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Abstract— Area-wide measurements of traffic flow are usually
not possible with today’s common sensor technologies. However,
such information is essential for (urban) traffic planning and
control. Hence, in order to support traffic managers, this
paper analyses an approach for deriving traffic flows from
probe vehicle speeds, which are potentially available with a
wide spatial coverage. The idea is to apply the speed-flow
function as known from macroscopic traffic flow theory. In this
context, a stochastic representation of the fundamental diagram
via Bayesian networks is proposed which also considers the
temporal dependencies and transitions between the appearing
traffic states. The paper describes the relevant theoretical
concepts in comparison to the traditional approach of fitting de-
terministic curves to empirical speed-flow relations. Moreover,
it analyses the findings of an extensive validation in context of
traffic flow estimation via probe vehicle data using real traffic
measurements provided by about 600 local detectors and about
4,300 taxi probes in Berlin, Germany.

I. INTRODUCTION

The discussion about the detailed relationship between the

three traffic state variables flow, density and speed has a

long history (cf. [1]) and is still ongoing. Starting from the

pioneering works of Bruce D. Greenshields in the 1930s (see

[2]), many attempts have been made to find the optimal

fit between mathematical models and empirical findings

(cf. [3], [4], [5]). A quite flexible but still deterministic

model, for instance, was proposed by Michel van Aerde in

1995 (see [6]) which is based on a microscopic assumption

about vehicle headways. Recent research (cf. [7]) more

and more tries to explicitly model the stochastic aspects

of the fundamental diagram. Moreover, there are promising

approaches and applications in context of exploring network-

scaled relations between vehicle density and space-mean flow

– called macroscopic fundamental diagram (cf. [8], [9]).

The present contribution, however, concentrates on link-wise

flows and speeds as common theories do.

During the last decades, a large number of measurement

techniques has been developed for observing the relevant

traffic state variables from an empirical perspective. In this

context, traffic flow and time-mean speed (even more than

density) play a major role as they can easily be measured

locally and are an important input to current tools of

traffic planning and control. Moreover, space-mean speeds

as appearing in the well-known fundamental equation of

traffic flow can be computed directly from local speed
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measurements under certain assumptions by applying the

harmonic mean (cf. [3]). In contrast to that, today’s methods

do not allow for area-wide measurements of traffic flow,

for instance, due to the fact that common sensors like loop

detectors always refer to fixed locations of the road network.

On the other hand, more recent sensor approaches such as

probe vehicle data (PVD) or similar means (cf. [10], [11])

have a wide spatial coverage regarding their measurements

but do not provide information about traffic state variables

such as flow or density. Consequently, it is straight-forward to

ask whether it is possible to combine the advantages of local

detectors (e.g. direct measurements of traffic flow) with the

ability of probe vehicle systems to provide area-wide traffic

measurements. Examples for such data fusion approaches can

be found in [12], [13], [14], [15], for instance. Moreover, a

quite simple idea would be making use of the speed-flow

relation as known from macroscopic traffic flow theory in

order to estimate traffic flows based on measured speeds from

PVD.

Reference [16] describes the results of a concrete imple-

mentation (mostly for urban traffic) using calibrated speed-

flow functions of the Van Aerde model as in [6] based on

hourly averaged data. It is shown that the approach is more

or less applicable, in principle. However, the deterministic

modelling of the speed-flow relation turns out to be too

restrictive in such a way that it does not adequately capture

the variations of observed speeds given the same traffic flow.

Because of that, the present paper proposes a more detailed

representation of the fundamental diagram (i.e. speed and

flow) based on stochastic Bayesian networks (see Section II)

which also takes account of the dynamic transitions between

the macroscopic traffic states over time (cf. [17]). Section III

then describes the application of this representation for esti-

mating traffic flows from PVD. The paper closes with a short

conclusion (see Section IV) summarizing the main results

and discussing some aspects regarding future improvements.

II. MODELLING SPEED-FLOW RELATIONS

Fig. 1 shows a sample data set of the speed-flow relation

based on measurements of a local detector. As can be seen, its

general structure is recovered by the approximative function

quite well which was obtained by numerically fitting the

parameters of the Van Aerde model [6] for the given (hourly)

data. However, the observed variance of speed given the flow

(and vice versa) is not represented.

Consequently, it might be more reasonable in modelling to

think of speed and flow as time dependent random variables

where Q(t) is the flow and V (t) the speed at time t. The
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Fig. 1. Example of a speed-flow relation.

stochastic relation between Q(t) and V (t) is then given

by the conditional probability distribution P(V (t)|Q(t)).
Moreover, the opposite relation can be computed via Bayes’

Theorem (cf. [18])

P(Q(t)|V (t)) =
P(V (t)|Q(t)) · P(Q(t))

P(V (t))
(1)

where P(Q(t)) is the a priori distribution for the observed

flows and

P(V (t)) =
∑

q

P(V (t)|Q(t) = q) · P(Q(t) = q). (2)

Fig. 2 shows a graphical model of the connection between

Q(t) and V (t). In fact, this model is a trivial example

of so-called Bayesian networks (cf. [18], [19]) which effi-

ciently describe stochastic (in-)dependencies for given sets

of random variables. In this context, each random variable is

represented by a node of a directed acyclic graph. Moreover,

edges describe the direct stochastic (sometimes also causal)

influence between neighboring nodes.

Then, depending on the graph structure, there are three

different types of nodes: A child node is such a one with

at least one directed edge pointing at it. Conversely, parent

nodes have at least one edge pointing away from it at one of

its child nodes. Finally, nodes which do not have any parents

are called root nodes. Of course, root or child nodes can also

be parent nodes at the same time. But, only root nodes are

never the child of any other node per definition.

Based on that, a Bayesian network is completely specified

by its graph structure together with the a priori distributions

P(X) of all root nodes X and the conditional probabilities

P(Y |Pa(Y )) for each other node Y given its parents Pa(Y ).
Regarding Fig. 2, that means the model is fully defined by

the probability distributions P(Q(t)) and P(V (t)|Q(t)) as

already discussed above.

Flow

Q(t)

Speed

V(t)

Fig. 2. A trivial Bayesian network.
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Fig. 3. Discretization of the speed-flow diagram.

Clearly, both distributions are directly obtained from the

measurements as depicted in Fig. 1. In this context, common

software tools for Bayesian networks (cf. [20]) use probabil-

ity tables for coding the (conditional) distributions of each

node and thus are restricted to discrete random variables for

technical reasons. Consequently, the axes of the speed-flow

diagram in Fig. 1 need to be discretized in the following.

Using equidistant partitions for both directions (cf. Fig. 3),

all relevant probabilities can be assigned then by simply

counting the data points in each box and normalizing the

results. Of course, other kinds of discretization are possible

as well, including those which are more fine-grained in

regions of the fundamental diagram where data points cluster.

For simplicity, however, the present paper sticks to the

equidistant variant as in Fig. 3.

Even though stochastically, the speed-flow relation has

been modelled statically so far. That means dynamic tran-

sitions between macroscopic traffic states over time are not

represented in the model. In this way, for instance, the static

model does not distinguish between short-term peak traffic

and long-lasting jams resulting in the same average speed

at time t. On the other hand, one can imagine that flows

may differ significantly in such a case. Needless to say, the

traditional approaches for fitting the fundamental diagram

(cf. [2], [4], [5], [6]) have the same restrictions. Analyses

as in [17], however, showed that there are distinct transitions

between macroscopic traffic states which are more likely than

others. That means, the recent history of traffic states has an

important dynamic impact on current flows which needs to

be considered.

Consequently, the model from Fig. 2 is extended below in

such a way that it reproduces these dynamics. Interestingly, it

is very simple to do that for the Bayesian network approach

(in contrast to the traditional fitting approaches). So, there is

no reason to stick to the static model. The only thing to do

is replicating the trivial network from Fig. 2 for a number

of consecutive time slices in the past and to connect them

via some additional edges. Under the assumption that the

random flow Q(t − 1) at time t − 1 directly influences the

flow Q(t) at time t in a stochastic way, for instance, these

additional edges would be between the nodes Q(t− 1) and

Q(t) for all t.

Of course, this dynamic extension does not necessarily

mean that the model will be fed in real-time with online



Fig. 4. Dynamic representation of the speed-flow relation.

data during flow estimation (although this would be possible,

too). In fact, even the most relevant time slice t will typically

be in the past so that it will be standard to use the model

mostly offline with historical data in context of less time-

critical transport planning applications. The main benefit

in this context is that aera-wide estimates of traffic flow,

which cannot be obtained by conventional local detectors,

are provided rather than real-time traffic states.

Fig. 4 shows the Bayesian network based on previous data

in case of two additional backward (t−2 and t−1) and two

forward time slices (t+ 1 and t+ 2) as it was implemented

using the software tool Netica 4.16 (see [20]). The duration

of each time slice is 1 hour so that the time horizon is

able to completely cover a typical peak period, for instance.

Needless to say, the time slices t+1 and t+2 will be ignored

in the above shortly addressed online case, of course, as they

were located in the future then.

Now, a full specification of the model requires knowledge

about all of the following probability distributions:

• P(Q(t− 2)),
• P(V (t+ i)|Q(t+ i)) for all i = −2,−1, 0, 1, 2,

• P(Q(t+ i)|Q(t+ i− 1)) for all i = −1, 0, 1, 2.

However, claiming time homogeneity (i.e. that all above

probabilities are constant over time), this number reduces to
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Fig. 5. Cumulative distribution functions of V (t) given Q(t).

three probability distributions, two of which already known

from the model of Fig. 2. Namely,

P(Q(t− 2)) = P(Q(t)), (3)

P(V (t+ i)|Q(t+ i)) = P(V (t)|Q(t)), (4)

P(Q(t+ i)|Q(t+ i− 1)) = P(Q(t)|Q(t− 1)) (5)

for all i. Moreover, the new distribution from (5) can directly

be obtained from local flow measurements as the others, too,

without any problem. The model in Fig. 4, for instance, is

completely calibrated based on the data set from Fig. 3.

Then, Fig. 4 depicts the resulting marginal probabilities

for all possible (discrete) node states in the “stationary”

case including the distribution from (3) where no further

information about current speeds and flows is given. In

addition, Fig. 5 and Fig. 6 show the discretized cumulative

distribution functions belonging to (4) and (5).

III. TRAFFIC FLOW ESTIMATION

Obviously, the marginal probabilities from Fig. 4 are not

very helpful regarding traffic flow estimation because they

just represent a whole day average with a constant mean

value over time which is more or less the daily traffic volume

devided by 24 hours. In order to obtain true hourly estimates,

speed measurements are needed as so-called evidence (cf.
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Fig. 7. Traffic flow estimation via speed evidence.

[18], [19]). That means, once the values of some (or all)

speed nodes in the Bayesian network of Fig. 4 are fixed, the

model is able to recompute the probabilities of all other nodes

given this additional information via inference. Fig. 7 shows

an example based on some virtual speed measurements

representing the relaxation of traffic after a peak hour.

As can be seen, the estimated mean traffic flow decreases

from 1,680 veh/h to 1,330 veh/h at time t and then stabilizes

around 1,370 veh/h as the discretized speeds do as well

at 47.25 km/h on average. Moreover, also the (conditional)

probability distributions of the nodes Q(t− 2), . . . , Q(t+2)
are shifting dynamically in a reasonable way. In contrast to

that, the static model from Fig. 2, which does not incorporate

the temporal dynamics of the traffic states, would estimate

an average flow of just 945veh/h at time t based on the same

speed measurements as in Fig. 7. Needless to say, applying

the more realistic dynamic model from Fig. 4 is the better

choice.

A. Approach

The above example shows that the Bayesian network

model is able to (qualitatively) provide suitable estimates

of traffic flow given some speed measurements. Needless to

say, the calibration of the model strongly depends on factors

such as road type, speed limit, number of lanes and possibly

others. For this reason, a number of road classes was defined

in the following based on these criteria where each road class

has its own calibrated Bayesian network. In this context,

the parameters of the models were obtained by mapping the

speed and flow measurements of about 40 local sensors to

their related road classes and then evaluating the discretized

data sets according to Section II. Finally, there are calibrated

models for all major roads of the considered street network

(even those without any local detector) since each of these

roads, of course, belong to one of the defined road classes.

The area-wide speed measurements, which are needed as

evidence, then come from 3 months of typical probe vehicle

data with sampling intervals of about 30 s. That means travel

times ∆t for each road section are derived via common

PVD algorithms (cf. [10]) first which yield so-called travel

speeds vPVD := L/∆t as their inverse where L is the driven

distance between the corresponding PVD messages. Based

on that, typical historical daily curves of speed are derived

on an hourly basis for every road section and for each

weekday class (i.e. single day, tuesday to thursday, monday

to sunday). Again, this shows that the whole approach

strongly focuses on offline applications rather than real-

time traffic state estimation although feeding the model with

online PVD was possible, too. Finally, smoothing of the

discussed daily curves is done via Lomb filtering as described

in [21] whenever feasible.

As is well-known, travel speeds may significantly differ

from local speeds which in particular holds for urban traffic.

Unfortunately, the exact relationship between both types of

speed is rather complex under real conditions and thus can-

not be considered here in detail. Nonetheless, transforming

vPVD is necessary to make the speed axes of the calibrated

Bayesian network models (cf. Fig. 3) and probe vehicle

speeds more comparable. In particular, the free-flow speed

needs to be adapted for each single road section in order

to avoid differences of at least the basic speed level (e.g.

because of varying speed limits on different links or divergent

free-flow speeds in general). For this purpose, even if it is just

part-way correct, the proposed approach applies the simple

transformation

v′PVD := vPVD ·
v
(.95)
Bayes

vPVD,0
(6)

instead of directly plugging in vPVD as evidence values during

traffic flow estimation. Here, vPVD,0 is the free-flow speed

from PVD, and v
(.95)
Bayes is the supposed free-flow speed in

the corresponding Bayesian network. Precisely, vPVD,0 is

the link-specific average travel speed between 10pm and
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4am (assuming that there is no congestion at night) for the

considered road section which is directly derived from the

data. Moreover, v
(.95)
Bayes is the 95%-percentile of all local speed

measurements used for calibrating the model of the related

road class.

B. Results

Fig. 8 shows the aggregated results of an extensive

validation using PVD from about 4,300 taxis in Berlin,

Germany. In this context, the calibrated Bayesian networks

(cf. Fig. 4) were applied for estimating the traffic flows of

the central time slice t which means that speed evidences

for backward and forward time slices were put into use.

Needless to say again, this is only possible in case of the

“offline” evaluation based on historical data. During the

“online” application, speed measurements will be available

for current and backward but not for future time slices, of

course. Finally, the estimated flows were compared to the

true ones as provided by local detectors for about 600 road

links (including those 40 used for calibration) covering all

relevant road classes with regard to the “typical” working

days (tuesday to thursday).

As can be seen, there is a small systematic bias of about

−89.9veh/h in terms of underestimating the true traffic flows

by PVD. Moreover, the mean absolute error sums up to

481.6 veh/h. The standard deviation of the error differences

is computed as 769.7 veh/h. Clearly, these results are not

really satisfying although, for instance, they are better than

those from [16] which based on a static and deterministic

representation of the fundamental diagram instead of the

proposed Bayesian network approach.

In this context, Fig. 9 depicts an example where the

estimation works quite well. In particular, notice that the

plotted flow data come from a link which does not belong to

those 40 used for calibration in this case. The upper diagram

shows the true and estimated daily curve of traffic flow while

the second one displays the corresponding probe vehicle

speeds as well as the average number of PVD messages per

hour (cover) which in some way is a quality indicator for

the derived speeds.

There is no doubt that a sufficiently good coverage by PVD

is essential for reasonable results. Fig. 10 gives an example

where low “cover” values are responsible for the unrealistic
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Fig. 10. Negative example of estimated flows.

and noisy speed curve in the lower plot (i.e., notice that

the current PVD processor assumes free-flow speed on links

where no data are available). Consequently, the estimated

traffic flows show a bad quality, too.

However, this is not the only explanation why the estimates

sometimes do not reproduce the true flows adequately. The

problem is that the speed-flow relation as in Fig. 1 often has a

very flat branch in case of free-flow and undersaturation. That

means variations of flow do not necessarily induce significant

deviations of the corresponding speeds. Obviously, freeways

and other roads with high speed limits and large capacities

are affected especially hard (cf. [16]).

Finally, the applied road classification scheme (see Sec-

tion III-A) makes some important potential for estimation

errors. Because, using an inappropriate Bayesian network

model will of course produce wrong results. Needless to say,

this especially holds when roads with significantly different

capacities or speed limits are mixed up within a given

road class. Unfortunately, optimizing the currently used road

classification scheme is a difficult task which cannot be part

of this paper.

In order to rate the influence of flat speed-flow relations,
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however, a second analysis without freeways and similar road

classes were done for the same days as before. Fig. 11 shows

the aggregated results. As expected, they are more accurate

than those from Fig. 8 with a slight tendency to overestimate

the true traffic flows now. That is, the systematic bias is

found to be 67.3 veh/h. The mean absolute error sums up

to 297.3 veh/h, and the standard deviation of the error goes

down to 494.7 veh/h.

IV. CONCLUSIONS

Effective traffic planning and control based on conven-

tional and modern ITS technologies is not possible without

reliable traffic information. In particular, there is a significant

number of tasks such as traffic signal planning or infrastruc-

ture decisions which essentially rely on comprehensive data

about traffic flow and demand. For that reason, this paper

proposed a stochastic approach based on PVD (and mainly

focussing on offline applications) in order to generate traffic

flow estimates with a wide spatial coverage since area-wide

direct flow measurements are not possible with common local

sensors or other today’s means.

It principally turned out that the dynamic representation

of the fundamental diagram using Bayesian networks is

capable of providing reasonable flow results via inference.

However, there are several factors negatively influencing the

quality. Therefore, future research should try to optimize the

implemented road classification scheme in order to create

more homogeneous road classes regarding their relevant

traffic flow characteristics. In addition, the focus should be

on systematically identifying and analyzing further negative

factors. In this context, it might be helpful, for instance,

to study the impact of good or less good coverages by

PVD on the quality of the traffic flow estimates. Moreover,

additional effects such as variable speed limits or the like

should be considered with regard to future improvements of

the proposed method.

Finally, some ideas on their own, namely modelling the

relation between macroscopic traffic state variables stochas-

tically and dynamically via Bayesian networks, might prove

beneficial also for other applications including online ap-

proaches which use the basic concept of the fundamental

diagram.
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and X. Bei, “Deriving Traffic Volumes from Probe Vehicle Data
using a Fundamental Diagram Approach”, in Proceedings 13th World
Conference on Transport Research, Rio de Janeiro, Brazil, 2013.

[17] Y. Kim, and H. Keller, “Zur Dynamik zwischen Verkehrszuständen im
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