CCSDS contribution to the long-term sustainability of Outer Space Activities: DLR View

Martin Pilgram, DLR-GSOC
Background

- Request from COPUOS to CCSDS on the 6th of September 2011 by Niklas Hedman
- Answer from CCSDS to COPUOS on the 4th of November by CCSDS Secretary

To provide information on their experience and practices that might relate to the long-term sustainability of outer space activities, and on their experiences and practices in the conduct of sustainable space activities.
Consultative Committee for Space Data Systems (CCSDS) - why and what

- The goal: For Space Data Systems, enhance interoperability and cross-support, whilst also reducing risk, development time and project costs, for government, industry, agencies, vendors and programs.
- Interoperability between agencies & teams translates to operational flexibility, capability and access to additional resources
- CCSDS Started in 1982 developing at the lower layers of protocol stack (Layers 1 to 3)
- Scope has grown to cover standards throughout the ISO communications stack layers, plus other Data Systems areas (architecture, archive, security, XML exchange formats, etc.)
CCSDS – who

- Produces International Voluntary Consensus Standards
- Agency-led international committee
 - 11 Member agencies
 - 28 Observer Agencies
 - 145 Commercial Associates
 - ~180 workers at the autumn 2011 technical meeting
- Also functions as an ISO Committee
 - TC20/SC13 - Space Data & Info Transfer Systems
 - Represents 18 nations (13 members, 5 observers)
CCSDS - Architecture

29 Working Groups (some in formative stages)
CCSDS - Relationships

FLOW OF GUIDANCE / REQUIREMENTS
(Note: Agency makeup varies between these groups)

IOP: Interoperability
Plenary – highest space agency agreements on interoperability

IOAG: Interagency Ops
Advisory Group
interoperable mission support infrastructure

CCSDS: open
international standards
for space mission interoperability

SFCG: space agency frequency management forum

OMG: Object Management Group: industry standards
for exchange of application information among vendor products

ECSS: European Consortium for Space Standards - European
regional standards for space mission support

IETF/IRTF: open
international standards for
IP suite and Disruption Tolerant Networking (DTN)

AIAA: North American
regional standards for
space mission support
CCSDS – Standards Review

Welcome to CCSDS.org

Founded in 1982 by the major space agencies of the world, the CCSDS is a multi-national forum for the development of communications and data systems standards for spaceflight.

Today, leading space communications experts from 26 nations collaborate in developing the most well-engineered space communications and data handling standards in the world.

The goal? To enhance governmental and commercial interoperability and cross-support, while also reducing risk, development time and project costs.

More than 500 space missions have chosen to fly with CCSDS-developed standards, and the number continues to grow.

Interested in CCSDS?

- Click "Publications" above to visit the library of CCSDS standards.
CCSDS – Products

Normative:
- Blue Books – Recommended Standard (55)
- Magenta Books – Recommended Practice (19)

Non Normative:
- Green Books – International report (44)
- Orange Books – Experimental specification (3)
- Silver Books – Historical document (111)

Administrative:
- Yellow Books – Administrative document (12)

Changes are done via Pink Sheets.
Review of Normative Books is done in a 3/5 year cycle
ISO TC20/SC13 published 44 Standards, 9 are currently under development
Major points of the Scope of ToR of the WG on the Sustainability of Outer Space Activities

- Sustainable space utilization supporting sustainable development on Earth
- Space Debris
- Space Weather
- Space Operations
- Tools to support collaborative space situational awareness
- Regulatory regimes
- Guidance for actors in the space arena
Sustainable space utilization supporting sustainable development on Earth

Compliance with CCSDS standards gives

- developed countries
 - Lower costs by joint collaboration and cost sharing
- developing countries
 - Entering into exploitation of space
 - compatible systems to those of developed countries
 - access to the same communications infrastructure as developed countries

Non DLR owned ground stations are used (especially during the launch and early operation phase (LEOP)).

- Frequency-, coding- and so called space-link-extension (SLE) - standards used for integration
Space Debris

- CCSDS Navigation WG:
 - discipline-oriented forum for detailed discussions
 - development of technical flight dynamics standards

- CCSDS Conjunction Data Messages (CDM):
 promote long-term sustainability of the space environment by contributing to efforts to prevent collisions before they happen.

- Available Navigation Standards implemented by DLR.
- For CDM DLR will provide prototyping.
- Collision avoidance: DLR supports own and missions from other agencies.
- Radar measurements provided today via the GRAVES and TIRA systems as stated by the French/German Warsaw (autumn 2011) initiative on SSA
Space Weather

- Traditional CCSDS protocols provide capabilities and benefits to solar research spaceflight missions that improve space weather prediction capabilities.

- New advanced space internetworking protocols have the potential of providing “sensorweb” capabilities to automate the reaction of multiple orbital research spacecraft for faster responses to space weather events.

 - Space Weather Application Center Ionosphere (SWACI) delivers data from CCSDS compliant Grace and Champ mission.
 - Data routinely provided via the Space Weather European Network (SWENET/ESA)
Space Operations

- Compliance with CCSDS standards can enable short-notice contingency support (e.g. UK’s STRV, ESA’s XMM-Newton).

- Operational efficiencies are achieved when standards are used
 - operations and maintenance teams become familiar with the characteristics of the protocols,
 - protocols and the associated experience carries over to new missions.
Tools to support collaborative space situational awareness

- existing standardized navigation message formats
- new message formats as conjunction data message
- enhanced communication between Mission Control teams using other ground-to-ground standards

All this increases situational awareness by spacecraft flight control teams, onboard crews and collaborating control centers

- Support of all developed NAV standards
- other ground-to-ground standards (e.g. voice and video standards) used to enhance ground communication.
Regulatory regimes

- CCSDS teams perform technology development and standardization. Everyone can benefit from the technical developments, which are part of the process.

- For the upcoming age of the Solar System Internet (SSI) coordination functions will be needed (address assignments, etc.)

 • CCSDS standards undergo a prototyping by at least two independent agencies. Prototyping implies technical developments, which are available for the space community.

 • All DLR spacecraft have a registered Spacecraft ID given by the CCSDS SANA.
Guidance for actors in the space arena

- Technical standards development and compliance is an asset that all agencies need. **This includes not only CCSDS!**
- Interoperability in the area of communications and data exchange provides the greatest benefit to collaborating entities of all the potential technology areas employed for spaceflight.

COPUOS should actively promote standards for specific technology touch-points where they most enable cooperative missions. COPUOS should promote that guidance to actors in the space arena, as mankind begins in earnest to explore the Solar System.
Conclusion

Use of standards are one issue in strengthening sustainability of outer space activities

Others could include:

- Development of additional SSA capacities, especially in Europe
- Use of a bond system to enforce compliance in debris mitigation practices as proposed by R.A. Opperman, during IAC 2010 Prague