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INTRODUCTION

The quality of the ranging data provided by a global nav-
igation satellite systems (GNSS) receiver largely depends
on the synchronization error, that is, on the accuracy of
the propagation time-delay estimation of the line-of-sight
(LOS) signal. In case the LOS signal is corrupted by sev-
eral superimposed delayed replicas (reflective, diffractive,
or refractive multipath) and/or additional radio frequency



interference (RFI), the estimation of the propagation time-
delay and thus the position can be severely degraded using
state-of-the-art GNSS receivers. Multi-antenna GNSS re-
ceivers enable application of array processing for effective
multipath and interference mitigation. Especially, beam-
forming (spatial filtering) approaches have been studied in-
tensely for GNSS in the past years due to a balanced trade-
off between performance and complexity, e.g. as presented
in [1, 2, 3, 4, 5]. Usually beamforming approaches re-
quire knowledge of the spatial signature (spatial reference)
of the desired signal and thus require detailed knowledge
of the direction-of-arrival (DoA) of the LOS signal and/or
non-LOS (NLOS) signals, the antenna response, the ar-
ray geometry, and other hardware biases. Even if the an-
tenna array response can be approximately determined, ei-
ther by empirical measurements (array calibration) or by
making certain assumptions (e.g. identical sensor elements
in known locations), the true antenna array response can
be significantly different due to for example changes in an-
tenna location, temperature, calibration inaccuracy and the
surrounding environment [6, 7, 8]. Thus, robust beamform-
ing algorithms have to be developed in order to cope with
errors in the array response model to be applied and to be
tailored to GNSS to derive the respective spatial filter [4, 9].

In this work we propose a two-step blind adaptive beam-
forming approach based on orthogonal projections for
GNSS, for which knowledge of the array response and
a spatial reference for the LOS signal are not required.
The proposed approach is capable of adaptively mitigat-
ing RFI and multipath components based on orthogonal
projections. In order to derive the needed projectors adap-
tively two eigendecompositions of an estimate of the spatial
covariance matrix before (pre-correlation) and after (post-
correlation) despreading are performed. Based on these
eigendecompositions we apply a projector onto the inter-
ference free subspace at pre-correlation stage and a blind
adaptive eigenbeamformer in order to maximize the ratio
between the power of the desired LOS and the power of
the undesired NLOS signals plus noise at post-correlation
stage.

Two different approaches tailored to the different needs are
presented in order to derive these eigendecompositions. A
cost-analysis in terms of processing cycles on an embed-
ded processor for the covariance matrix computation and
eigendecomposition is provided.

A software bit accurate representation of the GNSS re-
ceiver hardware platform is used for performance evalu-
ation. Simulation results show that the proposed blind
adaptive beamforming approach based on orthogonal pro-
jections is capable of effectively mitigating interference
and multipath signals. As the proposed blind approach
does not requirea priori information about the DoAs of
the LOS or NLOS signals and about the antenna array re-
sponse, robustness with respect to errors in the antenna ar-
ray response model and additional hardware biases can be

achieved without further increase of complexity.

SIGNAL MODEL

The complex baseband signal with bandwidthB that is re-
ceived by an antenna array withM sensor elements is

x(t) = s(t) + z(t) + n(t) =

L∑

ℓ=1

sℓ(t) +

I∑

i=1

zi(t) + n(t),

(1)
wheres(t) CM×1 denotes the superimposed signal replicas

sℓ(t) = a (φℓ, ϑℓ) γℓ e
j2πνℓtc(t− τℓ), (2)

a (φℓ, ϑℓ) ∈ C
M×1 defines the steering vector of an an-

tenna array with azimuth angleφℓ and elevation angleϑℓ,
c(t − τℓ) denotes a periodically repeated pseudo random
(PR) sequencec(t) with time-delayτℓ, chip durationTc,
and periodT = NcTc with Nc ∈ N. γℓ is the complex
amplitude,νℓ is the Doppler frequency, andz(t) C

M×1

denotes superimposed radio interference signals where

zi(t) = a (φi, ϑi) bi(t), (3)

and bi(t) defines thei-th radio interference signal with
i = 1, . . . , I. Additionally, we assume temporally and spa-
tially white complex Gaussian noisen(t) ∈ C

M×1. In the
following the parameters of the LOS signal are indicated
with ℓ = 1 and the parameters of the NLOS signals (multi-
path) withℓ = 2, . . . , L.
The spatial observations are collected atK periods of the
PR sequence atN time instances, thusx[(k− 1)N + n] =
x(((k − 1)N + n)Ts) with n = 1, . . . , N , k = 1, . . . ,K,
and the sampling frequency1

Ts
≥ 2B. The channel pa-

rameters are assumed constant during thek-th period of
the observation interval. Collecting the samples of thek-
th period of the observation interval we define theM ×N
complex matrices:

X[k]=
[
x[(k−1)N+1],...,x[(k−1)N+n],...,x[(k−1)N+N ]

]
, (4)

N[k]=
[
n[(k−1)N+1],...,n[(k−1)N+n],...,n[(k−1)N+N ]

]
, (5)

S[k]=
[
s[(k−1)N+1],...,s[(k−1)N+n],...,s[(k−1)N+N ]

]
, (6)

Z[k]=
[
z[(k−1)N+1],...,z[(k−1)N+n],...,z[(k−1)N+N ]

]
. (7)

Thus, the signal can be written in matrix notation as

X[k] = S[k] + Z[k] +N[k]

= As[k]Γ[k] (C[k]⊙D[k])

+Az[k]B[k] +N[k], (8)

where⊙ denotes the Hadamard-Schur product,

As[k] = [a(φ1, ϑ1), . . . ,a(φℓ, ϑℓ), . . . ,a(φL, ϑL)] ∈ C
M×L

(9)
and

Az[k] = [a(φ1, ϑ1), . . . ,a(φi, ϑi), . . . ,a(φI , ϑI)] ∈ C
M×I

(10)



denote the steering matrices,

Γ[k] = diag{γ} ∈ C
L×L (11)

is a diagonal matrix whose entries are complex amplitudes
of the signal replicasγ = [γ1, . . . , γL]

T. Furthermore,

C[k] = [c[k; τ1] · · · c[k; τℓ] · · · c[k; τL]]
T ∈ R

L×N (12)

contains the sampled and shiftedc(t) for each impinging
wavefront

c[k;τℓ]=[c(((k−1)N+1)Ts−τℓ),...,c(((k−1)N+n)Ts−τℓ),

...,c(((k−1)N+N)Ts−τℓ)]
T, (13)

D[k] = [d[k; ν1] · · ·d[k; νℓ] · · ·d[k; νL]]
T ∈ C

L×N

(14)
contains the complex exponential functions conveying the
Doppler frequency of each wavefront

d[k;νℓ]=[ej2πνℓ((k−1)N+1)Ts ,...,ej2πνℓ((k−1)N+n)Ts ,

...,ej2πνℓ((k−1)N+N)Ts ]
T
, (15)

and

B[k] = [b1[k] · · ·bi[k] · · ·bI [k]]
T ∈ C

I×N (16)

contains the sampledbi(t) for each interference signal

bi[k]=[bi(((k−1)N+1)Ts),...,bi(((k−1)N+n)Ts),...,

bi(((k−1)N+N)Ts)]
T. (17)

In general||c[k; τℓ]||22 6= N, ∀τℓ ∀k, but for the problem at
hand1 we can assume that||c[k; τℓ]||22 ≈ N, ∀τℓ ∀k .
The spatial covariance matrix of the received signal consid-
ering thek-th period can be given as

Rxx[k] = E
[
x[(k − 1)N + n]xH[(k − 1)N + n]

]
.
(18)

AssumingE
[
s[(k − 1)N + n]zH[(k − 1)N + n]

]
= 0,

E
[
s[(k − 1)N + n]nH[(k − 1)N + n]

]
= 0, and

E
[
n[(k − 1)N + n]zH[(k − 1)N + n]

]
= 0 we get

Rxx[k] = Rss[k] +Rzz[k] +Rnn[k], (19)

with

Rss[k] = As[k]Rs′s′ [k]A
H
s [k], (20)

Rzz[k] = Az[k]Rz′z′ [k]AH
z [k], (21)

Rnn[k] = σ2
nIM . (22)

Here,Rs′s′ [k] ∈ C
L×L andRz′z′ [k] ∈ C

I×I denote the
signal and interference covariance matrix, respectively.

1e.g. in case of GPS C/A PR sequences with bandwidthB ≥ 1.023

MHz

PREWHITENING AND EIGENBEAMFORMING

In this section we will derive a two-step blind beamforming
approach based on orthogonal projections. This approach
consists of a pre-correlation prewhitening to spatially sup-
press radio interference signals and of a post-correlation
blind eigenbeamforming in order to maximize the ratio be-
tween the power of the desired LOS signal and the power
of the undesired NLOS signals plus noise.

Prewhitening

As the power of the signal replicassℓ(t) is much smaller
than the power of the noise and the interference (in general
about -20 to -40 dB) the spatial covariance matrixRxx[k]
can be approximated by

Rxx[k] ≈ Rzz[k] +Rnn[k]

= Az[k]Rz′z′ [k]AH
z [k] + σ2

nIM . (23)

Thus, an eigendecomposition ofRxx[k] can be expressed
as

Rxx[k] ≈ [UIUN ]

([
ΛI 0

0 0

]

+ σ2
nIM

)[
UH

I

UH
N

]

,

(24)
where the columns of the unitary matrixUI ∈ C

M×I

span the interference subspace, the columns of the unitary
matrix UN ∈ C

M×(M−I) span the noise subspace, and
ΛI denotes a diagonal matrix which contains the non-zero
eigenvaluesλ1, . . . , λi, . . . , λI with respect to the interfer-
ence subspace in the noise free case. A prewhitening matrix
to prewhitenX[k] can be given by

R
− 1

2
xx [k] ≈ UI

(
ΛI + σ2

nII
)− 1

2 UH
I +

1
√

σ2
n

UNUH
N .

(25)
Forλi >> σ2

n, i.e. in case of strong interference, we get

R
− 1

2
xx [k] ≈

1
√

σ2
n

UNUH
N =

1
√

σ2
n

P⊥
I [k], (26)

whereP⊥
I [k] is the projector onto the interference free sub-

space for thek-th period.
Now, we can apply the projectorP⊥

I [k] in order to
prewhitenX[k] and thus to suppress the interference

X̃[k] = P⊥
I [k]X[k]

= P⊥
I [k]As[k] Γ[k] (C[k]⊙D[k])

+ P⊥
I [k]Az[k] B[k] +P⊥

I [k]N[k]
︸ ︷︷ ︸

=Ñ[k]

. (27)

The covariance of the prewhitened received signalX̃[k] can
be given as

Rx̃x̃[k] = P⊥
I [k]Rss[k]P

⊥
I [k] +Rññ, (28)



X̃[k]=
[
x̃[(k−1)N+1],...,x̃[(k−1)N+n],...,x̃[(k−1)N+N ]

]
, (29)

Ñ[k]=
[
ñ[(k−1)N+1],...,ñ[(k−1)N+n],...,ñ[(k−1)N+N ]

]
. (30)

Assuming (26) holds, we get

Rx̃x̃[k] ≈ P⊥
I [k]Rss[k]P

⊥
I [k] + σ2

nIM . (31)

The projectorP⊥
I [k] can be derived from an eigendecom-

position of an estimate of the pre-correlation spatial covari-
ance matrix of thek-th periodR̂xx[k]. An estimate of the
spatial covariance matrix can be achieved with a recursive
implementation

R̂xx[(k − 1)N + n] = µx R̂xx[(k − 1)N + n− 1]+

(1− µx) x[(k − 1)N + n]xH[(k − 1)N + n]
(32)

whereµx is the ”forgetting factor” (or ”fading factor” )
with

µx = 1−
Ts

Tx

, 0 ≤ µx ≤ 1 (33)

whereTx is the desired covariance matrix observation time
andTx ≥ Ts.

Eigenbeamforming

Using an estimate of the LOS signal parametersτ1 andν1
the signal after despreading (post-correlation) can be given
as

y[k] = X̃[k]
1

N
(c[k; τ̂1]⊙ d[k; ν̂1])

∗ ∈ C
M×1, (34)

where we define the post-correlation data matrix

Y = [y[1], . . . ,y[k], . . . ,y[K]] ∈ C
M×K . (35)

Furthermore, we define

s̄[k]=P⊥

I
[k]As[k]Γ[k](C[k]⊙D[k]) 1

N
(c[k;τ̂1]⊙d[k;ν̂1])

∗

=P⊥

I
[k]As[k]Γ[k]













δ1[k]
...

δL[k]













=P⊥

I
[k]As[k]Γ[k]δ[k], (36)

n̄[k] =Ñ[k]
1

N
(c[k; τ̂1]⊙ d[k; ν̂1])

∗ ∈ C
M×1, (37)

S̄ = [s̄[1], . . . , s̄[k], . . . , s̄[K]] ∈ C
M×K , (38)

N̄ = [n̄[1], . . . , n̄[k], . . . , n̄[K]] ∈ C
M×K . (39)

The post-correlation signal can be defined as

Y = S̄+ N̄, (40)

and the post-correlation spatial covariance matrix can be
given as

Ryy = E
[
y[k]yH[k]

]
. (41)

With E
[
s̄[k]n̄H[k]

]
= 0 we get

Ryy = Rs̄s̄ +Rn̄n̄, (42)

with

Rs̄s̄ = E
[
s̄[k]s̄H[k]

]
, (43)

Rn̄n̄ = E
[
n̄[k]n̄H[k]

]
=

σ2
n

N
IM . (44)

Here,10 log10(N) denotes the despreading gain.
Now, let us derive the post-correlation eigenbeamformer.
In general one can write

r[k] = wHy[k], (45)

wherew ∈ C
M×1 is the weight vector or beamforming

vector andr[k] is the scalar output of the beamformer. Us-
ing an eigendecomposition of the post-correlation signal
covariance matrixRs̄s̄ we can write

Ryy = λdudu
H
d +UΛUH +

σ2
n

N
IM , (46)

where λd denotes the dominant non-zero eigenvalue of
the post-correlation signal covariance matrixRs̄s̄, ud de-
notes the eigenvector with respect toλd, Λ is a diago-
nal matrix collecting the remaining non-zero eigenvalues
λ2, . . . , λℓ, . . . , λL of Rs̄s̄ besidesλd, the unitary matrix
U ∈ C

M×(L−1) collects the eigenvector with respect to
the eigenvaluesλ2, . . . , λℓ, . . . , λL. If the LOS signal and
the NLOS signals are not highly correlated, the dominant
eigenvectorud spans the LOS signal subspace andU spans
the NLOS signal subspace. If the signals are highly corre-
lated or even coherent appropriate preprocessing steps like
forward-backward averaging [10] and spatial smoothing
[11] can be applied to decorrelate the LOS and the NLOS
signals.
Thus, we can formulate the optimization problem to de-
rive a beamformer which maximizes the ratio between the
power of the desired and the power of the undesired signals
plus noise

max
w

wHλdudu
H
d w

wH
(

UΛUH +
σ2
n

N
IM

)

w
, (47)

This results to an eigenvalue problem with the optimum
weight vector

wopt = ud. (48)

This beamformer we call eigenbeamformer.
The optimum beamforming weightwopt can be derived
from the eigenvector with respect to the dominant eigen-
value of the eigendecomposition of an estimate of the post-
correlation spatial covariance matrix̂Ryy. Following (32),
we can derive an estimate of the spatial covariance matrix
with a recursive implementation

R̂yy[k] = µy R̂yy[k − 1]+

(1− µy) y[k]y
H[k] (49)



with

µy = 1−
T

Ty

, 0 ≤ µy ≤ 1 (50)

whereTy is the desired covariance matrix observation time
andTy ≥ T .

EIGENDECOMPOSITION

The prewhitening at pre-correlation stage and the eigen-
beamforming at post-correlation stage have been defined
in previous sections. In order to demonstrate the feasibility
on embedded GNSS receivers, a cost-analysis in terms of
hardware requirements is provided in this section.
Concerning the prewhitening, the number of eigenvalue/-
vector pairs required for computing the projectorP⊥

I [k] is
related to the number of interferersI. Thus, a complete
decomposition of the spatial covariance matrixRxx[k] as
defined in (24) has to be computed. Following (48), only
the eigenvectorud referring to the dominant eigenvalue
λd of Ryy is required for the eigenbeamforming at post-
correlation stage. This matter of fact allows for choosing
a simpler approach in terms of computational requirements
for the latter case. In the following, two different algo-
rithms for the eigendecomposition are presented that have
been chosen with respect to an efficient implementation on
an embedded receiver platform.

Jacobi algorithm

The Jacobi method is widely known as a robust choice in
terms of numerical stability and it is an efficient algorithm
for the decomposition of matrices of moderate order [12].
Thus, it has been chosen for the decomposition ofR̂xx[k].
The Jacobi algorithm is briefly summarized in Alg.1 in
order to provide an overview on several implementation
details that have been considered for the cost-analysis
on an embedded receiver platform. The basic strat-

Algorithm 1 Jacobi decomposition

1: R0 = R̂xx[k],U0 = IM
2: for p = 0 → P − 1 do
3: Rp+1 = GH

p ·Rp ·Gp

4: Up+1 = Up ·Gp

5: end for

egy is to turn a matrixR0 ∈ C
M×M into a diago-

nal matrixRP = diag{λ1, . . . , λm, ..., λM} with m =
1, 2, . . . ,M by means ofP similarity transforms, while
λ1, . . . , λm, . . . , λM represent an approximation of the
eigenvalues of̂Rxx[k] afterP iterations. The eigenvector
referring toλm can be obtained from the respectivem-th
column ofUP .
Similarity transformations are implemented using Givens
rotations as defined by the matrixGp which is an identity

matrix except for matrix elements in them-th andm′-th
columns and rows withm′ = m+ 1, . . . ,M :

Gp =



























1 · · · 0 · · · 0 · · · 0

.

.

.
. . .

.

.

.

.

.

.

.

.

.

0 · · · gm,m · · · gm,m′ · · · 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.

0 · · · gm′,m · · · gm′,m′ · · · 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

0 · · · 0 · · · 0 · · · 1



























(51)

with

gm,m = cosφ, (52)

gm,m′ = sinφ, (53)

gm′,m = e−jα sinφ, (54)

gm′,m′ = e−jα cosφ, (55)

α = arctan (ℑ{rm,m′},ℜ{rm,m′}) , (56)

φ =
1

2
arctan

2 · ℜ{rm,m′ · e−jα}

ℜ{rm′,m′ − rm,m}
. (57)

rm,m′ , rm′,m′ , and rm,m denote matrix elements ofRp

andm andm′ are determined by successively choosing a
pivot elementrm,m′ from the upper triangle ofRp. Iter-
ating over each element of the triangle is referred to as a
sweep and several sweeps are required in order to achieve
convergence.
A straight forward implementation of this algorithm based
on IEEE 754 single precision floating point arithmetic has
been evaluated in terms of computational performance re-
quirements on an embedded field programmable gate array
(FPGA) receiver. An Altera NIOS II/f processor was used
as central processing unit (CPU) including a single preci-
sion floating point unit (FPU). However, decomposition of
a 4 × 4 matrix in single precision floating point unit could
not be achieved in real-time assuming a projector update
rate at 1 kHz (approx. 2.7 ms are required at a clock rate of
100 MHz).
Thus, a fixed point implementation has been worked out.
In following section containing the numerical results of this
paper it is shown that 16-bit operands for eigenvectors and
-values provide sufficient accuracy for interference mitiga-
tion at pre-correlation stage. In addition, a coordinate ro-
tation digital computer (CORDIC) approximation [13] has
been used for computing the elements of the rotation matri-
cesGp. This approximation was chosen since it is possible
to interleave computation of the arctan, sine, and cosine
functions in a single loop. Regarding the complex rota-
tion angleα, a coarse approximation has been implemented
whereα can only be assumed 0 orπ/2.
Considering these aspects, it can be shown that the eigende-
composition can be executed on the same platform in less
than 200µs which leaves sufficient performance for the re-
maining tasks (i.e. signal acquisition, tracking, message
decoding, etc.). The FPU is not required for the fixed point
implementation anymore.



Power iteration

At post-correlation stage, only the eigenvector referringto
the dominant eigenvalue ofRyy is required. A very simple
but efficient algorithm for this case is the so-called power
iteration which is briefly summarized in Alg.2. An ap-

Algorithm 2 Power iteration

1: u0 = 1√
M

· [1, 1, ..., 1]T

2: for q = 0 → Q− 1 do
3: x = Ryy · uq

4: λq = uH
q · x

5: uq+1 = x
‖x‖2

6: end for
7: ud = uQ

proximation of the eigenvector referring to the maximum
eigenvalue is achieved by successive multiplication of the
covariance matrix by an estimateuq.
In case of the beamforming at post-correlation stage, itera-
tions can be spread over time (i.e. only one iteration is com-
puted with each covariance matrix update, assuming slowly
changing matrices). Instead of initializingu0 as shown in
Alg.2, wopt of the previous update is used. This selection
of u0 has two advantages: First, the computational require-
ments are clearly reduced (since convergence is achieved in
one iteration) and second, the carrier phase at the discrimi-
nator input remains stable.
The normalization (line 5) is a critical step regarding the
efficient implementation on embedded platforms. Instead
of using the straight forward approach (i.e. computing the
root of summed squares) an alternate algorithm [14] has
been implemented. Concerning the costs for the beam-
forming at post-correlation stage, the following estimates
have been measured on the embedded receiver:Tacc ≈
5 µs are required for the accumulation of the actual corre-
lator output to the covariance matrix andTit ≈ 26µs for
computing one iteration of Alg.2. The overall loadTL for
the beamforming at post-correlation stage can be approxi-
mated as follows:

TL ≈ Nsv · (
Ty

Tp

· Tacc + Tit), (58)

whereNsv denotes the number of space vehicles in view
andTp is the correlator predetection time.

NUMERICAL RESULTS

In this section we will analyze the performance of the two-
step blind adaptive beamforming. First, a complex and
exhaustive simulation scenario allowing a comprehensive
analysis of the major effects a GNSS receiver installed on
a car has to cope with will presented. Afterwards an anal-
ysis of the simulation results using a full resolution float-
ing point unit implementation will be discussed and an im-
proving operation for the evaluation of the post-correlation

covariance matrix using forward-backward averaging [10]
will be evaluated. Finally the results obtained in floating
point resolution will be compared with a fixed point hard-
ware implementation of the prewhitening module.

Scenario Description

In our simulation we consider a centrosymmetric uniform
rectangular array (URA) consisting of2 × 2 (M = 4)
isotropic antenna elements equally spaced byλ/2, where
λ is the wavelength of the carrier frequency of the signal.
A simulation scenario was build up in order to cover some
of the most important environment conditions in one run.
The scenario considers a moving receiver, in this case a car,
in different typical situations like driving a curve driving
straight stretches or stop at a traffic light (Fig.1). Duringthe
track the receiver always was able to have a line-of-sight to
the satellite signal, while it was affected by a bandlimited
Gaussian interference (jammer) and four different multi-
path. For the scenario definition please refer to Table 1. In

Fig. 1 Graphical description of simulation scenario

our case we considered scattering multipath signals having
a gamma distributed amplitude and a uniform distributed
phase. For all the signals the propagation time-delays, the
Doppler shifts and the DoAs were considered based on the
position and velocity of the receiver. Note that since the



TID Track Event description Time [s] Duration [s] Velocity [km/h]
1 A USER STOPS 0 5.0 0
2 A → B USER MOVES 5.0 1.7 20
- - MP-1 ON 5.0 6.6 -
3 B USER STOPS 6.7 2.0 0
- - MP-2 ON 7.0 4.6 -
4 B → C USER MOVES 8.7 2.9 50
- - J ON 10.0 till end -
5 C USER STOPS 11.6 1 0
- - MP-3 ON 11.6 2.7 -
- - MP-4 ON 11.6 till end -
6 C → D USER MOVES 12.6 1.7 20
7 D → E USER MOVES 14.3 0.7 30
- E END 15.0 - -

Table 2 Simulation scenario detailed description

jammer occupies the whole receiver bandwidth the only ef-
fective counteracting action can be performed via a spatial
filtering. The route covered by the car illustrated in Fig.1
is described in detail in Table 2. Observing the scenario
it makes sense of splitting it in seven sub-scenarios, each
indicated by a Track-ID number (TID). Each sub-scenario
characterizes a particular combination of both user and en-
vironment conditions (e.g. during TID1 the user is static
and neither RFI nor multipath is present).

Software Results

Fig.2 shows the array RFI attenuation at DoA of the jam-
mer (DoAJ ). The dependency on the observation time of
the pre-correlation spatial covariance matrix (Tx) is also
shown indicated by different colors. The results were ob-
tained using a projector update frequency of1

T
= 1 KHz,

with the only exception forTy = 5 ms where the up-
date frequency was set to0.2 KHz. As it can be ex-
pected longerTx exhibits better performance when the user
position is static (TID5) and in general when theDoAJ

is not varying significantly (TID4). On the other hand,
when the user is moving (TID6 and TID7) a shorter ob-
servation timeTx should be preferred. If we consider a
Tx = 0.5 ms as a trade-off for the scenario under consid-
eration the prewhitening would be able to attenuate a wide-
band interference of at least47.5 dB. Fig.3 depicts the av-
erage array gain at the DoA of the LOS signal (DoALOS)
during each TID. The post-correlation spatial covariance
matrix observation timeTy was varied from20 ms to
200 ms. From the behavior of the array gain it can be ob-
served that a shorter observation time has slightly better
performance in case the user is moving fast (TID2, TID4,
TID6 and TID7). On the contrary, the best performance ob-
tained when the user is in a static position is of course those
using a longer observation timeTy. This becomes partic-
ularly evident for TID5 since for TID1 and TID3 the array

Scenario parameters
A,B,C,D,E Ref.Rx.postions (A=start)
Track length approx.69 m
Track duration 15 s
LOS DoA Satellite signal DoA
Type GPS-L1 CA, PRN1
Bandwidth B = 4MHz (one-sided)
N0 −204 dBW/Hz
Power −157 dBW
C/N0 47.5 dB −Hz
DoALOS elevation fixed at60◦

DoALOS azimuth time varying
DoALOS max. variation 1◦ each16.6 ms (max)
MP − x Multipath source (x = 1..4)
C/N0 Gamma dist. with mean

[44.5, 42, 43, 42] dB −Hz
Phase Uniform distributed[0, 2π]
DoAMPx

elevation fixed at[20◦, 15◦, 15◦, 22◦]
DoAMPx

azimuth time varying
DoAMPx

max. variation 1◦ each10.0 ms
J Jammer
Type Bandlimited noise
Bandwidth B = 4MHz (one-sided)
Power −115 dBW
DoAJ elevation fixed at20◦

DoAJ azimuth time varying
DoAJ max. variation 1◦ each10.0 ms

Table 1 Simulation scenario parameters



Fig. 2 Array RFI attenuation atDoAJ : a) mean and b)
standard deviation

gain reaches the maximum value of10 · log10 (M) ≈ 6 dB
for different observation time. Fig.4 shows the ratio be-

Fig. 3 Array gain atDoALOS : a) mean and b) standard
deviation

tween the array gain atDoALOS and the array gain at the
DoA of the four multipath (DoAMPx

). The dependency of
Ty on the respective array gain atDoAMPx

is also a useful
figure of merit in order to understand the impact the scatter-
ing echoes effectively have on the LOS signal tracking. No
variations of the array gain can be associated to a marginal
effect of the multipath on the tracking performance. Re-
garding the array gain atDoAMPx

and the dependency on
Ty as well as on DoA dynamics the same considerations
are valid as discussed above for the array gain atDoALOS .
The only incongruity consists in the fact that a longer in-
tegration time contributes at the same time to the decor-
relation of the LOS signal from the multipath signals. In
general, the longerTy is chosen the higher the multipath

decorrelation becomes. At the same time the eigenbeam-
former can not optimally follow the dynamic of the LOS
signal. As depicted in Fig.4 the resulting loss in array gain
is compensated by higher multipath decorrelation and thus
by a higher array LOS to multipath ratio.

Fig. 4 ArrayLOS to MPx ratio

Forward-Backward Averaging

In order to obtain a better resolution for the eigenvector re-
lated to the LOS signal under tracking as well as to decor-
relate the undesired scattering signals without having to in-
crease theTy, we apply forward-backward averaging (FB)
[10]:

R̂fb =
1

2

(

R̂yy + J R̂∗
yy J

)

(59)

where

J =






0 · · · 1
... . .

. ...
1 · · · 0




 ∈ R

M×M (60)

is the exchange matrix.
Fig.5 shows the benefit of using FB, the results were ob-
tained with aTy = 100 ms.

Fixed point vs. Floating point implementation

The eigendecomposition required for the prewhitening by
the two-step adaptive spatial filtering has been imple-
mented on a FPGA hardware. While the software based
receiver makes use of double precision floating point unit
(64-bit) data, the FPGA hardware was based on 16-bit fixed
point unit data operands. Both software and hardware sim-
ulations received the same input data (14-bit). We fo-
cus only on the FPGA implementation of the prewhitening
since the low data rate at which the post-correlation beam-
forming operates, allows the algorithm to be implemented
on a floating point processor. Note that the prewhitening



Fig. 5 ArrayLOS to MPx ratio using Forward-backward
averaging

is fully independent from the tracking loops and from the
post-correlation beamformer. Consequently any dissimilar-
ity between hardware and software results are only due to
the resolution loss.
The input data resolution was set to 14-bit while the resolu-
tion of the output data after applying the projector was 12-
bit, the projector itself has a resolution of 16-bit. In Fig.6
the array attenuation atDoAJ for both the floating point
and fixed point implementation using a projector update in-
terval of 1ms andTx = 0.5 ms is depicted. In the worst
case the hardware implementation achieves a lower jammer
suppression capability of about7 dB in comparison with
the floating point approach. Nevertheless the hardware im-
plementation is able to reduce the jammer impact of more
than40 dB.

Fig. 6 Array attenuation atDoAJ using fixed point reso-
lution: a) mean and b) standard deviation

CONCLUSION

In this work we have proposed a two-step blind adaptive
beamforming approach based on orthogonal projections at
pre-correlation and post-correlation stage for GNSS, for
which knowledge of the array response and a spatial ref-
erence for the LOS signal are not required. A cost-analysis
in terms of processing cycles on an embedded processor
for the covariance matrix computation and eigendecompo-
sition was presented.
A software bit accurate representation of the GNSS re-
ceiver hardware platform was used for performance eval-
uation. Simulation results have shown that the proposed
blind adaptive beamforming approach based on orthogonal
projections is capable of effectively mitigating interference
and multipath signals. The presented approach provides a
well balanced trade-off between computational complexity
and performance.
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