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Preface iv

Preface

The thesis at hand is split into two parts. The first part comprising Ch. 1–Ch. 5 introduces a new Robot
Anomaly Detection System (RADS) including setup, functionality, and an extension for high dimensional data,
and further evaluates the performance in a paper wise manner. App. A–App. I constitute the second part, and
offer supplementary details on the concepts, the data, and additional tests.
I would like to express my gratitude to all those who helped me to complete this thesis; especially Holger

Urbanek who proposed the application of a Radial Basis Function (RBF) network, Julian Klodmann who made
validation against real robot data possible, Christian Osendorfer who contributed ideas especially for projection,
and Patrick van der Smagt who pushed the thesis to its final state; all of whom helped a lot by proof reading and
counseling with regard to latex and document layout. Finally, I thank Christian Kerl who constantly encouraged
me, yet critically questioned my text.
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Abstract

Early system error detection is essential for safe human-robot interaction. Detecting errors in the large amount
of sensory and status data is, however, difficult, especially since the amount of fault data is very small if at all
available; a problem for which no sufficiently stable methods exist. This thesis introduces a new Robot Anomaly
Detection System (RADS) consisting of a multi-stage solution, that adapts to high dimensional input and detects
errors without previous records of them. Application to real robot data proves its satisfying performance.

Zusammenfassung

Während Mensch-Roboter-Interaktionen ist es sehr wichtig Fehler und Schäden möglichst früh zu erkennnen um
die Sicherheit aller Beteiligten zu gewährleisten. Dies wird hauptsächlich durch die Beobachtung von Sensor-
und Zustandsdaten erreicht. Der Masse an Daten Herr zu werden ist schwierig, insbesondere da es wenige
Beobachtungen von Fehlerzuständen gibt, sofern sie überhaupt vorhanden. Bisher existieren keine ausreichend
stabilen Lösungen für dieses Problem. Im Rahmen dieser Arbeit wird ein neues Fehlererkennungssystem für
Roboter (RADS) vorgestellt, das auch Fehler, zu denen keine Daten vorliegen, erkennt und den hochdimensionalen
Eingaberaum verarbeiten kann. Durch die Anwendung auf reale Roboterdaten wird belegt, dass die Methode
zielführend ist.
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1. Introduction to Anomaly Detection for Robots

Reliability and, depending on the task, high accuracy
are critical for the successful application of a robot.
Early detection of faults is crucial to ensure safety and
high performance of the system. Errors can be soft- and
hardware-related and include communication problems,
wear-dependent deviation, and broken sensors.

Typically, fault detection is realized by setting thresh-
olds on sensory data, which may not be exceeded.
Furthermore, differences to concurrently running sim-
ulators give insight in aberrations, i.e. [14, 19, 38, 44].
However, these approaches have drawbacks. Simply
applying thresholds disregards dependencies between
different data. Then, simulators are merely approx-
imations of the real system, and errors which were
not considered during modeling may be impossible to
detect. Rather than relying on these coarse methods,
this thesis introduces a model-free approach.

A major challenge is the impracticality to record

fault data. Such data is often caused by hardware
failure, which can hardly be emulated, but is also a
combination of many different states, the combination
of which cannot be spanned. Similarly, the number of
valid configurations is very large, too, and not all valid
data combinations are seen during normal operation.

The introduced Robot Anomaly Detection System
(RADS) incrementally learns valid data during normal
operation, building up a compact representation of these
states. After switching from training to application,
aberrations of these are detected and correspondingly
labeled. The method is validated with the German
Aerospace Center (DLR) Light-Weight Robot (LWR)
[3] and the DLR MIRO [20], but can easily be applied
to other input-output systems. Depending on the exact
configuration and additional number of supplementary
metrics, the data space can easily cover several hundred
dimensions.
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2. State of the Art

Few publications deal with the problem of anomaly
detection in high-dimensional data while only positive
samples are available. Using the following six require-
ments for novelty detection stated by Markou [35] ex-
isting methods are classified (see Tab. 2.1):

1. robustness and trade-off: excludes novel samples
while including known states,

2. generalization: avoids false positives and nega-
tives,

3. adaptability: capable to incorporate new informa-
tion,

4. minimized computational complexity: applicable
for online evaluation,

5. independence: handles varying dimensions and
number of features,

6. parameter minimization: little input required
from the user.

Uniform data scaling further requested by Markou is
not contained in the novelty detection algorithm, but
is part of preprocessing and makes the application of
many algorithms easier (see App. B.1) [35].

Density estimation methods such as Parzen window-
ing [4] do not scale with data dimensions: Each dimen-
sion is split into w parts leading to a combinatorial
explosion. The same holds for variational Bayesian
techniques. Furthermore, the created clusters span
over large, sparse areas, leading to over-generalization:
Faulty data in these sparsely populated areas will be
erroneously mapped to known models.

Clustering algorithms such as k-means [33] require
prior data space knowledge, e.g. the number of centers
that make up the data model. Also, the number of
centers may grow too large. More elaborate clustering
algorithms, e.g. growing neural gas [17, 37], can adapt
the number of cluster centers but require a lot of equally
distributed data.

Other algorithms inherently deal with time series
effects, e.g. Peer Group Analysis (PGA) [15] applied in
fraud detection. However, the methods compare simi-
larly behaving dimensions against each other, and clas-
sify sudden divergence as suspicious. In robot anomaly

detection, many of the dimensions cannot be compared
by common distance metrics as Euclidean distance.

One-class Support Vector Machine (SVM) [45] and
Support Vector Domain Description [52] lead to an
unmanageable number of support vectors, and force a
specified percentage of the training data to be consid-
ered as outliers. Extreme Learning Machines (ELMs)
[25], use single hidden layer feed-forward networks to
approximate the data distribution, and are only appli-
cable if counter examples are available.

The neural network predictor introduced by [51] clas-
sifies robustly, but can only be used if a good data
model is available. Aggarwal et al. (2001) consider
both high dimensionality and single-class discrimination
by genetic algorithms, which project data onto several
lower-dimensional subspaces [2]. The idea is promising
but very time consuming.

None of the available approaches sufficiently considers
all of the six requirements while being able to handle
high-dimensional one-class data. The aim of this thesis
is to introduce a largely deterministic RADS that is
capable of detecting anomalies in high-dimensional data
while the robot is operating. First, a robust detection
mechanism is developed. Subsequently, applicability to
high-dimensional data is ensured. Each concept of the
RADS is evaluated according to the fulfillment of the
above listed requirements and its detection capability
to prove its satisfactory performance for anomaly de-
tection.

Table 2.1.: Robot anomaly detection algorithms in the light of
requirements

method violated requirements

density estimation 4

variational Bayes 1, 2, 4

clustering 1, 2, 6

PGA 5

one-class SVM 1, 3

ELM 5

genetic algorithms 3, 4
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3. A Machine-Learning Based Anomaly Detection System

Dataflow during training

Dataflow during application

NS RBF

SVM

Figure 3.1.: Setup of the Robot Anomaly Detection System (RADS):
Data generated by the robot is recorded for training. The data is used
to create two models, one for valid data points (based on Radial Basis
Functions (RBF)), one for invalid data points (based on Negative
Selection (NS)). Once the models have been retrieved, they are used
to train a Support Vector Machine (SVM). After training, only the
SVM is necessary to decide whether any data point is erroneous.

The problem is tackled by applying a multi-stage
solution as depicted in Fig. 3.1. This method starts off
by building models of valid and invalid states. These
models are then used to generate two labeled classes
that can be separated using a Support Vector Machine
(SVM) ensuring a quick decision.

Positive data comprises all areas of the data space
accessed during regular use. This space should be
maximally sampled. In contrast, negative data looms
in unknown areas of the data space. Any data point
classified thus requires further investigation: Either the
model is incomplete and needs to be amended or an
anomaly is detected.

3.1. A Model of Positive Data

The structure of the data is approximated by summing
K Radial Basis Function (RBF) kernels, corresponding
to multi-variate Gaussian functions. The model assigns
each point x in the data space a function value according
to the probability of belonging to the trained data.
If the function value is above a predefined threshold
α, x belongs to the model and is considered known.
Otherwise the data point is an outlier. The probability
is evaluated using the χ2 goodness-of-fit test [41].

Each kernel κk has a specific center µk and variance
Σk. The function value φ(x, κk) (see Eq. (3.2)) of a data
point x in a kernel κk only depends on the Mahalanobis
distance,

−1.5 −1 −0.5 0 0.5
0

0,2

0,4

0,6

0,8

1

x

χ
2
 p

ro
b
a
b
ill

it
y
 o

f 
x
 b

e
lo

n
g
in

g
 t

o
 k

e
rn

e
l

Recognition Rate Due to Single Kernels

known

φ(x, κ
a
)

φ(x, κ
b
)

α

a: φ(x, κk)

−1.5 −1 −0.5 0 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

χ
2
 p

ro
b
a
b
ill

it
y
 o

f 
x
 b

e
lo

n
g
in

g
 t

o
 k

e
rn

e
l

Recognition Rate Due to RBF Network

known

φ(x, κ
a
)

φ(x, κ
b
)

rbf(x)

α

b: rbf(x)

Figure 3.2.: a: Two kernels constituting the network response. b:
The black curve sums the two kernels and bridges the gap between
the kernels. The kernels represent the χ2 goodness-of-fit probability
and thus are not Gaussian-shaped.

mk =
√

(x− µk)TΣ
−1
k (x− µk), (3.1)

to the respective kernel center and the dimensionality n
of the data space.

φ(x, κk) = φ(x,µk,Σk)

= Qχ2 (mk, n)
(3.2)

with Qχ2 (mk, n) being the χ2 goodness-of-fit test prob-
ability that a point having a distance mk to a kernel
belongs to the same distribution as the respective kernel
in an n-dimensional space.

Combining multiple kernels a multi-modal and multi-
variate distribution can be modeled:

rbf(x) =
K
∑

i=1

φ(x, κk). (3.3)

Although a single kernel might not surpass the thresh-
old at a specific point in the data space, it is possible
that the combination of several kernels still discovers
this data space as known, as shown in Fig. 3.2.

Training is performed sequentially. Once trained, x
can be discarded. For each training point rbf(x) is
evaluated, i.e. the data point is tested against all kernels.
If

rbf(x) > α, (3.4)
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x is situated in a known area. Otherwise the data
point is considered unknown1. If Eq. (3.4) rates x as
unknown, a new kernel κnew, covering the area around
x, is added to the network. Hereafter, x and its
neighborhood will also be considered known.

The initial center µnew of κnew is placed at the posi-
tion of x. The covariance matrix has to be initialized in
a way that the typical noise variation, but not more, is
covered. Accepting noise-like divergence establishes an
n-dimensional sphere of recognition around the initial
data point. Any point within this border will be con-
sidered known. The size of the sphere depends only on
the initial covariance2.

If x lies in a known area, only the center and covari-
ance of the corresponding kernel are adjusted:

µnew =
ηµold + x

η + 1
(3.5)

where µold is the center of the kernel at the time of
observation, and η the number of points that have
already contributed. The covariance has to be adjusted
accordingly, ensuring that all points covered before, will
be covered after the transformation3.

To test whether a data point is represented by the
model during the application phase Eq. (3.4) applies.
Only if the test point is closer to any kernel than
the maximal distance or if the probability threshold is
surpassed by the sum of several kernels, the point is
accepted as an inlier.

In case the model has to be extended, the same
process as for initial training can be applied. The old
model is used as starting point and where necessary,
amended c.q. extended.

3.2. A Negative Model of the Data

A model of the unknown data space can also classify the
data adequately. One way to generate such a model is
Negative Selection (NS) [11]. Any space not covered by
(positive) training data is filled with detectors reacting
once a new data point is within their area of influence.
If a detector is activated during the application phase,
a warning is issued.

A detector τi is modeled as a sphere with center ci

and a radius ri. Whenever an observation is within the
sphere, i.e. has a distance to ci smaller than ri, τi is
activated.

A detector is generated by first drawing its center
ci uniformly from a sample space. The sample space
is determined by the minimum and maximum values
of the positive data in every dimension4. To avoid
redundancy, ci is discarded if it activates any of the
existing detectors. If this is not the case, it has to be

rold

rmin

rmax

r

Figure 3.3.: NS Update Example: Any of the blue dots, representing
new training points, caused the large, pale detector in the back to
turn invalid. Two exemplary replacements have been inserted. The
radius of the smaller one is defined by the minimum distance to the
training points, the larger one is bound by the distance to the border
of the old detector. The green potential detector centers have been
discarded. One is outside of the bounding hull, one is too close to
the hull. More detectors have to be generated until the detector is
sufficiently covered.

ensured that none of the positive data points are too
close: ci must have at least a distance of rmin + a. The
noise amplitude a ensures that data points differing less
from the training data than the typical noise range will
not activate the detector; rmin guarantees that τi has a
minimum area of influence. Finally, the radius of τi has
to be determined. Since it is not possible to make any
assumptions on the structure of the error, a proportional
divergence in all directions is assumed and the radius ri
is set to be the minimum distance to the training data
D shielded by a:

ri = min
x∈D

‖ci − x‖ − a. (3.6)

In contrast to RBF kernels, an established detector is
not changed anymore. Detector generation is continued
until the desired coverage c of the data space, i.e.
1/(1 − c) potential detectors have been discarded in a
row, or the maximum number of accepted detectors is
reached.

Since NS generally requires all data to be available
during training, model updating cannot be conducted in
the same way as initial training. Instead, the reaction
of the detectors to each data point of a new batch of
training data is evaluated.

If none of the detectors react, the point can be dis-
carded without any further processing. Otherwise, each
activated detector is treated separately. If the radius
of the active detector has only the minimum radius
rmin, no smaller detectors can be created to replace
the old one, thus the detector is removed. In all other
cases replacement detectors are generated. Since the
available information on the space around the detector
is insufficient given the new batch of training data
(the original training data has been discarded!), a new
detector may cover at most the same area as the old
detector. This implies

‖cnew − cold‖ < rold − rmin ∀τnew ∈ T (3.7)

1Since no closed-form solution for the χ
2 goodness-of-fit test probability exists, calculating the probability of belonging to the

network is the most expensive part of the evaluation. App. C.1.1 presents implementations to reduce the number of computations.
2Identifying suitable initial values can be done by grid search. App. C.1.2 presents a more data-driven approach to determine

suitable parameters.
3App. C.1.3 provides detailed information on applicable covariance adjustment methods.
4App. D.3 states the restrictions on the sample space in more detail.
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with τnew ∈ T being a new, valid detector having the
new center cnew, and the old detector τold with center
cold and radius rold. cnew is drawn uniformly from
within the sphere of τold (Fig. 3.3).

Similar to the previously described proceeding on the
original data set a newly generated center is compared
to the new training data and maintained if it is not too
close to it. Because the new detector cannot exceed the
original one, the maximum radius rmax the new detector
can have is the difference between the old radius and the
distance of the two centers:

rmax = rold − ‖cold − cnew‖ (3.8)

The new radius rnew will be the lower value of rmax

and the minimum distance to the new training data ri
(Eq. (3.6)).

3.3. Fast Differentiation Between Two Classes

Both the RBF-based approach and NS provide stable
error detection results. However, they are computa-
tionally intensive. While training may take a long time,
the decision whether the actual data represents a faulty
robot has to be executed in a 1 kHz rate (for the LWR).
Reverting to a standard library for SVMs, libsvm [7],
accelerates the decision.

For high-dimensional setups, it is sufficient to use
the element centers (RBF and NS) as training data
for the SVM since the data space in which the training
data is located is sparse and few clusters represent the
valid data. In lower-dimensional setups the space is
much more populated and the boundary regions have
to be defined more explicitly. Accordingly, each element
needs to be sampled and those samples are then used for
SVM training. Gaussian kernels have been chosen for
the SVM and the parameters—C for misclassification
punishment and σ2 for kernel width—are determined
by using grid search together with cross-validation5.

3.4. Evaluation of the Basic Approach

In the following, all three methods (positive model
alone, negative model alone, and an SVM trained on
valid and invalid data) are compared with regard to
their anomaly detection performance. The tests have
been executed on an LWR. Without additionally gen-
erated dimensions (static), the data has 63 dimensions
comprising control input and measurements. The dy-

namic set further contains first and second derivatives
of each dimension—except for constant dimensions—
and consists of 176 dimensions6.

Each of the methods has been trained with static

and dynamic data on a pre-defined trajectory. Testing
has been performed against the same trajectory with
deliberate collisions, varying speeds, different controls,
and applied loads.
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Figure 3.4.: RADS components sensitivity

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

x 10
4

−2

0

2

time step

s
c
a
le

d
 t

o
rq

u
e

Anomaly Detection on Static Collision Data
with SVM

detected anomaly

torque in joint 1

Figure 3.5.: Anomaly alarms from SVM during collision trajectory

Tab. 3.1 displays how frequently the different algo-
rithms react to the static test data. The amount of
resulting reactions for the dynamic test data are higher,
but cover the same areas.

Fig. 3.4 depicts a segment of the collision trajec-
tory evaluated with the RBF-based approach and NS,
Fig. 3.5 displays the same for an SVM. The red bars in
the background indicate a detected anomaly. The black
graph in front displays the torque in one of the joints.
Spikes in the graph hint at an induced collision. All
apparent collisions are detected by the positive model

Table 3.1.: Anomaly alarms in percent of the number of data points:
a = 0.2, α = 0.05, K = 13; negative model: a = 0.2, b = 0.2,
c = 0.99, T = 3826; SVM: c = 1, σ2 = 1

n
, SVs = 158

Test Set RBF NS SVM

validation 0 0.1 0

collision 3.2 1.9 1.3

higher velocity 19.8 15.1 0.001

lower velocity 16.5 27.1 0.01

control 0.2 1.9 0

load 100 100 100

5App. E offers additional information on the possibility to identify the parameters from the data.
6Additional information on the test set is provided in App. A.
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and the SVM. NS lags behind the other two algorithms.
However, the RBF-based version is too computationally
expensive, and the SVM cannot be trained without NS.
Using the information from both preliminary stages,
the SVM is able to differentiate between valid and
faulty data most accurately. Yet, as Tab. 3.1 shows,
an error has to be more pronounced to be detected by
the SVM. The two preliminary stages assume that the

majority of the agitated sequences are faulty, and only
recognize static positions since currents, etc. vary from
the trained data. The SVM, in contrast, fails to identify
the comparatively soft deviation.

In general, the dynamic data is more sensitive to
outliers and does not only recognize errors the moment
they are induced, but also slightly before and after,
intensified due to the filtering for noise reduction7,8.

7Results of MIRO tests are presented in App. H.1.
8App. G introduces methods to handle detected anomalies.
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4. Upgrade for High-Dimensional Data

Figure 4.1.: Problems of dimensionality reduction: The correlated,
blue, 2D data points are projected onto a single dimension (green).
However, the yellow outlier is also projected into the same area (red).

The previously defined RADS works well during static
observation. In order to evaluate the dynamic behavior,
the dimensionality increases to several hundreds of di-
mensions leading to two major drawbacks. On the one
hand, calculations in the high-dimensional data space
are expensive and time-consuming prohibiting online
evaluation of the data points. On the other hand,
typical distance metrics like the Euclidean, respectively
Mahalanobis distance have little meaning in high di-
mensions [1, 2].

4.1. Dimensionality Reduction

The simplest way to overcome the problem of relevance
in high dimensionality is to use a distance metric that
is less influenced by the number of dimensions than the
Euclidean distance. Aggarwal et al. (2001) introduce
fractional distances as a promising alternative [1]. Nev-
ertheless, switching the norm may improve the decision
whether a point is good or bad, but it does not solve
the problem of computational complexity.

In contrast, dimensionality reduction can decrease the
time required for testing, as fewer calculations have to
be performed on reduced data. Dimensionality reduc-
tion, however, introduces problems of its own. The only
data available during training is valid data. Therefore,
it is unknown how an error will present itself in the
data. While it is fairly easy to project the known data
onto a lower-dimensional manifold that represents the
data, it is impossible to predict the projection behavior
of errors. It may happen that the projection to fewer
dimensions places a negative sample into the area of
positive data, as shown in Fig. 4.1, making a decision
about the validity impossible.

In order to benefit from projection, back projection is
essential. Back projection tries to move the data point

typical

range

alarming

difference

Figure 4.2.: Reprojection overcomes lack of projection: The green
data is reprojected into the 2D space. A small error remains after
reconstruction. The outlier is projected into the same area.

back to its original position in the high-dimensional data
space. If the point is an inlier, back projection will work
fine and the point is returned to a position close to its
initial location. However, an outlier projected onto the
manifold will be reprojected to a part of the space
related to inliers (cf. Fig. 4.2). During training the
regular back projection error can be learned and if
during testing the error surpasses the acceptable value,
the point is considered an outlier1.

4.1.1. Linear Projection

One kind of dimensionality reduction is linear projec-
tion. The originally many dimensions are mapped onto
a lower-dimensional subset of dimensions, e.g. through
Principal Component Analysis (PCA) [40]. Other popu-
lar linear projection methods include Independent Com-
ponent Analysis (ICA) and Linear Discriminant Anal-
ysis (LDA) [29]. LDA is inapplicable to this problem,
as it searches for the vectors that discriminate different
classes best [55]. ICA assumes that a maximum of one
dimension is subject to Gaussian distribution, which
according to App. A is much less accurate than the
assumption of all dimensions being Gaussian as is the
case for PCA [26].

The transformation matrix LT, expressing the princi-
pal components in the original data space, is determined
from the training set. All data, including validation and
test data, is right-multiplied to LT. Reprojection can be
achieved by right-multiplying the pseudo-inverse LT† of
LT to the transformed data. Since LT is constant, LT†

is calculated offline.
Untrained, valid data should behave similarly to

training data. Thus, linear projection should also be
capable of projecting untrained data, in turn decreasing
the required amount of training setups and improving
generalization. Nevertheless, selection of training data

1Refer to App. F.1 for more details.
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Figure 4.3.: PCA reconstruction error on training data vs. retained
dimensions. The reconstruction errors between 50 and 63 retained
dimensions for the static data and between 50 and 176 for the dynamic
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Figure 4.4.: Projection sensitivity

has to be performed more carefully as retraining without
all information is impossible for PCA.

Linear projections are well suited to handle direct re-
lations like the dependency between desired and actual
current and can diminish constant values. However,
PCA cannot exploit non-linear constraints, e.g. between
joint angle and Cartesian position. Thus, a projection
covering a wide range of the variance will need more
principal components than latent variables exist. The
initial results using autoencoders and stacked autoen-
coders [23] for non-linear projection do not exhibit any
advantage within the data that was available2. Thus,
the current implementation employs linear projection
only.

4.1.2. Experimental Results

As expected, the reconstruction error increases as
fewer dimensions from the initial data set are retained.
Fig. 4.3 shows the Euclidean error resulting from PCA
depending on the number of maintained dimensions.

Dataflow during training

Dataflow during application

NS RBF

SVM

PIPII

Figure 4.5.: Setup of the HDRADS: First, projection PI and repro-
jection PII are computed. Using PI the data is reduced and the basic
RADS is applied. For evaluations the data is projected, evaluated
with the SVM, and reprojected. If either the SVM or reprojection
identify an anomaly, an alarm is issued.
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Figure 4.6.: Anomaly alarms from HDRADS during collision trajec-
tory

The anomaly detection capabilities of (re-)projection
are depicted in Fig. 4.4. The graph on top results
from PCA with 20 retained dimensions, the one below
from retaining 40 dimensions. The fewer dimensions
are retained, the higher the typical reconstruction error.
Thus, to be identified as an error, the data points have
to diverge more strongly leading to smaller areas of
detection. As in the basic RADS, the dynamic data re-
sulted in the same areas of detection—more pronounced
due to the filtering before derivation.

4.2. Combining the RADS with

Dimensionality Reduction

Although observing the reconstruction error from di-
mensionality reduction provides promising results, it is
not sufficient. If an outlier is projected to a point out-
side of the projected training data, reprojection might
locate it close to the original data point. Thus, the
reconstruction error would be in the acceptable range.

2App. F.2.1 provides information on the examined algorithms.
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4.2.1. Setup of the Algorithms

Combining dimensionality reduction with the RADS
described in Ch. 3 merges the advantages of both tools.
Dimensionality reduction and reprojection decrease the
time required for computation and take care of outliers
projected into the training data. The SVM discrim-
inates the space of projected training data from the
unknown projection space. Besides, projecting the data
reduces the number of required training samples. It
suffices to train on a few different configurations of the
robot, rather than having to learn every possible setup,
in addition reducing the need for retraining. Fig. 4.5
depicts the combined setup.

Data generated by the robot is recorded for train-
ing. First, a projection (PI) and the corresponding
backprojection (PII) are calculated. Afterwards, the
training data is reduced using PI. The reduced data
set is employed to create the positive and negative
models, which are used to train the SVM. During the
application, the data is projected with PI, evaluated
with the SVM, and if the data is considered valid,
reprojection PII is conducted to ensure that the data
point is a true inlier. Outliers immediately cause an
alarm.

4.2.2. Experimental Results

To evaluate the generalization capability of the Robot
Anomaly Detection System for High-Dimensional Data
(HDRADS), it is trained with the same trajectory
recorded at two different speeds. For evaluation a third
velocity is introduced. Neither reprojection nor RADS
on the reduced data return any anomalies, although
only a small subset of possible velocities is used for train-
ing. The generalization of the algorithm is improved, as
it learns to generalize between different setups, raising
the alarm less often. To demonstrate that overgeneral-
ization is avoided, the anomaly detection on a collision
trajectory at a trained speed is displayed in Fig. 4.6.

Finally, Tab. 4.1 assesses the HDRADS and its pre-
cursors with regard to the six requirements presented
in Ch. 2. The RBF-based approach identifies anomalies
well, but is too computationally intensive in the test
phase. NS detects too many anomalies, but is faster
at evaluating test points. Yet, only using the SVM
sufficiently fast evaluation is possible. The drawback
of depending on two distinct classes is overcome by

training the RADS with the positive and the negative
model. The RADS robustly identifies anomalies and
recognizes positive data.

The major problem—little generalization between dif-
ferent data parameters—can be overcome by including a
projection in the method. PCA and reprojection alone
have a limited anomaly detection capability. Moreover,
improving the projection algorithm at a later point in
time is impossible. However, the generalization capa-
bility of the projection will make most of retraining
superfluous. Besides, additional but rare information
most likely will not influence the setup of the projections
strongly, especially since all valid data should behave in
a similar way.

Combining the entire setup the most accurate
anomaly detection even in high-dimensional data is
achieved, and the generalization compares to that of
projection. Besides, at least the RADS models can be
improved with subsequent data. The dimensionality
reduction incorporated in the HDRADS also ensures
fast training of the single models. A minor flaw of the
HDRADS is related to the least important requirement.
Parameters for projection, the positive and negative
model, and the SVM have to be identified. Nevertheless,
this thesis presents methods the reduce the search space
(see App. C–App. F).

Concluding, if the data provided is low-dimensional
and depends on few parameters, the basic RADS per-
forms sufficiently well. It ensures fast detection of
unknown errors. The higher the initial dimensionality,
the more important gets the application of HDRADS
to ensure satisfactory generalization in the increased
parameter space. None of the basic algorithms can
outperform the RADS or its enhanced version.

Table 4.1.: Fulfillment of the requirements (r) introduced in Ch. 2
by the basic approach. 1=robustness and tradeoff, 2=general-
ization, 3=adaptability, 4=complexity, 5=independence, 6=param-
eter minimization, ++=full compliance, +=good, 0=satisfactory,
−=unsatisfactory, −−=deficient

r RBF NS SVM RADS PCA HDRADS

1 + 0 ++ ++ + ++

2 + + + + ++ ++

3 ++ + − + − +

4 −− − ++ ++ ++ ++

5 + + − + ++ ++

6 + + 0 0 + 0
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5. Evaluation of the Machine Learning-Based Robot Anomaly Detection

System

By means of its redundant setup the HDRADS is capa-
ble of detecting unknown anomalies reliably. While the
system generalizes well enough to classify data points
similar to the training data as known, divergence from
the training data will cause an alarm. Supported by
the projection and reprojection steps, the algorithm
can handle high-dimensional inputs and can generalize
between different inputs, thereby greatly reducing the
number of required training samples.

The algorithm meets the requirements introduced by
[35]. Yet, most testing has been performed on steady

trajectories, ensuring the applicability of the RADS
especially for industrial robots. Tracing a predefined
trajectory containing most critical setups before putting
the robot in service can ensure that the system is
operable, even if training all possible configurations is
infeasible.

The projection mechanisms introduced in Ch. 4 show
sufficient performance for the test cases. However, only
a small set of all possible techniques has been considered
(see App. F.2). Further comparing other projection
methods could reveal more suitable techniques1.

1Future areas of research are the subject of App. I.
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A. Robot Data

Figure A.1.: Picture of the LBR 4+ used for ES I [30]
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Figure A.2.: Plots of torque in joint 1 and its derivatives

A.1. Setup of Evaluation Data

In order to compare the performance of the different
algorithms, data sets have been recorded and artificial
errors induced.

A.1.1. Evaluation Set I

The main test data Evaluation Set I (ES I) are recorded
using the LWR depicted in Fig. A.1 [3]. All seven joints
are moved simultaneously from upper to lower joint
limit and vice versa. After reaching a stop the robot
remains in that position for five seconds, before back-
tracing the trajectory. The desired maximum velocity
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Figure A.3.: Comparison of torque with different parameter settings.
For the reference torque the LWR uses adaptive gain control, does
not carry any load, moves at a medium speed and operates free of
collisions.
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Figure A.5.: Histograms of full ES I after scaling

is reached in the middle of two joint limits.

The recorded data includes a time stamp, the diag-
onal elements of the mass matrix with respect to the
joint position, temperatures for each joint, link sided
joint positions sensed by potentiometers, torques in the
joints measured in potential increments, actual motor
torques, desired motor torques, drive sided joint angles,
and desired joint angles. Further, the attached load,
the center of gravity of the load, the center of gravity
of the robot base and the controller used1 are included
in the data. Throughout each trial these values remain
constant.

Derived metrics are the first and second derivatives
(see Fig. A.2). To ensure a smooth structure, a
Savitzky-Golay filter with window length=1001 and a
polynomial of order 4 is applied (see App. B.2) [43].

The static set—without derivatives—contains a total
of 63 dimensions. A total of 176 dimensions are eval-
uated for the dynamic set. Instead of the time stamp,
that will always be new, only the differences between the
current and the preceeding time stamp is maintained,
even if only static data are observed. Due to problems
with the software interface for reading out temperatures
the measurement values are unreliable. Whenever the
robot is interrupted the measurements jump. Thus,
temperatures are not considered for the (HD)RADS.

The small training set only contains training data
of one maximum speed, one controller type and one
load. The full training set contains training data of
different speeds, different loads and different controller
types. Fig. A.4 and Fig. A.5 display the distribution
of the data within one generic dimension in the small,
resp. full ES I. The main tests are conducted with data
recorded under the same preconditions. However,

Figure A.6.: Picture of the DLR MIRO used for ES II [13]

occasional collisions—hitting the robot at different
positions—are induced. Further, the recordings of dif-
ferent speeds and loads, etc. can be used as test cases
(see Fig. A.3).

A.1.2. Evaluation Set II

Additionally, the algorithm is tested using data from
the DLR MIRO displayed in Fig. A.6 [20] (ES II). The
same method is used to generate trajectories.

The MIRO data includes desired current, actual cur-
rent, desired torque, desired joint angles, actual joint
angles, velocity, actual torque, a time stamp, and
temperatures from the electronic units in the joints.
Besides, the constant values of the applied load, the
center of gravity of the load, as well as the center of
gravity of the robot base are added. In contrast to
the LWR generating data at a 1 kHz rate, the MIRO
provides data at a 3 kHz rate, thus the amount of data
available is greater and if plotted against each other, the
two robots will display different time lines.

The static set initially included 65 dimensions. How-
ever, as with ES I, the temperature values are problem-
atic and are removed from the data leading to a total
of 61 dimensions. The dynamic set includes 196 dimen-
sions. Again, different speeds and different applied loads
have been tested against artificial collision data.

References to validation data imply that the training
data is split into two parts, one—containing 70% of the
total number of training points—is used for training,
and the other—containing the remaining 30% of the
training points—is used to test the approach. Corre-
spondingly, the parameters for data generation are the
same, but the algorithm is tested against previously
unseen data. Validating the models with data generated
under the same circumstances ensures a suitable repre-
sentation of the data. If the model finds anomalies in
the validation data, further evaluations can be omitted
as the model is insufficient.

1adaptive gain reducing over-shooting or basic control
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Figure A.7.: Histogram of interpoint distances on small, scaled,
static ES I

A.2. Initial Data Analysis

Additional analyses using simple statistical or Machine
Learning (ML)-based techniques provide further insight
into the structure of the data and can validate assump-
tions for the algorithms.

A.2.1. Identifying the Number of Clusters

Non-parametric k-means tries to identify the optimal
number of data clusters k just by defining the maximum
acceptable distance to a cluster center λ [31]. Usually,
the lower λ, the higher the number of required clusters.
Testing against different values of λ, the interval that
spans the values between the largest distance of data to
the real cluster center and the smallest distance between
two clusters typically is the greatest interval in which
the number of clusters does not change—except when
the number of clusters is one or the number of clusters
matches the number of training points.

The application of non-parametric k-means does not
provide meaningful information on the number of clus-
ters for either of the test sets. Besides the computa-
tional complexity limiting the number of λ values which
can be evaluated, the number of clusters continuously
increases while reducing λ without any plateaus. There
are two explanations for this effect. If some of the
clusters have a broader distribution than the distance
between other clusters, the algorithm is doomed to
fail because λ is assumed to be equal for all clusters.
Further, if the clusters are not strictly separated but
have fluent passages, non-parametric k-means cannot
identify the corresponding λ value.

Accordingly, it is important to use approaches that
can handle concave data, that are independent on the
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Figure A.8.: Histogram of interpoint distances in one cluster of small,
scaled, static ES I

number of clusters, and that do not require an equiva-
lent distribution of data within different clusters.

A.2.2. Lower-Dimensional Manifold Assumption

According to [32] if the interpoint distance distribu-
tion does not follow a Gaussian distribution, not all
dimensions of the data are independent. Exploiting
this assumption to validate that the data is located
on a lower-dimensional manifold is difficult because no
cluster affiliations are known. Taking the interpoint
distances across the entire data set the Gaussian as-
sumption clearly does not hold as Fig. A.7 depicts.
However, this could also result from the fact that the
data points do not belong to one single distribution.

Instead, using the basic RBF approach kernels, c.q.
clusters, are generated. After identifying which cluster
corresponds to which data points, i.e. which cluster is
closest to each point, interpoint distances within the
clusters are evaluated. As Fig. A.8 illustrates, even
evaluating according to clusters does not result in a
Gaussian distribution of interpoint distances.

This is owed to the fact, that many of the dimensions
are physically correlated, e.g. current and torque, the
influence of joint 7 on the values of joint 1, and a dif-
ferent center of gravity changes the torques in all joints.
Besides, robots only have a limited number of Degrees of
Freedom (DoF), seven for LWR and MIRO. Taking into
account that further the load and the centers of gravity,
as well as the desired trajectory have an influence on
the values, and maybe a few influence factors that have
not been identified, expecting a latent dimensionality
for the static setup greater than 20 is already set high.
Assuming the data to lie on a sub-dimensional manifold
is reasonable.
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B. Data Preparation

B.1. Methods for Normalization

Due to different measurement units, the spread of the
data dimensions differs strongly. While joint angles only
vary between ±π, the potential increments measured
to calculate the applied torque have their mean in the
three-digit area and have a standard deviation in the
same order.

Comparing such divergent data dimensions is infea-
sible. On the one side, many algorithms using matrix
calculus—especially matrix inversion—suffer from the
bad scaling, rendering reliable calculations technically
impossible. On the other side, comparing the variance
is intricate.

Several methods for normalization have been evalu-
ated. For example, each element of the training data
d[i,j] can be scaled to a hypercube with edges from [0..1]:

d′[i,j] =
d[i,j] −min

i
d[i,j]

max
i
d[i,j] −min

i
d[i,j]

(B.1)

with j being the data dimension and i the respective
observation. This creates a bounding box for the valid
data, which is especially helpful for NS (see Sec. D.3).
However, the variance stays inconsistent.

Another option is scaling the data with the standard
deviation per observation often used in image process-
ing:

d′[i,j] =
d[i,j] − dj

σj
(B.2)

with dj being the mean value over all dimensions in
one observation and σj being the respective standard
deviation. However, in contrast to pixels, the different
sensors of a robot do not behave in a similar manner,
thus variance inconsistency remains.

Alternatively, one can scale each dimension with the
standard deviation over time σi instead of scaling over
observations:

d[i,j] =
d[i,j] − di

σi
. (B.3)

This form of scaling assumes normal distribution of
the data within each dimension and returns a standard
normal distribution N (0, 1). In case σi ≪ 1, slight
differences in the actual value compared to the mean
can cause large differences—comparable to outliers—
after scaling. To avoid these, it is recommended to
set all values in that dimension to zero indicating that
deviations from the mean are highly unlikely. Alterna-
tively, only subtracting the mean in that dimension is
conceivable. However, this amplifies the acceptance of
deviations rather than restricting it.

Values normalized by the latter are much more
alike and can be compared to each other. However,
independent and identically distributed (iid) sampling
of the data is impossible. Thus, the central limit
theorem—the mathematical justification for an N (0, 1)
normalization—does not hold for the data sets. Nev-
ertheless, the outcome of the RADS is most accurate
and most reliable using the N (0, 1) normalization per
dimension removing the dependency on units.

No matter which scaling method is used, values used
for scaling during the training phase, e.g. σ2

i and di,
have to be stored to ensure that validation and test
data are scaled in the same manner. Using the same
standard deviation on training and test data stresses
outliers clearly.

If sliding window normalization was applied, i.e. the
normalization was calculated over the most recent sam-
ples instead of all data available, the normalization
would adapt to slow increases or decreases thereby
covering slow appearance of errors.

B.2. Including Temporal Information

Often, the absolute sensor values may be in an accept-
able range, while the velocity or acceleration get out of
hand causing the robot to move too fast and abrupt.
In contrast to [15] directly observing the behavior over
time the described RADS generates models in the state
space. Thus, only if additional information is available
unusual effects over time can cause an alarm.

Calculating further metrics embodying temporal in-
formation and providing these to the algorithm as
supplementary dimensions mitigates the restriction to
static observations. Although evaluation is performed
on vectors in the state space each vector contains infor-
mation on the changes over time.

Encoding velocity and acceleration the first and sec-
ond derivative with respect to time are important met-
rics. Calculating the difference between two following
data points and dividing by the time step (cf. Eq. (B.4))
would be a sufficient approximation of the derivative if
the sensor measurements were perfect.

∆t = 1, (B.4a)

∆y(t) = y(t)− y(t+∆t), (B.4b)

y′(t) =
∆y(t)

∆t
, (B.4c)

with t being a discrete point in time and y(t) the sensor
value at that time.

Unfortunately, the measurements are noisy. As
derivation increases the noise ratio, the second deriva-
tive could be replaced by white noise as it does not
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encode any reliable information anymore. Accordingly,
more sophisticated techniques have to be applied.

The Savitzky-Golay filter [43] is a reasonable method
to calculate the derivatives. It tends to preserve fea-
tures such as maxima and minima—important for the
analysis—better than, for example, the moving average
filter [47]. However, not choosing parameters carefully
causes the filter to be less efficient at removing noise.
Moreover, since the Savitzky-Golay filter fits a polyno-
mial to approximate the real data values, it can be set
up without a time delay. Although filter delays are not
critical to this application, using an algorithm without
delay is desirable to improve the performance.

Kalman filters designed to estimate the real signal
from noisy measurements could be applied as well. How-
ever, they return most accurate results if the matrices
are modeled according to the system [36]. Even though
pseudo models can be used to filter the data, it requires
prior knowledge of the setup objecting the purpose of
model independence.

Other metrics, e.g. the oscillatory behavior of the
system, might be interesting. Maybe a low frequency
oscillation of the current is typical since the robot

switches from acceleration to deceleration frequently.
High-frequency oscillations, on the other side, could hint
at an over-shooting control. One option to incorpo-
rate oscillations into the data is to evaluate simulated
damped oscillators. For several frequency bands differ-
ent oscillators are observed. The higher the energy in
the damped oscillator, the stronger the oscillation at the
respective frequency in the system [24].

B.3. Randomization

As stated in App. C.3, training with ordered data can be
hazardous. Either the generated models overgeneralize
to the time effects, or overfit, or, especially in neural
networks, forget about early training stages and focus
on the latest data.

Except for algorithms that use the entire data stack
at once (e.g. NS) or that are based on sequence effects
(e.g. PGA), randomization of the order can improve the
performance. Since sequence effects are not considered
by the algorithms applied and since the order does
not matter for NS, the training data is shuffled after
calculating the desired additional metrics.
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C. Supplementary Information on the Positive Model

C.1. Implementation Details

The RBF network evaluation is time consuming. Even
parallelization on a GPU does only reduce the problem
to a certain degree. Further, some of the parameters are
difficult to estimate. The following section introduces
some enhancements to speed up the algorithm and to
improve parameter search.

C.1.1. Evaluating Closeness of Data Points to Kernels

The calculation of the network response is computa-
tional intensive because there is no closed form solution
for the probability according to the χ2 goodness-of-fit
test. To reduce calculations, the maximum distance
according to the χ2 distribution χ2(α, n)—depending
on the dimension n and the level of significance α—a
data point can have from a single kernel without being
significantly different can be computed in advance. If

mk ≤ χ2(α, n) (C.1)

withmk being the distance between a point x and a ker-
nel center µk, the probability threshold α is surpassed
by that kernel. x is considered an inlier without having
to compute the full network response rbf(x).

Moreover, the maximum distance that x can have to
all K kernels can be calculated in advance. If x has a
probability

Qχ2 (mk, n) <
α

K
, ∀k ∈ [1 . . .K], (C.2)

it is impossible that the network surpass the threshold
in sum. I.e., if the minimum distance x has to any kernel
is greater than χ2

(

α
K
, n

)

, x definitely is not represented
by the current model.

If neither of the two criteria apply, it is least compu-
tationally expensive to compute rbf(x) iteratively. The
probability of belonging to each kernel k, Qχ2(mk, n),
is added in order of ascending distance:

φ(x, κ0 . . . κk+1) = φ(x, κ0 . . . κk) + φ(x, κk+1). (C.3)

Once α has been surpassed, the iterations can be
stopped, as the likelihood of belonging to the model is
high enough. Only if x is not represented by the model,
all kernel probabilities have to be calculated.

Typically, the data points will be inliers. Thus, the
computation time will be reduced significantly. Fur-
ther, experiments showed that usually only few kernels
have an impact on rbf(x). Therefore, every i steps,
it is evaluated whether the spare K − iν kernels with

ν ∈
[

1 . . .
⌊

K
i

⌋]

can surpass the remaining probability
threshold α′ = α−φ(x, κ0 . . . κiν). Eq. (C.2) transforms
to

Qχ2 (mk, n) <
α′

K
∀k ∈ [iν . . .K] . (C.4)

C.1.2. Initializing the Covariance Matrix

For initializing the covariance Σnew, all dimensions are
assumed to be independent. Accordingly, the covariance
is a diagonal matrix and its entries have to ensure, that
points not deviating further from the new kernel center
µnew than the usual noise amplitude a are recognized
as inliers (see Fig. C.1).

The noise amplitude a can be approximated from
the measurements. Especially well suited are constant
states as the only variance in the data should be caused
by measurement noise. It may be different for each
dimension. However, the differences are negligible for
the test data.

The probability according to the χ2 goodness-of-fit
test takes into account that neighboring points have a
larger distance value because deviations in more dimen-
sions are possible. However, it also accepts larger devia-
tions for each dimension (see App. C.6). Therefore, the
scaling factor is adjusted to at most accept a deviation
of the typical noise amplitude in all dimensions.

Assuming that all dimensions have the same noise
ratio1, the maximum justifiable distance δjmax to the
center is

δjmax
=
√
a2sn (C.5)

with n dimensions and a scaling factor s, also called
precision.

The maximum distance that will be recognized
δrmax = χ2(α, n). Equating δrmax with δjmax resolves
to

s =
δ2rmax

a2n
. (C.6)

Therefore, the initial Σnew for κnew is an n×n, diagonal
matrix with all entries on the main diagonal equal to
1/s.

C.1.3. Covariance Adjustment

Fig. C.2 shows that the new covariance Σnew is supposed
to cover the initially data space, plus an increase of ±ιµ,
the translation from the old to the new center. lµ is the
length of the translation, ι is the direction of ιµ with
Euclidean length 1.

1If this assumption is too restrictive for the given data the sum of the scaled squares of each noise amplitude should be used instead.
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x μ
δjmax

Figure C.1.: Starting from a single data point (blue) an area of
recognition (orange) is established.

ιµ = µnew − µold, (C.7a)

lµ = ‖ιµ‖ , (C.7b)

ι =
ιµ

lµ
. (C.7c)

A computationally simple, but approximate method
is chosen to scale the covariance which results in very
good recognition properties during tests. The new
covariance Σnew has to be stretched to continuously
cover the data space that has been covered by the initial
covariance Σold, although being placed at a different
center. Thus, the covariance has to be increased relative
to the center translation ιµ.

Scaling the outer product of ιµ with itself by δ2rmax

and adding it to Σold returns the new covariance:

Σι =
ιµι

T
µ

δ2rmax

, (C.8a)

Σnew = Σold +Σι. (C.8b)

C.2. Alternative Implementations

In addition to the presented implementation of the RBF
network, alternatives have been considered. Two of
them were intended to replace current code, but did
not provide as good results; two of them are left out
due to insufficient performance.

C.2.1. Different Scaling of the Covariance During
Training

Instead of the scaling routine introduced in App. C.1.3
two further methods have been evaluated.

A comprehensible approach is to generate the new
covariance matrix from the bounding hull of the recog-
nized area. First, the length lold that makes ι point to
the farthest, recognized data point q of the old kernel
in the direction of ι is identified:

q = µold + loldι. (C.9)

Scaling ι by lµ + lold (lµ is the distance between the old
and new center) and adding the result to, resp. sub-
tracting it from µnew, offers two data points at the edge
of recognition. Subsequently, the maximum recognized
length of any orthogonal vector in the old kernel has to
be identified. Adding the scaled, orthogonal vectors and
their negatives to the new center µnew results in another
2(n−1) points, with n being the number of dimensions.

μ x μ xμ’

ιμ

2ιμμδjmax δjmax’

Figure C.2.: A kernel recognizes a new training point (red border).
The center and the covariance have to be adjusted.

In total 2n points unambiguously determining the shape
of the new bounding hull are available. Using [28]
the smallest, enclosing, multi-dimensional ellipsoid can
be constructed. The result is a precision matrix—the
inverse of the new covariance matrix. To make sure that
multiplying distance vectors with that matrix returns
the correct values for the χ2 goodness-of-fit test, it has
to be scaled by δ2rmax

.
However, this approach has two disadvantages. First

and foremost, the algorithm to determine the enclos-
ing ellipse is iterative, thereby further expanding the
computational complexity of training. Second, since
the border points have the same distances from µnew

as their counterparts have from µold, the resulting
covariance cuts off previously recognized space in the
border region. To ensure that the points will be placed
on the border of the ellipse, they have to be constructed
from orthogonal vectors. Therefore, it is not possible to
instead use former border points.

A further approach directly rescales the covariance
matrix. q is the farthest, recognized point from κold as
well as κnew. Taking into account that µnew and µold

are translated along ι

q = µnew + lnewι (C.10)

with lnew = lold+lµ. Since δrmax , Σnew, and ι are known,
Eq. (C.11) can be solved for lold.

ιold = µold + loldι− µold (C.11a)

δrmax
=

√

ι
T
oldΣ

−1
oldιold, (C.11b)

lold =
δrmax

√

ιTΣ−1
oldι

. (C.11c)

The same applies for lnew.
Rearranging the above equations (see Eq. (C.12)) to

display what happens to each element of the covariance
matrix shows that each entry [r, c] of Σ−1

old is multiplied
with the entries [r] and [c] of the scaled translation
vector, c.q. Σ−1

new for κnew.

δrmax

2 =
R
∑

r=1

C
∑

c=1

ιold[r]ιold[c]Σ
−1
old[r,c]

. (C.12a)

δrmax

2 =
R
∑

r=1

C
∑

c=1

ιnew[r]ιnew[c]Σnew
−1

[r,c]. (C.12b)

Equating Eq. (C.12a) and Eq. (C.12b) only Σnew is
variable. Solving for each element of Σnew separately
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leads to

Σnew
−1

[r,c] = Σ−1
old[r,c]

ιold[r]ιold[c]

ιnew[r]ιnew[c]

. ∀r, c ∈ [1..n]

(C.13)
In case any element of ι equals zero, the corresponding

elements of Σnew have to be set to the respective value of
Σold, since division by zero is prohibited but no change
in that direction has taken place.

This form of scaling increases the covariance in the di-
rection of ±ι, but does not affect orthogonal directions.
But, this scaling is only applicable if the underlying
covariance matrix does not contain zero values in any
of the directions that have to be scaled. Since no
assumptions about correlations between the different
dimensions are available in the first step, a more suitable
approach has to be chosen.

C.2.2. Using the Normal Distribution

Instead of using the χ2 goodness-of-fit test, the function
value of the normal distribution N (x;µk,Σk) according
to Eq. (C.14) was supposed to surpass a threshold value.

rbf(x) =
K
∑

k=1

wkN (x,µk,Σk), (C.14a)

N (x,µk,Σk) =
1

√

(2π)n|Σk|
e

(x−µk)T Σ
−1
k

(x−µk)

−2 .

(C.14b)

Although requiring fewer computations than the
worst case χ2 calculations, this method has drawbacks.
It is difficult to define a sensible recognition threshold,
i.e. which function value indicates a significant differ-
ence? Further, changing the spread of the covariance
matrix makes it very hard to maintain a similar recogni-
tion area, respectively recognition distance. The larger
the covariance, the flatter the function. Therefore,
setting a function value that has to be surpassed is
delicate.

In low dimensional spaces, using the local integral of
the normal curve would be reasonable. Given a specific
normal distribution it describes the probability of a
sample appearing in that area. However, the space is
high-dimensional, and for each dimension of the domain
D a further integral

∫

. . .

∫

D

f(x1, . . . , xn)dx1 . . . dxn (C.15)

has to be evaluated.
Since there is no analytic expression for the cumula-

tive distribution function of a multivariate distribution,
it is computationally impossible to evaluate the proba-
bility in a high-dimensional space.

C.2.3. Expanding and Shrinking Covariances

Initially, it was intended to shrink the covariance in the
directions with little difference between the observation

and the center, i.e. the dimensions where the difference
vector ιµ is close to zero. This would have facilitated
having a random covariance in the beginning, that
automatically adjusts to the data.

However, this results in allegedly large known areas
in sparsely populated space and border regions as too
little information is available for sufficient shrinking.
Besides, reducing the covariance, i.e. shrinking the area
of coverage, is at risk of uncovering areas populated by
training data.

C.2.4. Merging of Similar Kernels

If two kernels having compatible covariances are close
enough, they can be represented by one kernel, as
depicted in Fig. C.3. Merging these kernels can reduce
computational costs.

In order to maintain the strongly structured border
area, a number of limiting factors have to be considered.
Most important, the two kernels that will be united
have to be close. Closeness can be defined by distance.
Having used Mahalanobis distance and the χ2 goodness-
of-fit test throughout the approach to take different local
variances into account, it is reasonable to proceed using
this metric. If the χ2 goodness-of-fit test probability
that one kernel center belongs to another kernel is
greater than α = 5% they are not significantly different,
i.e. they may be similar2.

In order to ensure most accurate coverage of the
initially recognized space, the kernels additionally have
to have a similar shape. Fig. C.3a shows pairs of
two-dimensional kernels that have shapes which can
be represented in one kernel, Fig. C.3b depicts two-
dimensional kernels, that are close, but too different in
shape for being merged.

To reduce the amount of kernels during training merg-
ing kernels every k training points has been introduced.
However, the calculations evaluating whether two ker-
nels are compatible are costly and only few kernels are
merged during the course of calculation. This results in
an increase of computation time compared to the time
required from full network construction. Besides time,
merging increased inaccuracy. Therefore, it is refrained
form using the add-on in the final implementation.

C.3. Effects of Sequential Training

Passing new training points in the order of generation
bears the hazard of the kernel following the path of
generation. Most valid data points will be neighbors to
their predecessors. As Fig. C.5 depicts, the kernels are
likely to increase their size in the direction of the next
neighbor without taking into account that the points
might not be representable by a single kernel.

To avoid this sequence effect the order of the train-
ing data is randomized. If, by chance, two neighbors
appear sequentially no harm is done. Only consequent
sequential passing has to be evaded.

2The choice of α = 5% is arbitrary, but conforms to many statistical evaluations [16,48].
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μ1 μ2 μ’

Figure C.3.: Two separate kernels can be represented by just one
kernel if they are close enough and have compatible covariances.
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a: close, compatible kernels

μ2
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μ1

μ1

μ1

b: close kernels that should not
be merged

Figure C.4.: Juxtaposition of kernels that can be merged and others
that are not compatible

A further enhancement of the positive model could
be to generate the model as described above. How-
ever, after a first round of training, each training data
point is assigned to the closest kernel. Afterwards, for
each kernel the most suitable center and covariance
are calculated from the allocated training points, as
in k-means. Using the initial model generation the
appropriate number of kernels and their approximate
positions are identified. Completely independent of
sequence effects the readjustment optimizes the setup.

Already, the performance of the initial setup is highly
satisfying. Therefore, the potential improvement has
neither been implemented nor tested.

C.4. Handling Outliers

For improving the resistance towards outliers it is sen-
sible to discard kernels that have never been activated
during the entire training phase. Never being activated
implies, that the only data point close to the particular
kernel is the one that caused its creation. Having no
neighbors despite of the high sampling rate is a likely
indicator for being an outlier caused by transmission or
sensing errors.

In case a discarded kernel did cover a valid data area
it can be included during the next improvement phase.
Even two or three activations could result from outliers.
But, these outliers show some repeatability and might
reoccur consistently due to specific constellations.

C.5. Number of Required Kernels

In order to achieve high accuracy, a small value for the
initial covariances is required. Although being able to
grow, a single kernel is unlikely to cover the whole data
space. Only data points already activating the kernel

Figure C.5.: Since most new training points will be neighbors to
their predecessor, passing them in the order of generation can lead
to misshaped kernels. In the randomized data set (top row) several
kernels are introduced. The bottom line depicts what would happen
if all training points were passed in the order of generation. The
last step compares the area of coverage from both sequences, clearly
displaying that random training provides a more accurate model, yet
being more complex.

will influence the spread of the covariance. The more
points have already influenced the data point, the
smaller is the change of center and spread.

From any position of the kernel center µi and the cor-
responding covariance Σi, follows the maximum recog-
nition distance to the center li. Accordingly, the point
at the border of recognition in direction ι is situated
at µi + liι. Assuming a new training point is located
there, the resulting center µi+1 and the new maximum
distance of recognition li+1 are computed by

µi+1 =
i

1 + i
µi +

1

i+ 1
(µi + liι) = µi +

liι

i+ 1
,

(C.16a)

li+1 = li + ‖µi+1 − µi‖ = li +
li

i+ 1
. (C.16b)

Further requiring that ι remains the same for each
iteration, the recursive formulation reveals that the
increases are arithmetic sequences, with an initial center
µ0 and an initial recognition distance d0:

di =
i+ 2

2
d0, (C.17a)

µi = µ0 +
1

4

i(i+ 3)

2
d0ι. (C.17b)

Both sequences diverge. Stating any limits with
regard to the minimum number of required kernels is
impossible, except if all points were neighbors, and the
training points were received in a sequential order, one
single kernel would suffice. However, as the data points
are provided in random order, in the worst case, i.e. all
space within the limits is known,

n
∏

j=1

max
i

x[i,j] −min
i

x[i,j]

d0
(C.18)

kernels have to be evaluated, with j indicating the
dimension, and i the training point.
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C.6. χ
2-Probability Assumes Different

Variations per Dimension in

Higher-Dimensional Space

The χ2 goodness-of-fit test probability is aware that the
higher-dimensional the space the greater, the distance
two points can have from each other. However, assum-
ing a fixed level of significance α different deviations per
dimension are accepted. Assuming that all dimensions
have the same deviation, χ2(α, n) for n dimensions can
be transformed to a maximum distance of acceptance

δmax =

√

χ2(α, n)
2

n
. (C.19)

Table C.1.: Recognition distances in a single dimension based on the
χ2 goodness-of-fit test probability

α n χ2(α, n) dmax

0.05

1 3.8414 3.8414

2 5.9914 4.2365

3 7.8147 4.5118

100 124.3421 12.4342

0.1

1 2.7055 2.7055

2 4.6051 3.2561

3 6.2517 3.6094

100 118.4980 11.8498

Tab. C.1 shows the effect for two levels of significance in
five different dimensions. Tab. C.2 on the contrary dis-
plays, that for real data the number of clusters remains
much the same if the covariance is scaled as described
in App. C.1.3. In order to prevent the data itself
from occluding the results, instead of using data sets
containing different information—e.g. with and without
derivatives—the data set is extended with itself (ES I’
= [ES I, ES I]).

Table C.2.: Clustering behavior in different dimensions after scaling
the covariance

n a α K # of alarms

63
0.4 0.05

18 1713

126 18 1717

63

0.2 0.05

62 2940

126 62 2902

189 62 2902

252 62 2905

63
0.15 0.05

116 3713

126 118 3730

63
0.2 0.01

62 3290

126 62 3190

63
0.2 0.1

62 2690

126 62 2774
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D. Supplementary Information on the Negative Model

D.1. Reducing the Number of Detectors

Although testing against the already existing detectors
limits the number of overlaps, it is likely that subse-
quently generated detectors cover the entire activation
area of previously defined detectors. They can have a
larger distance to the closest known point and thus a
larger radius.

Identification of detectors completely covered by
other detectors is achieved by calculating the distance
∆τi of all detectors τi to the potentially covering detec-
tor τc. If any ∆τi plus the respective radius ri is smaller
than the radius rc of τc, all points covered by τi are also
covered by τc, among others. Thus, removing τi can be
performed without any loss of information.

∆τi + ri < rc (D.1)

is checked after detector generation has been finished.
Successively, each detector becomes τc and is tested
against all other remaining detectors to ensure all po-
tential overlaps are discovered. Reducing the number of
superfluous detectors increases the performance of the
system during testing.

D.2. Handling Outliers

Since NS is sensitive to any training point resistance to-
wards outliers comparable to that of the RBF approach
can only be achieved by a workaround.

Once an outlier has been identified by the positive
model (see App. C.4) it should be removed from the
training set handed to the NS algorithm, thus restricting
the order of execution. In case the removed data point
was valid it can be recovered in the updating phase.

D.3. Dependency of NS on the Ratio between

Training Data Space and Sampling Area

For negative selection the sampled data space has to
closely match the actual training data distribution. If
the sampling area is much larger than the area contain-
ing data, a few large detectors will cover the largest
portion of the space. A high coverage of the sampling
space is guaranteed, yet outliers are represented poorly.

Therefore, it has to be made sure that the train-
ing data does not contain obvious outliers, e.g. after
N (0, 1)-normalization typically constant values with
few points of small absolute deviation will cause the

bounding area to be extremely large, due to the division
by the extremely small standard deviation. Outliers
prohibit reliable detector generation. Thus, analogous
effects have to be eliminated.

If large bounding areas are desired in order to detect
highly unlikely data points with this approach the detec-
tor generation should be split into two parts. The first
execution generates detectors close to the actual data,
e.g. at a maximum distance of twice the minimum radius
rmin as proposed by [27]. The second execution creates
detectors around the old detector set. If the training
data is retained for the second part, the same algorithm
can be applied. Only the minimum and maximum
detector positions in each dimensions would have to be
increased as much as desired.

In case the bounding area has to be extremely large,
it might be advisable to repeat the space enlargement
several times to avoid too strong differences between the
two subspaces. Of course, as this problem highlights, it
is impossible to detect infinite divergence. Fortunately,
this is not the task of the RADS. It is rather desired to
identify small, but unusual divergence.

D.4. Enhancements to Further Improve NS

The detectors are generated at random. Any potential
detector that is lying too close to the training data
and thus considered lying inside of the known area is
discarded entirely.

The efficiency of detector generation could be im-
proved by reducing randomness. In robot motion and
obstacle avoidance it is common to first generate ran-
dom path points. Each point that coincides with an
obstacle is gradually moved in orthogonal directions
until a point in free space is created. This way, not only
fewer potential points have to be generated, but also the
area around obstacles is represented in more detail [6,8].
Transferring this idea to NS, each potential detector
located in a known area could be moved a fixed distance
in orthogonal directions for at most k iterations or until
an unknown area is discovered. Thereby providing a
better representation of the data borders.

Besides, sampling detectors in less known areas is
sensible, as well. One way to achieve this is weighted
sampling. Whenever a point is generated within a
specific region the weight of that region is decreased
relative to the other regions. Thus, in the next iteration
the probability of sampling in the same region is reduced
[6].
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E. Adapting the SVM Parameters to the RADS

In order to handle the non-linear distribution of inliers
and outliers, an RBF kernel is applied. Identifying
the most appropriate parameters C for misclassifica-
tion punishment and σ2 for kernel width is impossible
beforehand. Each setup is different and varying cir-
cumstances require adapting parameters. Usually using
cross-validation combined with exhaustive grid search,
or more elaborate search measures, can return the most
suitable parameter set by comparing the accuracy re-
sulting from different parameter sets [49].

For the given problem, this approach is insufficient.
The negative model diverges from the valid data in every
direction. Real errors influence specific dimensions and
thus vary mainly in these dimensions. Using only the
NS model to generate test data for cross validation the
difference between valid and invalid samples is strong

enough to ensure 100% accuracy for a large set of
parameters.

However, testing against data with artifically induced
collisions shows that the range of appropriate param-
eters is much smaller. Therefore, instead of k-fold
validation against the model, a faulty trajectory, e.g.
with artificially induced anomalies as for testing (see
App. A), should be recorded and labeled (valid and
invalid observations) either by hand, by NS, or the
RBF-based approach. The trajectory then can be used
to evaluate the performance of the SVM. The set of
parameters returning the most accurate label prediction
is used to perform the final training of the SVM. Using
labels from either the RBF-based approach or NS the
procedure can be automated and relieves the user.



Supplementary Information on Projection 24

F. Supplementary Information on Projection

F.1. Learning Reprojection Distances

In order to identify the reprojection error threshold ε,
that may not be surpassed without being considered an
outlier, the differences during training have to be eval-
uated. The PCA reconstruction error of valid data is a
one-dimensional normal distribution scattering around
its mean ǫ retrieved by averaging all training errors.
After subtracting ǫ from all error values, the standard
deviation σ can be calculated. Any value that is greater
than ǫ and that has a probability α < 0.05 of being
from the same distribution is significantly different.
Significant difference implies, that the corresponding
point probably is a member of a different distribution.
If that is the case, the point is considered an outlier.
Using the χ2 goodness-of-fit test

ε = ǫ+
1

ς
χ2(α, 1) (F.1)

can be evaluated.

The Euclidean distance—often applied in ML—is a
poor discriminating factor in higher dimensions. Al-
though the Euclidean error has been sufficient to iden-
tify errors in the test data, two alternatives shall be
presented.

The typical distances in each dimension can be eval-
uated separately. As soon as the distance in just one
dimension surpasses the typical error a reaction is trig-
gered. However, just observing the single dimensions
neglects dependencies between the dimensions. While
a difference of one unit might be ok for any unit, a
difference of one unit in all dimensions may not be
acceptable.

Further, the fractional distance metrics introduced in
[1] could be used. Instead of emphasizing outlier values
they stress the typical distances. Thus, they are less
dependent on noise and supposedly suffer less from the
curse of dimensionality. However, before applying these
metrics, it has to be evaluated whether they maintain
their superior performance on real data rather than the
artificial data used in [1]. Besides, all algorithms would
have to be adapted to apply the new distance metric
prohibiting the black-box integration of existing code.

F.2. Additionally Evaluated Projection

Mechanisms

Besides PCA applied in the HDRADS different pro-
jection mechanisms including autoencoders (AE) and
Mixture of Factor Analyzers (MFA) have been exam-
ined.

F.2.1. Projection with Autoencoders

One method for non-linear dimensionality reduction are
AEs. They are based on neural networks and unlike
most other algorithms inherently handle reprojection.
An AE generates a lower-dimensional code of the data
and optimizes the coding and decoding strategy to
produce the closest match between original and recon-
structed data [23,42].

In order to facilitate non-linear dimensionality reduc-
tion, some non-linear function z = ψ(x), e.g. ψ(x) =
tanh(x) with tanh(x) being the hyperbolic tangent, has
to be applied to the reduced input. Otherwise, the
mapping of the AE will be linear and comparable to
that of PCA.

AEs are well suited to identify non-linear depen-
dencies if a non-linear mapping is applied. However,
the non-linear mapping also prevents optimal linear
reduction. Besides, the time required for training is
much longer for AEs than for e.g. PCA since no closed
form solution is available and stepwise improvement of
the algorithm is required. One more drawback is the
danger of getting stuck in a local minimum.

In order to use an AE for the HDRADS, the entire
training data—except for validation data—is used to
train the AE. Once a sufficiently small reprojection
error—also on the validation data—is reached the train-
ing can be stopped. Then the entire data—including
the validation data—is reduced with the AE but repro-
jection is omitted. The reduced data is used to train
the positive and negative models and subsequently the
SVM. Once the testing phase starts, the original data
is processed by the AE and, additionally, the reduced
data is evaluated using the SVM.

Beyond the basic setup of AEs there are several
modifications, e.g. the following three that have been
considered for the HDRADS.

F.2.1.1. Denoising AE

As the name suggest the denoising AE is supposed
to remove the disturbances in a noisy signal. The
AE correlates several dimensions to reconstruct the
input. To ensure the identification of correlations, a
specified percentage of each input is corrupted. For
each sample the dimensions to corrupt are chosen at
random. Typical corruption values vary between 30
and 50%. The mapping is trained on corrupted data.
However, the reconstruction error is evaluated against
the original input. Thus, the net has to identify which
of the dimensions encode similar information. If one of
them is corrupted, the others have to bypass the missing
information [53].
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Different corruption methods are available:

• zeromasking: all corrupted values are set to zero;
• salt and pepper noise: the corrupted values are

either set to the minimum or maximum value;
• Gaussian noise: a Gaussian noise is added to the

corrupted values [53].

In the robots all sensor readings are naturally blurred
by noise. Thus, additional Gaussian noise is not likely
to improve the performance, especially since there is
no ground truth for the actual value. Disturbed infor-
mation would have to be compared against blurred data
points. Salt and pepper noise have little difference in the
effect compared to zeromasking. However, zeromasking
is easier to implement. Thus, only the latter is taken
into account for the HDRADS.

Using a denoising AE the bottleneck layer does not
necessarily have to have fewer neurons than the in- and
output layer. Learning of the identity is impossible
because the input data will never be exactly the same
as the output data. Hence, the neurons will encode a
different representation of the data [53]. Yet, the aim of
applying an AE in the RADS is to reduce dimensions
inherently requiring a bottleneck.

F.2.1.2. Relational AE

Another extension to the AE are relational AEs consid-
ering the pairwise products of two input sets as input
to construct the hidden layer. Relational AEs especially
represent co-occurrences between two inputs [39].

Memisevic further combines the basic relational AE
with a denoising AE to model the covariances of input
values. Instead of applying two different inputs, the
same input is corrupted independently [39].

F.2.1.3. Stacked AE

In contrast to linear projections consecutively applying
two non-linear projections provides a further Degree of
Freedom DoF. Thus, more suitable, lower-dimensional
representations of the data can be identified.

Training a stacked, resp. deep, AE is most efficient
in several steps. Instead of training all levels at once
independently trained levels—subsequent levels have
fewer dimensions than preceeding ones—are stacked on
top of each other. After training the first layer, the
entire training data is reduced to the lower dimensional
representation and used to train the next layer. Once
the desired depth is reached an additional fine tuning
by e.g. conjugate gradient methods [22,46] can improve
the overall performance as interdependencies between
the different levels are considered when processing the
entire stack [23].

Also, any of the modifications are applicable for stack-
ing. The better the AE identifies interdependencies, the
better will be the code representation and the lower will
be the reconstruction error. Therefore, algorithms with
more sophisticated coding strategies are most likely to
exhibit a superior performance after stacking.
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Figure F.1.: A relational AE with denoising on the inputs X and Y .

F.2.1.4. Stacking PCA and AE

Instead of stacking several AEs stacking different dimen-
sionality reduction algorithms is tenable. Merging both
PCA and an AE should in the first step take care of
linear dependencies and in a second step recognize the
non-linear dependencies, exploiting the positive aspects
of both algorithms.

It is reasonable to first remove linear dependencies
using the PCA to prevent the AE from wasting neurons
on linear dependencies. Besides, the time required by
PCA is comparatively short. After retrieving the PCA
transformation matrix LT, it is multiplied with the
training data. The reduced data is used to train the
AE. Normalizing the reduced data can improve the
performance of the AE.

As explained in App. F.1, the typical reconstruction
error is learned and used to identify outliers that have
been projected into the lower-dimensional manifold.
Since both algorithms contribute to the reconstruction
error the total error is observed.

F.2.1.5. Performance of Non-linear Projection in the
RADS

Contrary to the initial assumption none of the examined
non-linear projection mechanisms outperforms the basic
PCA.

The reprojection error of the basic AE is larger than
that of PCA if few dimensions are removed. In con-
trast, if only one third of the dimensions is retained,
the AE performs better with respect to reprojection.
Nevertheless, the training and evaluation time for the
AE is longer than that of PCA. Further, the anomaly
detection capabilities of PCA are equivalent to the AE
if few dimensions are retained, while PCA outperforms
the non-linear method with many retained dimensions.
Since the major decision criterion for performance is
not the magnitude of the reconstruction error, but the
anomaly detection rate, PCA is considered better than
the AE.

To improve the performance of the non-linear pro-
jection a denoising AE is employed. The denoising
policy increases the reprojection error. The values
oscillate around the minimum but do not converge even
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if decreasing the learning rate. Nevertheless, it improves
the anomaly detection rate. Yet, the major problem
results from correlation. The denoising improves the
mapping of the data. Instead of only using a very
small proportion of the new data space, like the basic
AE does, the denoising AE almost exploits the entire
space. Although this extensive usage implies that a
more reasonable mapping is identified, it also prohibits
the sensible application of the RADS. If all data space
is populated by positive data, there is no opportunity to
detect negative data. Instead, the strategy would have
to be changed to relying on projection only.

Despite being very useful for image processing [39],
especially as the learning of input covariances is well
suited for noisy data, the relational approach bears
several problems. To ensure that all information is
taken into account the hidden layer of the denoising
AE and the two hidden layers of the relational AE
have to be observed for anomaly detection, thus in-
herently retaining a large number of dimensions. Fur-
ther inspecting [39] (see Fig. F.1) additionally to the
product units also the input information is required
for reconstruction. Accordingly, no true dimensionality
reduction is achieved. While the filters constructed
when applying the relational AE to images can easily
be interpreted, the return values do not provide readable
information about the robot data. The reconstruction
error is very small. Yet, using part of the input data for
reconstruction this is expectable.

Although the AE performance presumably improves
if the dimensionality reduction is performed over several
layers, stacking of AEs has not been tested. The perfor-
mance of the simple AE is not satisfying and identifying
the cause of failure gets more difficult the more AEs
are involved. Instead stacking of PCA and an AE is
evaluated. Using first linear and subsequently non-
linear projection reduces the overall reconstruction error
if few dimensions are retained. Keeping the parameters
for the AE constant and only changing the number of
retained dimensions after PCA exposes that for an AE
with a fixed number of parameters there is an optimal

PCA reduction. If too many dimensions are retained,
the neural net is overwhelmed by the input. The
nodes available in the AE cannot sufficiently represent
the data resulting in a high reconstruction error. If
too few dimensions are kept, the increasing PCA error
propagates through the stack and reduces the overall
performance and especially increases the reconstruction
error.

However, despite the reduced reprojection error with
suitable combinations the problems of the basic AE
remain. As the AE increases the computational effort
but does not improve or even impairs the performance,
it is refrained from applying any of the AE variations.

F.2.2. Mixture of Factor Analyzers

MFA, as well, is intended to identify the latent variables
in the data set. Using Expectation Maximization (EM)
[12], MFA identifies the k Gaussian components with h
latent dimensions that explain the n-dimensional data
best (typically h ≪ n). Each of the k components
has its own center, own diagonal covariance, and own
factor loading matrix, i.e. uses a different subset of the n
dimensions [18]. Calculating the likelihood of a specific
data point x in the factor model should be sufficient
to classify a data point x as positive or negative. Deep
Mixture of Factor Analyzers (DMFA) introduced by [50]
improves the performance of MFA by stacking several
layers of MFA on top of each other such that each parent
layer is a generalization of its children.

Nevertheless, MFA is inapplicable for the RADS. Al-
ready the observation of few selected dimensions shows,
that the subtle delimitation of valid data from unknown
space is impossible unless specifying a large number of
clusters. This, in turn, results in high computational
complexity. To identify the most suitable parameters
k and h in a two layer DMFA for the static LWR
data, a brute force grid search with cross-validation was
intended. However, the evaluation has been aborted
without useful results after 15 days of computation on
an Intel Core i5 CPU.



Handling a Detected Anomaly 27

G. Handling a Detected Anomaly

If the RADS identifies an anomaly three further ques-
tions have to be considered:

1. When does the robot react to an anomaly?
2. What is the reaction to an anomaly?
3. How to determine the cause of the anomaly?

G.1. Filtering Anomalies for Outlier

Resistance

Hardware—like a robot—is not necessarily predictable.
All sensors suffer from noise, and sometimes sensors
return invalid data without being broken. On the other
side, real errors most likely persist over a period of time.

No matter how the RADS reacts, frequent super-
fluous error recognitions might be justifiable, but will
be irritating and can prohibit reasonable deployment
of the robot. Instead, adding a filter to the system is
beneficial. The filter keeps track of the last f evalua-
tions. Only if more than p percent of these f evaluations
appear to be irregular, the alarm is issued. The size of
p and f depend on the desired sensitivity of the system
and the acceptable delay.

Receiving new data at a 1 kHz rate f = 1000 and
p = 0.2 results in a 0.2 second delay if the error is
permanently visible. Reaction times of humans vary
between 0.2 and 0.6 seconds depending on the type of
stimuli, the desired reaction, and whether the human
is trained for fast reactions [5, 9, 21]. Thus, stopping
the robot by hand (see Sec. G.2) would take at least
0.4–0.8 seconds. Yet, this is tenable as the algorithm
is not intended to detect sudden misbehavior causing
immediate damage. Rather, it aims at identifying slow
changes indicating that something is about to break or
is already broken, but does not yet prevent the robot
from completing its tasks.

G.2. Reactions of the Algorithm to an

Anomaly

Once an anomaly is perceived, an action based on a
predefined handling strategy has to be taken. Two
methods are conceivable. Either the robot is stopped
automatically or a warning is issued and the user has to
decide what to do.

Both options have assets and drawbacks. If the robot
is stopped automatically, a malfunctioning robot cannot
cause further harm. Yet, immediate deactivation of
the system might not be in the interest of the user, as
moving the robot out of a danger area will be difficult.

Leaving the decision what to do next to the user
causes a time delay and requires a responsible reaction

from the user. Nevertheless, this is the method of
choice for the current implementation. As stated in
App. G.1, detecting immediately hazardous errors is
unlikely. Therefore, the user can take the most suitable
action to bring the task to an acceptable stop while
ensuring safety of everyone affected.

Not every anomaly has to be caused by a real error
in the system, but might be caused by an unusual
configuration of the robot. An experienced operator
could realize whether such a strange set up of the
robot prevails. He could finish the current task before
checking—thereby recording new training data—and, if
applicable, retrain the robot.

G.3. Identifying the Cause of Error

Finally, the task of identifying the cause for the anomaly
and fixing it comes into effect. Since the algorithm is
intended to signal before the user notices the error by
himself, identifying the cause is even more difficult than
identifying the cause for total failure.

However, each type of error will cause changes in
specific dimensions. Automatic classification of the
error remains infeasible, because the system aims at
unknown errors, i.e. errors which have not appeared
before, or that cannot be modeled. But, identifying
those dimensions with the strongest divergence from the
closest known point can assist troubleshooting.

Instead of searching for the closest point in the train-
ing set, it is likewise sensible to use the closest radial
basis kernel substituting the real data points. Neither
NS nor the SVM can provide sufficient information since
they do not provide information on the structure of the
valid data space.

For calculating the closest kernel, it is reasonable
to use the Mahalanobis distance as a larger value in
the covariance hints at typically stronger variation in
that dimension. Although the absolute difference might
be higher, the relative difference can be less alerting.
Alternatively, any Lp metric can be used.

Once the closest point is examined, the distances
within the single dimensions have to be assessed. Either
the absolute difference |x− µ| is evaluated for each
dimension, or, to take advantage of Mahalanobis prop-
erties, Σ−1 is used in combination with the Hadamard
product:

(x− µ) ◦
(

Σ−1(x− µ)
)

. (G.1)

Comparison can be conducted as with absolute values.
Prevalence of the error in one dimension only is

unlikely. Instead of returning the single most distant
dimension, the dimensions will be sorted according to
their divergence.
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As explained in App. G.1, the error will appear more
than once. Accordingly, a ranking of the divergence in
each dimension with regard to all the error values before
the RADS reacts can further improve the expressive-
ness. In order to incorporate the order of dimensions
for each outlier in the overall ranking, the dimensions
can be weighted according to their ordinal number. The
weights for each dimension are added. The resulting list
is sorted according to the summed weights. The lowest

value indicates the farthest dimension1.
Even with the ranking, it will remain challenging to

find the cause for divergence. However, if a certain joint
is especially affected, most likely the dimensions related
to that joint will differ, as well as a transmission error in
the gear will most likely increase or decrease the current
and will have little influence on the position of the joint.
Thus, at this point model knowledge is required and will
enable the useful application of the RADS.

1Results for the identification process are presented in App. H.2.
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H. Additional Test Results

H.1. Results from ES II
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Figure H.1.: Torque in the first joints of the LWR and the MIRO
with induced collisions
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Figure H.2.: The measured and desired current in joint 1 of the
MIRO

The results of (HD)RADS on the MIRO data are not
as good as the LWR results. Nevertheless, they facili-
tate fairly reliable outlier detection. A major difference
between the LWR and the MIRO is the lower stiffness in
the medical robot. Lower stiffness makes the robot more
susceptible to disturbances. Therefore, the collisions are
induced with less force as Fig. H.1 displays1.

Besides, the MIRO returns a different set of measure-
ments. In the setup used for data generation the LWR
does not provide any current information. The current
changes quickly in order to compensate control errors
as depicted in Fig. H.2.
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Figure H.3.: Anomaly alarms from positive model during collision
trajectory of ES II
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Figure H.4.: Anomaly alarms from negative model during collision
trajectory of ES II on static data

The RBF-based approach can handle the aggravated
conditions in ES II and returns satisfying detection
results as depicted in Fig. H.3. In contrast, NS suffers
from the variance of the current. Only using the static

data of ES II choosing small values for the noise am-
plitude a results in alarms at any time of movement—
collisions in the held positions are not detected due to
the low coverage c = 0.9—or if a is large no alarms are
raised. On the other side, if the current related values
are excluded from the data set, the detection rate is
satisfying (see Fig. H.4). Using the entire dynamic data
the detection rate improves drastically. Still, removing
the current data optimizes the results and facilitates

1Being able to detect collisions with lower impact further confirms the validity of the approach.
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Figure H.5.: Anomaly alarms from negative model during collision
trajectory of ES II on dynamic data
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Figure H.6.: Anomaly alarms from SVM during collision trajectory
of ES II on static data

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

−2

−1

0

1

time step

s
c
a
le

d
 t

o
rq

u
e

Anomaly Detection on Static Collision Data
ES II with PCA−20

detected anomaly

torque in joint 1

Figure H.7.: Anomaly alarms from PCA with 20 retained dimensions
during collision trajectory of ES II on static data

detecting most anomalies. The results are displayed in
Fig. H.5. As with the LWR filtering of the dynamic

data causes the areas of detection to be broader than
the actual collision.

For the evaluation of the MIRO only a short sequence
of data is used. Extending the training period is likely
to counterbalance the influence of the current data.
Using more training data decreases the required security
border in NS and more of the possible combinations of
noisy values are captured.

For testing the SVM the NS results received without
the current data are used to be able to make a statement
about performance. Accordingly, the positive model has
to be trained on the smaller data, as well. All collisions
that have been missed using all dimensions are detected
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Figure H.8.: Anomaly alarms from HDRADS during collision tra-
jectory of ES II on static data. The data is reduced to 20 dimensions
by PCA

using the reduced data. As Fig. H.6 shows, there is
room for improvement, but the RADS detects most of
the collisions in static data. Applying the algorithm to
dynamic data the results further improve because the
starting values are more sensitive.

Projection performs comparable on LWR and MIRO
data. As expected the reconstruction error increases the
fewer dimensions are retained during projection. Using
a sufficiently small number of retained dimensions en-
sures that the reprojection error is applicable to identify
errors. For static ES II keeping 50 of the 60 dimensions
is too much, hardly any of the collisions are perceived.
Only keeping 20 dimensions provides good results, as
depicted in Fig. H.7. For anomaly detection through the
reprojection error on dynamic MIRO data it is nearly
indifferent whether 20 or 50 dimensions are retained.
Both detection rates are satisfying. The results are
slightly better if all data—also current—is included.

Stacking the basic RADS on top, the system becomes
more sensitive to the number of retained dimensions.
The fewer dimensions are retained, the smaller is the
worst case number of calculations. However, the fewer
dimensions are retained, the larger is the variance across
dimensions. Thus, a larger area of the space has to be
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represented by the positive model. The higher number
of kernels increases the required computations. Since
the computational complexity for the Mahalanobis dis-
tance is O(n2), but the complexity is linear with respect
to the number of kernels, a reduction of dimensions
is desirable if the number of kernels does not grow
exponentially. Moreover, the variance in the retained
dimensions differs from the initial variance and has to
be reassessed. For the MIRO data the noise amplitude
a is tripled if reducing the static data to 20 dimensions.
Taking this change into account the number of kernels
grows much slower than the dimensionality decreases.
Thus, the time required for computation decreases no-
ticeably.

The performance of the HDRADS is illustrated in
Fig. H.8. The joint approach outperforms any of
the single methods. It is faster than using the basic
RADS—even during training—it detects significantly
more collisions than the reprojection error and identifies
a few more collisions than the SVM on the projected
data. However, some of the collisions are not recog-
nized and some valid areas are considered as faulty.
On the one hand, a larger training set will improve
the performance. On the other hand, refraining from
using strongly varying data like the current can further
improve the results.

H.2. Error Identification

App. G.3 introduces a possibility to narrow down the
possible causes for an anomaly. Forcing some of the
dimensions in the training data to likely but constant
values, e.g. −1, 0, or 1, and using the corrupted data for
testing results in an identification of those dimensions
as most divergent. Though, if the true value in that
dimension is very close to the manually inserted value,
the dimension will be located further down the list.

Solely taking the data related to a single collision and
testing the error identification shows that dimensions
related to the joint suffering the strongest impact are
identified. Besides, only dimensions that measured the
disturbance are listed as divergent while, e.g., desired
values remain at the end of the list.

Although the identification of the cause remains chal-
lenging, the add-on to the RADS does support the user.
Moreover, the additional effort is minimal since the
evaluation only has to be performed if an alarm is issued.
Unfortunately, the method is only applicable to the
basic RADS since the positive model is created for the
projected dimensions in the HDRADS. An additional
positive model of the full data can be created if support
for troubleshooting is inevitable.
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I. Future Areas of Research

Although the HDRADS provides stable results and can
identify errors, the possibilities for improvement are far
from being exploited.

Foremost, further testing and validation of the ap-
proach is essential to confidently rely on the algorithm.
The evaluation performed during the course of this the-
sis is based on artificially induced errors like collisions,
changes in speed, and load. Typically, these errors
have a strong deflection in a few related dimensions.
Inducing small divergences, like they will result from
wear, is difficult. A long term observation of a robot
could help to show the benefit of the introduced method,
especially comparing it to the currently applied fault
detection mechanisms. Besides, applying established
methods concurrently with the HDRADS can improve
acceptance by the users, or could help to verify models
of the robot.

Becoming less dependent on dimensionality reduction
and being capable to deal with data remaining high-
dimensional after projection can be achieved through
distance metrics that inherently reduce the influence of
dimensionality.

Capable of handling higher dimensionality the RADS
can use more generated data. For this thesis only the
first and second derivative have been applied. Iden-

tifying and testing further metrics might increase the
number of perceptible errors.

For anomaly detection it is important to be able to
distinguish valid from invalid data. Many projection
methods, like PCA and neural networks, are intended
to remove the white space and extensively exploit the
subspace. Thus, deciding whether a data point is in
or outside of the training data, respectively the valid
model, becomes increasingly difficult. Switching to
algorithms trying to maintain the sparsity of the data
is auspicious. Minor Component Analysis (MCA) and
Extreme Component Analysis (XCA) [34, 54], might
tackle this problem and are recommended as a future
area of investigation.

Instead of applying the introduced (HD)RADS, other
approaches should be investigated and compared with
regard to their performance and scalability. Density
forests are a subgroup of random forests and seem to
perform well in practice. Using several random trees
the density of the data space is modeled [10]. Instead
of first reducing the dimensionality and in a second step
identifying anomalies, density forests could be capable
of handling the high-dimensional input directly and
classifying the data points into positive and negative

data according to their likelihood in the density model.
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Glossary

central limit theorem

The central limit theorem states that if iid sampling is performed long enough the distribution of the data
will be Gaussian.

conjugate gradient method

The conjugate gradient method is a numerically efficient method to solve equations of the form Ax = b.
After at mostm iterations with A ∈ R

m×m the exact solution is retrieved. However, since the error decreases
monotonic, it is especially interesting for iterative methods.

cross-validation

In cross-validation the training set is separated into n subsets of equal size. Sequentially one subset is left out
from the training data. The classifier is trained on the remaining n− 1 subsets. Subsequently the classifier
is tested against the remaining samples. Merging the percentage of correct classification the prediction
accuracy for the entire set can be evaluated. The parameters that return the best overall prediction results
are selected as parameters, thus avoiding overfitting.

Euclidean distance

Distance of two points x ∈ R
n and y ∈ R

n according to the L2-Norm,
√

∑n

i=1(x− y)2.

Hadamard product

For any two matrices A and B of the same dimensions n×m the Hadamard product (A ◦ B) (also known
as entry wise product or Schur product) is defined as the matrix C ∈ R

n×m with Ci,j = Ai,jBi,j .

latent variable

A latent variable is one of the most basic influence factors for a data set. Changes in the latent variable are
the cause for variance in the data.

Mahalanobis distance

The Mahalanobis distance is a distance measure that weights distances according to the covariance of an
n-dimensional data set. Based on the correlations Mahalanobis distance generally is scale invariant.
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