 8), which they attribute to the release of
conditional symmetric instability in their moist
and hydrostatic calculations. A further test with
resolution increased once more by a factor of
2 (Ax=6.25km, Az=0.062km) showed very
similar results, except that the tightening area of
reduced vertical velocity becomes more upright
(as in Knight and Hobbs, 1988; their Fig. 13).

In the present case, this feature cannot be
considered physical but rather reflects the

increasing inability of the grid-point model to
handle the growing gradients correctly. Potential
vorticity deviates from its constant, analytical
value by more than 259 at some places and
the vertical gradient of potential temperature
becomes locally negative, which must not be the
case in a flow of constant positive vorticity.

4. Conclusions

Two kinds of conclusion can be drawn. Specifi-
cally, the semi-geostrophic Eady problem was
used as a very satisfactory cross-check of the
independently developed analytical and numeri-
cal models. The numerical model, stripped to an
idealized flow situation, followed the analytical
counterpart to a degree, which, to our knowledge,
was not reported before. Significant deviations
from the analytical solutions became increasingly
apparent during the last day before the break-
down of the analytical solution as the grid-point
model could no longer correctly handle the
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growing gradients. Further studies are planned to
exploit more general analytical reference states
relevant to frontogenesis (cf. Bishop, 1989) by a
combination with numerical integrations.

More generally, the semi-geostrophic Eady
problem should also be considered as a suitable
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testbed for numerical models dealing with
frontogenesis and not only as a means to obtain a
consistent initial dataset. It is useful to state how
close specific calculations are to the breakdown
of the analytical solution, as these become more
and more unrealistic in their later stages.
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