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ABSTRACT

We present a camera-based 3D feature tracking method,
integrated into a bank of iterated, extended Kalman filters
(IEKF), associated to each visual feature. The approach
exploits motion field to estimate velocities of the rigid
body. The depths are required only for initialization, and
can be obtained either from joint estimation of depth and
motion or from stereo correspondence. The motion of
each 3D point cloud is predicted under a common rigid
velocity constraint. A robust pose estimator, based on
dual-quaternions and median statistics, is further applied
to the estimated points. In case of temporarily missing
measurements, the last estimated body velocity is used to
predict the next poses. Results are shown on images of
a satellite-mockup, to demonstrate performances for on-
orbit servicing in space environment.

Key words: 3D tracking; Pose estimation; On-orbit ser-
vicing; EKF.

1. INTRODUCTION

Relative state estimation between space vehicles has been
addressed in the context of formation flying, rendezvous
and docking ([5], [3]), where the vehicles cooperatively
exchange state information. In such cooperative scenario,
vision-based pose tracking can be suppported with spe-
cial markers on the target vehicle, simplifying the pose
estimation problem.

Visual tracking of a non-cooperative space object, such as
a malfunctioning satellite, is a current important research
topic. One of the applications foreseen is on-orbit servic-
ing: there exist plenty of defective satellites in space, oc-
cupying precious orbits: the ultimate goal would be either
to repair, or to deorbit them. This servicing or de-orbiting
task may be achieved through a robot mounted on the ser-
vicer satellite. For that purpose, the relative pose of the
defective client satellite with respect to the servicer needs
to be tracked and predicted over time, so that the servicer
may approach and capture the client for visual servoing.

One example of such a mission under development, is the
German on-orbit servicing mission (DEOS).

There exist few works in the literature that address
the problems of visual pose tracking of non-cooperative
satellites. Most of them assume existence of a CAD
model of the defective satellite: for example, [11] im-
plemented an iterative closest point (ICP) algorithm to
register model and range data, obtained from stereo cam-
eras. Similarly, a wireframe model was used in [4] for
camera-based tracking of Orbital Life Extension Vehi-
cle (OLEV). Joint estimation of pose and dynamic pa-
rameters, for guiding a robotic manipulator to capture a
tumbling satellite, based on Neptec’s laser-camera sys-
tem and a CAD model, is experimentally demonstrated
in [1]. The aforementioned approaches are suitable, if
apriori knowledge about the geometry of the satellite and
the initial pose are given. Without such knowledge, the
problem becomes more difficult.

To address this issue, Hillenbrand and Lampariello [7]
developed a least-squares method for pose estimation us-
ing various simulated range data, that also identifies the
six inertial parameters and center of mass of the target. A
model-free, stereo-camera based approach using an ex-
tended Kalman filter was also used to estimate structure,
relative pose and motion of non-cooperative targets [9].
In this scheme, inertial parameters are identified through
a hypothesis-based likelihood score, over a finite set of
possibilities, and numerical simulations have been pre-
sented.

On the other hand, traditional tracking approaches using
feature points can be applied on relatively variable light-
ing conditions. Corner-like features [20] can be selected
for sparse optical flow, with a multiresolution implemen-
tation satisfying most of the required real-time efficiency
and accuracy. Since the above mentioned work, many ex-
tensions appeared. A few of them incorporated photomet-
ric and geometric cues of a scene [19], improved compu-
tational effeciency through an inverse compositional ap-
proach [2, 14]. Gouiffés et al. [6] also considered specu-
lar highlights and brightness variations. Such approaches
require feature correspondences across stereo images, to
reconstruct 3D points which, in turn, are registered in
order to estimate rigid motion. For this purpose, vari-



ous pose estimation algorithms, based on the SVD [17]
and [10], quaternions [8] or dual quaternions [13] can be
used.

Our work is based on the existing relationship between
motion field on the image plane and camera motion
( [12], [18]), to recover the velocity of a rigid body. We
propose a method to recover and track 3D sparse struc-
ture, exploiting specular keypoints of the rigid target,
with the capability of predicting features in absence of
image measurements. The approach is based on a bank
of iterated, extended Kalman filters (IEKF), using point-
wise kinematic models, which feeds the filtered state
(depth) to the velocity estimator, and vice-versa. Thus,
unlike [21] it does not require stereo matching throughout
the sequence, nor any global model of target geometry or
dynamics. This is particularly relevant for on-orbit ser-
vicing, where direct sunlight saturates the CCD sensor of
the cameras, and a geometrical model of the client may
not be available.

The paper is structured as follows: in section 2, we
present the details of the proposed approach for track-
ing a predominantly specular and non-cooperative client
satellite, in six degrees of freedom. In section 3 results on
terresterial simulations are presented, and section 4 sum-
marizes and concludes the paper.

2. THE 3D TRACKING APPROACH

During motion of a free-floating rigid body with negli-
gible external torque or force, it is reasonable to assume
a constant linear and angular velocity between two im-
age sampling times. With this assumption, the last ve-
locity from previous frame can be used to propagate the
3D points to the current frame. Hence the current a
priori state, predicted from the last state using the esti-
mated rigid body velocity, is combined with current mea-
surement (tracked features) to refine the posterior state
estimate. This recursive probabilistic refinement is the
well known Kalman filter. The necessary models for the
Kalman filter is briefly explained in the next subsections.

2.1. State and Observation Models

The motion of 3D surface points p = [X,Y, Z]T of a
rigid body, translating and rotating at velocity V,ω in
camera frame, respectively, is expressed by

ṗ = −V − ω × p (1)

The single-point dynamics at discrete time k can be easily
derived from Equation 1, and is expressed as

pk = Fkpk−1 + GVk−1 + wk (2)

where,

Fk =

[
1 ∆tωzk −∆tωyk

−∆tωzk 1 ∆tωxk

∆tωyk −∆tωxk 1

]
(3)

G =

[ −∆t 0 0
0 −∆t 0
0 0 −∆t

]
(4)

Vk = [ Vxk Vyk Vzk ]
T (5)

and the measurement model is

zk = h(pk/k−1) + vk (6)

where, ∆t is time interval between two consecutive im-
ages and zk are feature points, either from monocular or
stereo camera, tracked over the sequence and re-projected
under a pinhole camera model. Measurement errors vk

and error in motion model wk are assumed Gaussian,
zero-mean additive noise.

For rectified stereo cameras, with baseline Tx, we have

h =

 fxlX/Z + cxl
fylY/Z + cyl

fxr(X + Tx)/Z + cxr
fyrY/Z + cyr

 (7)

The y coordinate of the rectified system is common,
hence one element of h is redundant and can be dis-
carded. From Equation 7, the observation matrix Hk is
computed as

Hk =
∂h

∂p

∣∣∣∣
p=pk|k−1

(8)

∂h

∂p
=

 fxl/Z 0 −fxlX/Z2

0 fyl/Z −fylY/Z2

fxr/Z 0 −fxr(X + Tx)/Z2

0 fyr −fyrY/Z2

 (9)

where, l and r indicate left and right stereo camera, re-
spectively.

In the case of monocular camera, only the first two rows
of Equation 7 and 9 involve the observation model. To
cope with its nonlinearity, after prediction the filter is it-
erated for each point, until convergence.

The main advantage of Bayesian filtering here is that,
when a complete occlusion occurs, or the target moves
momentarily out of the field of view, motion can be still
predicted and used later on to re-initialize tracking.

2.2. Velocity Estimation and Depth Initialization

The translational and rotational velocity of the client
satellite, which is used in the prediction stage of Bayesian
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Figure 1. Initialization of rigid body velocity estimate, and interaction with Extended Kalman filter during tracking.

filter, can be estimated from the equation of motion field
and camera motion, by

argmin
b

∥∥ATb− u
∥∥2 (10)

where

A =


−fx/Z 0

0 −fy/Z
(x− cx)/Z (y − cy)/Z

(x− cx)(y − cy)/fy fy(1 + ((y − cy)/fy)2)
−fx(1 + ((x− cx)/fx)2) −(y − cy)(x− cx)/fx

fx(y − cy)/fy −fy(x− cx)/fx


b = [ Vx Vy Vz ωx ωy ωz ]

T (11)

is the velocity components to be estimated, and u =

[ u v ]
T is feature velocity in the image

The depth, which is required to estimate velocites, is ob-
tained from the update stage of the filter. Thus, velocity
estimator and 3D feature tracker exchange their outputs,
in order to estimate the required states ( Fig. 1). How-
ever, depth needs to be initialzed externally at the onset of
tracking, in order to estimate the velocities. If stereo cam-
era is used, correpondence is searched in the first stereo
pair, to compute depth for the initialization. In the case of
monocular camera, joint estimation of depth and veloci-
tiy is achieved by minimizing the error

ei = ui −
1

Zi
A1(xi)V −A2(xi)ω. (12)

where A1 and A2 are 2 × 3 matrices formed from the
transposes of the first three and the last three rows of ma-
trix A respectively.

By concatenating all N residuals, e = [e1, ..., eN ]T as
well as structure and motion parameters θ = [V,ω, Zi]

T

where i = 1, ...N , with proper initialization θ are esti-
mated by iterating

θk+1 = θk + δθk (13)

k times until convergence. The Jacobian of size (2N) ×
(6 +N) is computed as

J =


J1 J1z 0 0 0 · · · 0
J2 0 J2z 0 0 · · · 0
J3 0 0 J3z 0 · · · 0
...

...
...

...
... · · · 0

JN 0 0 0 0 · · · JNz

 (14)

where Ji = −AT at point locations i = 1, ..., N , and

Jiz =

[
(−fxVx + (x− cx)Vz)/Z2

(−fyVy + (y − cy)Vz)/Z2

]
. (15)

Thus, the Gauss-Newton method is iteratively employed,
by solving the normal equations

JTJδθk = −JTe. (16)

Non-linear optimization over relatively large parameter
space (6 + N parameters, N ≥ 6) could be prone to
local optima, and good initialization is required to find
the global minimum. Zucchelli et. al [15] used the sep-
arability of the differential epipolar constraint equation



and a subspace method was employed in [16] to initialize
it. We propose an alternative method to initialize the it-
erative nonlinear optimization, that exploits the previous
Gauss-Newton formulation but with less parameters.

We assume a weak perspective camera model, that con-
siders relative variations of depth of the client to be small
compared to the average depth. Consequently, we esti-
mate only 7 parameters (6 velocites and a depth) using
the same iterative method described above, but with Ja-
cobian Jw

Jw =

 J1 J1z

...
...

JN JNz

 (17)

A dual quaternion-based 3D point registration [13] is
lastly utilized to estimate the pose relative to inital pose.
A robust median statistics is incorporated into the pose
estimator to prune outliers.

3. EXPERIMENTAL RESULTS

In this section, experimental results are presented to val-
idate the performance of our tracking approach under
space lighting conditions, based on a terrestrial simula-
tion mockup. For this purpose, several ground-truth tra-
jectories, consisting of roto-translation at the close range
of a few meters, are generated according to the motion
of a free-floating rigid body around its principal axes.
The trajectories include a maximum spinning rate of 4

Figure 2. The DLR satellite mockup, for rendezvous and
capture.

deg/s, nutation angle of 10 deg, and translational velocity
2 cm/s. Stereo cameras with a small baseline (12 cm), are
mounted on the servicer, to capture images at 1Hz. The
proposed method is realized with the European Proximity
Operations Simulator (EPOS), using two 6 degree of free-
dom (dof) Kuka robots that simulate a servicer and client
satellite, respectively (Fig. 2). The client satellite con-
sists of a rigid structure, covered with a reflective golden

Figure 3. Reprojection of the recovered 3D points: cor-
rectly reprojected points (green) coincide with tracked
features (red). Circles are drawn around the pixels, with
one pixel difference in radii for visualization purpose.

.

foil. A direct high-power floodlight, simulating the spec-
trum of the sun, illuminates the surface of the client at
different incident angles. In addition to stable features lo-
cated on the surface irregularities, the overall specularity
and illumination conditions produce predominatly virtual
features.

Key-points are detected on the first frame, and tracked
over the sequence [20]. No feature rejection and replace-
ment are performed during the 2D tracking, as we need
to estimate all client poses relative to its inital position,
where the first frame has been acquired. However, spu-
rious features are effectively rejected at higher level, by
the robust pose estimator. When the pose estimator runs
out of the minimum required number of points, a new ref-
erence frame is taken, its keypoints are detected, and the
resulting pose estimations are done relatively to the new
frame.

Kalman filter is usually initialized by guessing an initial
state, in absence of covariance estimates. A larger initial
covariance ensures that the estimate converges quickly,
and the influence of the initial state will soon become
negligible. In this experiment, we initialized all the states
with approximately zero values, and identity covariance.
The limitation of the approach is that monocular camera
tracking requires slightly accurate initialization of the ve-
locity. However, it is not difficult to predict the range of
probable velocity of a free-floating space object.

The reprojection of reconstructed sparse 3D points, on
the 20th image, is shown in Fig. 3, where measurements
and reprojections are marked with circles of different col-
ors. Some of the results of absolute pose estimation, ob-
tained by registering the sparse 3D cloud from the first
and current frame, for four different motion trajectories
are presented.

Fig. 4 displays estimated and actual roto-translation about
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Figure 4. Estimated absolute Z-axis roto-translation with monocular camera, referred to first frame (left column), and
absolute roto-translation errors with monocular and stereo camera. The client spins at 2 deg/s with a nutation angle of 5
deg, and translates at 1cm/s.

the spinning axis, for a typical spinning motion at 2 deg/s
rate, with 5 deg nutation angle and 1 cm/s translational
velocity. The absolute roto-translation errors in this se-
quence do not exceed 5 deg and 2 cm, for a period of 2
minutes respectively. Fig. 4 shows a similar trajectory
that differs only in nutation angle (5 deg). Another mo-
tion trajectory, with a spinning rate 4 deg/s and transla-
tional velocity 1 cm/s and without nutation, is considered
in Fig. 6. In this scenario, translation errors do not ex-
ceed 2 cm, and the worst-case rotation error is 10 deg at
300 deg rotation about Z-axis (which is 3% relative er-
ror). Related to this motion trajectory, which differs only
in translational velocity (2 cm/s) is shown in Fig. 7. We
notice that the error in this case is slightly higher than the
former, whereby key-features could not be tracked after
frame 60, indicating that a new reference frame should
be taken. In general, with higher velocity and rotation
angles, most feature points are quickly lost because of
sensor saturation and strong light reflections.

We notice that no loop closure, such as bundle adjust-
ment, is done to refine the pose estimation. Moreover,
motion trajectories which contain both rotational and
translational accelerations have not been tested, and will
be included in future experiments. However, the assump-
tion of constant velocity between two sampling times has
shown to be a good approximation for predicting feature
points during free-floating motion.

4. CONCLUSIONS

In this paper, we presented a system for feature-based
3D tracking of a non-cooperative satellite. The transla-
tional and rotaional velocities of the client satellite are
estimated in camera frame, using image-plane motion
fields. The estimated rigid motion is used by a bank of
iterated Kalman filters, to propagate the point cloud to
the next frame, where predicted points are updated with
tracked image features. The tracked 3D points, in turn,
are used to estimate the velocity of the rigid client; thus,
depth estimates from the filter are passed on to the ve-
locity estimator, and vice-versa. The monocular camera-
based tracking is initialized by a joint estimation of depth
and velocity, assuming a weak perspective camera model.
By registering point clouds, the 6 dof motion is estimated
through a robust dual-quaternion method.

Preliminary experimental results have been obtained
from a simulation mockup, demonstrating robustness and
accuracy properties of the proposed method. Future sys-
tem improvements will be the integration of additional
visual features (points, edges, lines, etc) into the filter,
possibly including loop-closure mechanisms to compen-
sate drift, incorporating a photometric model that com-
pensates reflections and variation of illumination, and us-
ing more accurate models of tumbling rigid-body dynam-
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Figure 5. Estimated absolute Z-axis roto-translation with monocular camera, referred to first frame (left column), and
absolute roto-translation errors with monocular and stereo camera. The client spins at 2 deg/s and translates at 1cm/s.
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Figure 7. Estimated absolute Z-axis roto-translation with monocular camera, referred to first frame (left column), and
absolute roto-translation errors with monocular and stereo camera. The client spins at 4 deg/s and translates at 2cm/s.


