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Abstract—Vehicles in motion are exposed to mechanical vi-
brations, resulting from various sources, such as the engine,
transmission, wheels, the track and many more. Vibrations
in vehicles are often undesired, but these vibrations contain
navigation and vehicle information. In addition to state-of-the-
art techniques for the computation of spatial vehicle movements
from inertial measurements, the vibration measurements can also
be used explicitly for navigation with appropriate methodologies.
This first study focuses on vibrations in a diesel engined passenger
train, measured by a vertical, translative acceleration sensor. The
major vibration sources of a train in motion are identified in an
analysis and characterized by speed dependency or independency.
We present procedures to separate and filter these vibrations
in combination with a simple model of the vehicle. This paper
presents new methods to infer vehicle speed and the wheel
diameter measurements for a wheel diagnostic monitoring during
motion. Furthermore a rail vehicle localization is achieved based
exclusively on vibrations measured by one accelerometer and a
correlation technique. We show promising track-selective train
localization results by the location dependent vibrations, discuss
improvements and an integration in a multi sensor localization
approach as well as the advantages and drawbacks of vibration
based navigation.

I. INTRODUCTION

Vehicle vibrations are oscillatory motion caused by many
different sources and the vehicle response, which result mostly
in complex vibrations of multiple frequencies, magnitudes, and
orientations. Vibrations can be categorized in stationary or
non-stationary, or random versus deterministic. Deterministic
vibration includes periodic motion or transient and shock [1].

Vibrations in vehicles are mostly unwanted for passengers
comfort or lifetime of mechanic structures, joints and electric
hardware. In terms of passenger comfort [2], vibrations can
cause discomfort, in which low frequency vibrations affects
vestibular system and haptic perception, and higher vibration
frequencies emit as well acoustic noise. In general, vehicle
design concentrates on the reduction of vibration, also known
as NVH engineering (noise, vibration, harshness). In inertial
navigation, vibration is not desired as well and often sup-
pressed and canceled by filter techniques [3].

Vehicle vibrations can also be desired in some cases, as
they provide feedback of vehicle motion to the driver or
for engine or gearbox diagnostics [1]. There are only few
vibration approaches for navigation, such as [4], in which an
underwater localization system is proposed based on vibration
measurements with a sensor array similar to the lateral line
system of a fish. A terrain classifier of a vehicle in [5] differs

between sand, gravel, or clay based on vibration measure-
ments during motion. A speed computation from accelerometer
measurements of a vehicle driving over street bumpers was
presented in [6].

In a previous work, we analyzed the inertial effects in
amplitude and frequency domain of a train measured by an
IMU mounted inside the cabin [7]. We further presented
a navigation method for trains with inertial sensors, where
we also filtered the high-frequency vibrations as good as
possible from the train motion with low frequency [8]. In
this paper, we propose navigation methods, where we make
use of the information contained in vibration measurements.
The vibrations are now desired, and instead of suppressing,
we separate these high-frequency vibrations in the frequency
band from the low-frequency train motion.

We analyze the speed dependency of the vertical accelera-
tion measurements and we can infer speed and position from
vibrations only. Despite the navigation purpose, the wheel size
can be monitored for onboard diagnostics and maintenance
monitoring.

Fig. 1. An acceleration sensor onboard a moving train measures vibrations
caused by the wheels, the track and other vibration sources such as the engine.

II. VIBRATION ANALYSIS

A. Inertial data set

The inertial data was captured with a MEMS (micro-
electro-mechanical system) IMU (inertial measurement unit)
of type ”Xsens MTx” with a sample rate of 100Hz. The
sensor was mounted inside the train cabin and attached to
the overhead hat rack for simplicity reasons. Furthermore, a
GNSS (global navigation satellite system) device was installed
to record position, speed and time. The diesel powered regional
train of type ”Integral” can reach up to 160km/h with a maxi-
mum of 364 passengers [9]. The measurements were recorded
at a normal passenger service operation on a track network in
the Munich area, Germany. The data set contains two train runs
from Munich over Holzkirchen to Lenggries and three runs
from Lenggries to Munich. Two runs are from Munich over
Holzkirchen to Osterhofen and two runs reverse. For the data



analysis, we choose the acceleration signal with the strongest
information content, which is the vertical (Z) acceleration.
Alternatively, a single acceleration sensor would be sufficient.
It should be noted, that the diesel engine frequency is almost
constant over speed because of the hydraulic torque converter
transmission system.

B. Vibration analysis plot

We discovered the vibratory navigation information in
analysis plots of speed over the acceleration frequency spec-
trum. In these plots, speed dependent and independent fre-
quencies can be identified. The result of all runs is shown in
Figure 2 of vertical axis ”Z”. The X and Y accelerations show
as well some speed dependency. The plots are achieved by
the following steps by well known signal processing methods
[10]:

(a) First, the measurements are divided in sequences of 1024
samples. At a sampling rate of 100 Hz, the sequences have
a length of 10,24s.

(b) The second step calculates the power spectral density
(PSD) of each sequence.

(c) Each PSD is sorted by its mean GNSS speed measurement
in a speed bin. There are 150 bins of 1km/h width. If a bin
contains multiple PSDs, an average PSD is computed.

Fig. 2. Spectrograph: vehicle speed over ’Z’ acceleration frequency spectrum.

In this speed spectrogram plot, we can observe several spectral
lines. There are vertical lines, which show speed independency
as well as several spectral lines through the origin, which show
a linear dependency on speed.

The speed independent lines or vibrations arise periodically
from engine and power train at 11Hz, 22Hz and especially
at 33Hz. The engine vibrations were also observed in [7], in
which a scenario is shown of engines running and switched
off of a standing train. The train ”Integral” has a special drive
system, were a hydraulic torque converter transmission keeps
the diesel engine at constant revolutions. The strongest signal
lies on the 0Hz (DC) line and is the gravity measurement.
There are also strong signals between to 1 and 2Hz where
the slow dynamic changes of train motion are observed. Other
speed independent vibration sources are theoretically possible

from motor driven equipment such as fans, or passengers and
cargo (baggage) in motion.

There are spectral lines with a negative speed dependency
in the upper right corner. This is an aliasing effect due to
the sampling rate (fs=100Hz), for vibration frequencies more
than the Nyquist frequency ( 12fs=50Hz), and will be ignored
in the further methods. We focus on spectral lines with positive

Fig. 3. Simple vehicle model by wheel diameter d and distance D.

speed dependency, which can be characterized by two different
basic oscillations and their harmonics. The two different basic
oscillations arise from the wheels and the track signature as
shown in 1. The train ”Integral” has eight axes in total, but the
measurements were recorded near two axes and approximately
18m away from the next wheel set. We assume negligible
influence of the other wheel sets. Figure 3 shows a simple
train model with wheel distance D and wheel diameter d. We
present two simple models of periodic vibration and their n-th
harmonics for the wheel influence as vibration source. The
first equation shows the relation of train speed v [m/s], wheel
distance D [m] and acceleration frequency F of n-th harmonic:

Fn =
v

D
n. (1)

The second equation shows a relation of velocity, wheel
diameter d [m] and acceleration frequency f of n-th harmonic:

fn =
v

d · π
n. (2)

Any track signature or location dependent vibratory track
feature will affect the first wheel with a shock and after a
certain time the second wheel with a shock. The time between
the two shocks depend on wheel distance D and speed v.
Figure 4 shows theoretical expected vibrations with new wheel

Fig. 4. Theoretical expected spectral lines based on wheels distance D =
4.7m (red) and wheel diameters dnew = 0.84m (blue solid) and dEOL =
0.78m (blue points).

diameter (d = 0.84m), a wheel diameter at end-of-life (EOL)
(d = 0.78m) and wheel distance (D = 4.7m) [9]. It is possible
to recognize the theoretical spectral lines in the vibration



spectrum of Figure 2. The additional positive speed dependent
spectral lines in the upper left part of Figure 2 could result to
gear wheels with different sizes and rotational speeds.

III. MEASUREMENT METHODS

The vibrations of interest are the speed dependent, so
we propose filters in order to remove the speed independent
signals. The spectral components of the slow train motion near
DC are filtered by a high pass, and the engine noise is filtered
by notch filters at 11Hz, 22Hz, 33Hz. If the engine revolutions
varies with vehicle speed, a synchronized multi notch filter
would be needed. This allows us to isolate the speed dependent
signals for vehicle speed and the localization computation.

A. Speed computation

The actual vehicle speed can be computed from the filtered
vibrations in multiple ways, using either the signals based on
wheel distance or on wheel diameter or both. We propose
a simple method by multiple band-pass filters. For a each
hypothetical speed v̂, there are band-pass filters designed for
every harmonic with the center frequencies F1 by (1) and/or
for f1, f2, f3 by (2). A sequence of the acceleration signal A(k)
(e.g. 100 samples) is filtered by this multi band-pass filter with
all discrete speed hypotheses v̂ (e.g. 150 hypothesis):

Âv̂(k) = fbandpass(A(k), v̂). (3)

In a second step the energy of the filtered signal of every speed
hypothesis v̂ is computed:

Ev̂ =

∞∑
n=−∞

Âv̂(n)
2. (4)

Finally the speed hypothesis with the maximum signal energy
is searched:

v = argmax
v̂

Ev̂. (5)

B. Wheel monitoring

As shown in (2), the vibration frequency harmonics de-
pend on the wheel diameter and velocity. The wheel is now
monitored by its diameter for maintenance. A new wheel of
the ”Integral” has a diameter of 840mm and a worn out wheel
at the end of life has 780mm [9]. Translated in vibrations at
150km/h, the new wheel has the first harmonic at 15.8Hz and
a EOL wheel at 17.0Hz. An indicator for the train driver can
show the actual status of the wear, or alert if necessary.

C. Localization method

A railway track network exists of several tracks R. The
location of a train in the network is defined by a track
identifier R and a metric 1-D position s on that track. A train
path is a trajectory or train run of a certain length and can
comprise several tracks. It is defined by an actual location,
start location or trajectory length and the sequence of tracks,
the train has taken. The vibration signal contains location
dependent information when the track signature exitates the
moving vehicle. The vibrations based on the wheels distance
are ideal to isolate the location dependent vibrations from the
other vehicle vibration sources. The method contains four basic
steps:

(a) Signal preprocessing
(b) Recording of reference signal and a track map
(c) Correlation of the actual signal with the reference signals

of the track hypothesis
(d) Localization computation from correlation maximum

Step 2) is needed for mapping, the localization processing is
included in steps 3) and 4). Step 1) is the basis for mapping
as well as localization.

1) Signal preprocessing: The data set is preprocessed in
order to isolate the vibratory track features. Different train
runs with different speeds, cause different time signals for the
same track signature. The track signatures are dependent on
the location, so a spatial representation of the signal is desired.
A transformation of the signal A(k) by discrete time samples k
to a spatial signal A(s) by location samples s can be achieved
by interpolation:

A(s) = finterp(k,A(k), s). (6)

The signal is now in the spatial domain, i.e. the samples are
now based on a constant metric distance. The vibratory track
features take effect on the leading wheels and rear wheels in
relation with the wheel distance. We choose the optimal filter,
also known as matched filter in order to remove the undesired
parts of vibration signal. The impulse response of the matched
filter is a signal of two Dirac-delta impulses, separated by the
distance of the wheels. The matched filter extracts the desired
vibratory signal parts resulting from the wheel distance:

Ã(s) = fMF(A(s)). (7)

The signals contain phase information, which are disadvanta-
geous for further signal correlation. The phase information of
a signal is removed by the computation of the signal amplitude
envelope, which is the absolute value of the analytical signal
[10]. The analytical signal is a complex signal with the original
signal as real part and the Hilbert transformation of the signal
as imaginary part. The envelope of the spatial vibration signal
is:

Â(s) = |Ã(s) + j · fHilbert(Ã(s))|. (8)

2) Track map recording: Before the signals can be pro-
cessed, an initial run is needed to record the reference data set
in combination with the position on a known track. This can
be achieved by additional sensors such as GNSS, a track map,
odometers and the accelerometer for the reference data. The
vibration reference data is preprocessed by (6)-(8) and stored
in the track map.

3) Correlation: The correlation method compares vibration
signals of two trajectories or train paths in spatial domain, the
last measured vector and a hypothesis vector. The first signal
Ẑpath(s) is the vibration measurement vector from the actual
traveled path transformed into spatial domain by (6)-(8). The
second signal is a reference vibration vector Âhypo(s) from
the track map of a path hypothesis. Each hypothesis vector
contains a possible path of a train in the track network and is
usually much longer than the measurement vector. Dependent
on the weak signal to noise ratio, a long measurement vector
with L samples and a length of 1km to 10km is necessary for



the correlation in order to get reliable results. The correlation
of the signals Ẑpath(s) and Âhypo(s) is defined by:

Chypo(s) =

L∑
m=1

(
Ẑpath(m) · Âhypo(s+m)

)
. (9)

The resulting correlation shows a slow changing but significant
bias. For further location extraction, the signal is subtracted
with the filtered signal precessed by a moving average:

C̃hypo(s) = Chypo(s)− fMA(Chypo(s)). (10)

4) Localization computation: The generated signal
C̃hypo(s) with the true path hypothesis shows now a peak at
the position match s̃. The train location can be computed
in different ways. The simplest method is a search for the
maximum of the correlation function for each path hypothesis:

CML = argmax
hypo

C̃hypo(s), (11)

The position s̃ in the path is found by:

s̃ = argmax
s
C̃ML(s). (12)

The train location of track R and position s is calculated from
the most likely path CML, the path position s̃ and the track
map.

IV. RESULTS

A. Speed measurement

Figure 5 shows the signal energy of the bandpass filters
f1, f2 and f3 of the first, second and third harmonic of the
wheel diameter dependent vibrations. The pass band is ±0.1Hz

Fig. 5. [TOP] Signal energy over the speed hypotheses for the bandpass
filters. [BOTTOM] Zoomed result.

around the center frequencies and the stop band is ±0.5Hz
with 40dB attenuation. The center frequencies are varied for
every speed hypothesis and the signal energy is computed of
the filtered signal of 100 samples length (1s). The ”total” signal

is the energy of the sum of f1, f2 and f3. The reference speed
is 101km/h, which was measured by GNSS. It is noticeable,
that the energy signals show multiple peaks, especially near
harmonic fractions of 100km/h. The ”total” energy signal
shows resulting local maxima around 15km/h, 25km/h, 33km/h,
50km/h, 66km/h, near 75km/h, 100km/h, 133km/h and 150km/h.
At the true speed, f1, f2 and f3 show a local maxima, while
other speed hypotheses show no matching local maxima of
all three harmonics. The wheel diameter is assumed by 0.84m
and the resolution is 1km/h of this method.

B. Wheel diameter

The wheel diameter estimation result is shown in Figure 6.
The measurement vector for this plot is 1000 samples at a
speed around 100km/h, which is 10s of data (278m, approx.
330 to 358 wheel revolutions) . All bandpass filters show a
maximum at 0.84m, which represents a new wheel.

Fig. 6. Signal energy over the wheel diameter hypotheses for each harmonic
and the total energy from a end-of-life wheel diameter to a new wheel.

C. Localization

In this experiment two hypotheses are generated for the
location estimation, as shown in Figure 7. The true position
is at 47.0km from Munich on track 3 (hypothesis A) to
Osterhofen. Figure 8 shows the correlation result of mea-

Fig. 7. Train run hypothesis A: Munich over Holzkirchen to Lenggries and
hypothesis B: Munich over Holzkirchen to Osterhofen.

surement vector signal with a trajectory length of 10km at
the position 47.0km of a Munich to Osterhofen run with
a reference signal of a different run of the same path. The
localization method outputs a maximum signal for the filtered
cross correlation signal around 47km with a good separation
to other locations. The filtered signal shows a difference of
about 13m to the reference position of 47.0km. It should be
noticed, that the position for the reference run was recorded
by non-differential GNSS, which consequences also position
error. Figure 9 shows the result of a train positioned on the
same reference position 47.0km at a track 3, but processed
with the track hypothesis B. Comparing Figure 8 and Figure 9,
the correlation peak disappears now. The correct track can be
resolved by searching the global maximum of the correlations
results of all hypothetical tracks.



Fig. 8. [TOP] Vibration based localization result (hypothesis A). [BOTTOM]
Zoomed result.

Fig. 9. Correlation results of different tracks (hypothesis B).

V. DISCUSSIONS

A. Speed measurement

The evaluation of each of the first three harmonics and
the total energy of the diameter based vibrations showed
ambiguity, and the true speed as only local maxima. The
resolution of this measurement is 1km/h for an averaged time
of 1s (100 samples). The forth harmonic of diameter based
vibrations was not used, as there are aliasing effects above
75km/h due to the limited sampling resolution. The evaluation
of lower vehicle speeds below 100km/h shows high ambiguity
and poor results in most cases. The analysis is very sensitive
on the pre-filters for the partially strong signals of the speed
independent vibrations. Further improvements of this method
are neccessary. Compared to the well known integration of x-
axis acceleration, in which relative speed computation suffers
from a linear error growth with time, the vibration based
method is an absolute approach.

B. Wheel diameter

The sensor was mounted in the vicinity of four wheels and
measures different wheels. We supposed, that all wheels have
the same wear. We did not measure the true wheel diameters,
so the result shows only an estimate and cannot be verified.

The wheel diameter meaasurement is not so critical in time,
and can be observed over long intervals up to several days.

C. Localization

We have shown, that a track-selective train localization
based on vibrations is possible, and able to localize by track
and path position. The resolution is here 1m. The correlation
lengths of the localization procedure are 10km in order to
receive enough signal power for a robust maximum. This fact
may result in some parts due to the mounting position on the
hat rack. On the other hand, we could prove the robustness
of this method, as the evaluation of the train location is still
possible from this disadvantageous measurement condition.
Compared to the well known double integration of x-axis
acceleration, in which relative position computation suffers
from quadratic error growth with time, this vibration based
speed method is an absolute localization approach.

D. Methodology review

The vibration concept works for exclusive onboard naviga-
tion approaches. A vehicle specific signal filter for the engine
vibrations is needed, the distance of the wheels must be known
and a reference map is needed for the localization. The creation
of the reference map, and the engine filter design will induce
some cost. However, from these results, the proposed methods
are not suitable as a standalone localization approach.

The key benefits for the vehicle vibration based methodol-
ogy are the following: At first, the methodology is independent
from other measurements of existing localization approaches
(e.g. GNSS, low frequent IMU or Camera). Further, the correct
track can be identified after passing switches. The proposed
methods work also in tunnels or underground and are most
likely independent from weather conditions, as the sensor is
mounted inside the train. The vehicle speed and localization
measurements are absolute measurements, track-selective and
can be used to augment strapdown navigation approaches by
limiting drift during GNSS outages. As an add-on to state-of-
the-art navigation systems with installed acceleration sensors,
this methodology requires no additional hardware and can
therefore be considered as low cost approach in terms of
hardware. In the case, an extra acceleration sensor is used, it
can be easily mounted to the vehicle structure by cable wraps
or screws, so the installation complexity is relatively low. On
the other hand, a high installation flexibility is given, as it will
work with mounting positions less complicated and less rough
as the undercarriage. Although it is beneficial to be as near as
possible at the vibration sources, i.e. the wheels, in order to
measure with the best signal to noise ratio.

E. Improvements

As this paper shows basic principles for location and
velocity measurement based on vibrations, there exists a large
potential of enhancements.

1) Speed and wheel diameter measurements: We consider
six advancements for an improved signal to noise ratio:

(a) An enhanced pre-filter, for filtering engine and other
vehicle specific vibrations.



(b) An optimized sensor placing, where the measurements are
recorded at the nearest possible position to an axle (e.g.
on the boogie).

(c) A higher sampling frequency for sampling higher harmon-
ics of the wheel vibrations (e.g. 1kHz and higher).

(d) Additional vibration measurements from orthogonal mea-
surement axes (e.g. X and Y axis of vehicle, additional
to Z) in a combined approach.

(e) Other speed hypothesis filter (e.g. wavelet analysis [11])
(f) Tracking of the speed hypothesis (also multiple speed

hypotheses in the case of ambiguity)

2) Localization: The localization methods can be enhanced
by a sensor placing between two wheel axes and higher sample
rate. An approach for tracking the position can be considered
by a delay locked loop (DLL) which tracks the output of
the correlator, similar to DLLs used in GNSS receivers [12].
Alternatively, if an estimation filter is used for localization,
a likelihood function can be generated from the correlation
results for a measurement update of particle filters (e.g. directly
by the multi modal correlation result) or Kalman based filters.

3) Multisensor fusion approach: Rather than using the pro-
posed vibration methods as standalone approach, a combined
information fusion approach with multiple sensor sources
and estimation filters can be used to improve the speed and
localization results. Suitable sensors are GNSS, odometry,
magnetic field sensors with or without active field generation,
camera vision, radar and lidar sensors. In [8], we proposed
a train localization method based on the train acceleration
and turn rates arising from the track geometry and a train
motion. The dominant frequencies of the designed and desired
track geometry effects, such are curves changes, bank changes
and slope changes are below 2 Hz [7] at a train cabin in
motion. The vibratory effects occur at higher frequencies and
can be separated by a frequency splitter for independency of
the measurements. The different approaches can be combined
with estimation filters, such as Kalman, grid or particle filters
for localization, mapping or simultaneous localization and
mapping (SLAM) [13].

F. Variations of the vibration based navigation method

A further extension is possible in a frequency range by
using a microphone as a sensor. Current smart phone devices
have all necessary sensors embedded (GNSS, acceleration
sensors) and can monitor vibrations as long as a good physical
contact to the vehicle structure (e.g. window) is given.

This study focuses on vibrations which are already present
at certain velocities and the proposed methods are considered
as passive methods. These methods would also work with
actively generated vibrations by manufacturing a structured,
or a slightly eccentric wheel, or a structured track.

VI. CONCLUSIONS

The measurements of a vertical mounted acceleration sen-
sor onboard a rail vehicle shows a horizontal vehicle speed
dependency of certain frequencies. We explained the speed
dependent and independent vibrations with a vehicle paramet-
ric model of wheel size and wheel distance. We showed an
approach for absolute location, absolute speed and wheel dia-
meter monitoring, based on vehicle vibrations. The localization

is approached by a matched filter, derived from wheelbase and
actual speed, and by correlation with a another, prior recorded
vibration signal in spatial domain.

The vehicle vibration based concept shows promising first
results even with a suboptimal sensor placing (hat rack) and
data sampling rate.

The proposed approach can improve existing (onboard)
localization approaches for further robustness by improved
redundancy and independent measurements in safety critical
navigation applications. Especially the parallel track scenario
can be resolved for a track-selective localization. We identified
possible benefits of absolute measurements in terms of speed
and track-selective location, low hardware cost, relative high
flexibility and relative low complexity in terms of installation.

In addition to use vehicle vibrations for navigation, other
signals might be considerable and we conclude in a more
general way: Every measurable signal which contains location
depended information is suitable for navigation, provided that
there is a methodology to extract this information.

After proofing the concept for trains, a very interesting
research question arises from this study: ”Are the proposed
navigation and monitoring methods transferable to automotive
vehicles?”
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