Velocity and Location Information from Onboard Vibration Measurements of Rail Vehicles

Oliver Heirich, Alexander Steingass, Andreas Lehner, Thomas Strang

Vehicle Vibrations

- Vehicle vibrations: oscillatory motion of many different frequencies

- Often undesired effect of a moving vehicle: "NVH engineering" in vehicle design
- Desired vibrations
 - Feedback control
 - Mechanical fault diagnostics
 - Engine speed estimation
 - Terrain classification based on wheel vibrations (Robotics)
 - Vehicle speed measurement by driving over a street bumper

We propose: Using vibration information for velocity and location computation

Measurement setup on over-head rack

Data recording experiment

Spectrogram: speed over Z-Acceleration (f)

- data sequences of 1024 samples: 10,24s at 100Hz
- power spectral density (PSD) of each sequence
- sorted into speed bins by mean GNSS speed of sequence
- 150 bins of 1km/h width, multiple PSDs in one bin are averaged

Vehicle vibration model

$$F_n = \frac{v}{D}n$$

$$f_n = \frac{v}{d \cdot \pi} n$$

train datasheet: D=4.7 m

 d_{new} =0.84 m d_{EOL} =0.78 m

Application: speed measurement

Speed measurement processing

- 1. Sequence of data (e.g. 100 samples)
- 2. Multi-Notch filter: removal of from speed independent vibratior (horizontal lines)

- 3. 150 defined speed hypotheses from 0 to 150 km/h (1 km/h width): \hat{v}
- 4. Computation of multiple band pass filters for each speed hypothesis

$$\hat{A}_{\hat{v}}(k) = f_{\text{multi-bandpass}}(A(k), \hat{v})$$

5. Compute signal energy of every speed hypothesis:

$$E_{\hat{v}} = \sum_{n=-\infty}^{\infty} |\hat{A}_{\hat{v}}(n)|^2$$

6. Search the maximum

Speed measurement results

true speed (GPS): 101 km/h

Wheel radius measurement

- Now: speed is known (odometer / GPS)
- Application: Monitoring the wheels
- Train's datasheet: 0.78 m for used wheels, 0.84m for new wheels
 - first harmonic f1 at 150km/h: new wheel 15.8Hz, end-of-life wheel: 17.0 Hz

- Here: "snapshot in time"

Application: Localization

- Signal preprocessing
 - transformation from time to spatial samples (known speed) by interpolation:

$$A(s) = f_{interp}(k, A(k), s)$$

- Matched filter: 2 Dirac-Delta functions with distance of wheelbase D (4.7m)

$$\tilde{A}(s) = f_{\mathrm{MF}}(A(s))$$

- Removing the phase information (better S/N): computing the signal envelope:

$$\hat{A}(s) = |\tilde{A}(s) + j \cdot f_{\text{Hilbert}}(\tilde{A}(s))|$$

Localization Processing

1. Prior track map recording:

2. Correlation of hypothetical signal (from map) and measured signal:

$$C_{\text{hypo}}(s) = \sum_{m=1}^{L} \left(\hat{Z}_{\text{path}}(m) \cdot \hat{A}_{\text{hypo}}(s+m) \right)$$

- 3. Localization computation
 - Track: search for the hypothesis with the highest correlation

$$C_{\rm ML} = \arg \max_{\rm hypo} \tilde{C}_{\rm hypo}(s)$$

- Track position: peak position

$$\tilde{s} = \arg\max_{s} \tilde{C}_{\mathrm{ML}}(s)$$

Localization results

wrong hypothesis

Localization results

Snapshot in time, no prior knowledge of past position!

Localization results

Key benefits

- **independency** from other measurements (e.g. GNSS, low frequent IMU, Camera)
- absolute vehicle speed and localization for track-selective localization
- augment strapdown navigation approaches, IMU bias observation
- add-on to navigation systems: no additional hardware required, low cost approach
- low installation complexity & high installation flexibility

Approach of vibration navigation

- Approach by accident
 - over-head rack measurements
 - first approach: snap-shot speed/location estimation
- Future: Measurement improvements
 - enhanced **pre-filter**
 - optimized sensor placing
 - higher sampling frequency
- Future: Algorithmic improvements (FUSION'14+):
 - Advanced **algorithms for speed** estimation
 - Tracking of the speed hypothesis and position
 - **Multisensory fusion** (GPS, IMU, Vibration method)

Summary and conclusions

- Vertical mounted acceleration sensor shows horizontal speed dependency in frequency domain
- We presented an approach and a proof of concept for:
 - absolute speed computation
 - wheel size monitoring
 - absolute, track selective location computation
- Matched filter (wheelbase) is the key for using vibrations for localization
- It was possible to compute speed and location from a over-head rack mounted sensor

Velocity and Location Information from Onboard Vibration Measurements of Rail Vehicles

Oliver Heirich, Alexander Steingass, Andreas Lehner, Thomas Strang

"One man's noise is another man's data",

Knowledge for Tomorrow