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Alin Albu-Schäffer ∗ Christian Ott Florian Petit

∗ Institute of Robotics and Mechatronics, German Aerospace Center
(DLR), Germany

(e-mail: Alin.Albu-Schaeffer@dlr.de).

Abstract: The paper presents a new energy shaping control design for a class of underactuated
Euler-Lagrange systems. Flexible joint robots, Series Elastic Actuators, and Variable Impedance
Actuated Robots Albu-Schäffer et al. [2008] belong for example to this class. First, classical
PD control with feed-forward compensation is revisited and a novel, straight-forward and
general formulation for the stability analysis is given. Lower bound conditions for the gains
of this controller motivate the introduction of the new approach, which generalizes results from
Albu-Schäffer et al. [2007], Ch. Ott et al. [2008]. For shaping the potential energy, feedback
variables based on the collocated states are introduced, which are statically equivalent to the
noncollocated state variables. In this way the passivity is ensured while exactly satisfying steady
state requirements formulated in terms of the noncollocated states (such as desired equilibrium
configuration and desired stiffness). Using the passivity property, a Lyapunov based analysis
can be easily carried out for arbitrarily low feedback gains. The controller is augmented by
noncollocated feedback to shape the kinetic energy. Experimental results for a Variable Stiffness
Robot Grebenstein et al. [2011] validate the proposed controller.
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control.

1. INTRODUCTION

Underactuated Euler-Lagrange systems frequently arise
in technical context when elasticity plays a significant
role. In such a case rigid body models need to be ex-
tended by taking elastic properties into account. In the
last decade compliance, even nonlinear compliance, has
been recognized as a potential way to improve robustness
and peak performance of robots, inspired by the archetype
of biological musculo-skeletal systems Albu-Schäffer et al.
[2008]. However, stabilizing underactuated Euler-Lagrange
systems is a challenging task in practice due to the fact
that highly accurate models and/or high derivatives of
states are mostly required. Energy shaping based control
has in this context substantial advantages in terms of
robustness with respect to model uncertainties. However,
while energy shaping control for fully actuated systems
is well established providing constructive design meth-
ods Takegaki and Arimoto [1981], Ortega and M.Spong
[1989], Tomei [1991], Blankenstein et al. [nn], Ortega and
M.Spong [2002], Ortega et al. [2002], van der Schaft [2002],
Siciliano et al. [2009], for the case of underactuated E-
L systems no constructive solution is available to our
knowledge so far. In Blankenstein et al. [nn], Ortega and
M.Spong [2002], Ortega et al. [2002] a system of partial
differential equations (PDE) has to be solved in order to
find the energy function and the controller, what in general
is a quite difficult task.
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The paper addresses underactuated systems which can
be stabilized by shaping only the potential energy. For
these systems, a one-to-one relationship is given between
the collocated and the noncollocated state variables in
static configurations. We would call these systems ”fully
potentially coupled underactuated systems”, in contrast
to ”inertially coupled underactuated systems”, for which
such a one-to-one static relationship does not hold 1 . The
considered systems can be in principle stabilized by a
feedforward compensation at the desired configuration and
a PD-type controller. A general, straight forward formu-
lation for their stability analysis is introduced for the
first time in this paper. However, this simple approach
requires lower bounds on the controller gains which might
be restrictive in practice and suffers from inaccuracy of
the feed-forward compensation for larger displacements
from equilibrium. The main idea for the new controller
is to design the shaping of the potential energy by in-
troducing a new control variable, which is a function of
the collocated state variables only, but is equal to the
noncollocated state variables in any static configuration.
A (numerical) solution to an algebraic equation has to be
found in order to calculate these variables. A collocated
and passive controller can be designed this way, while
exactly fulfilling the steady state requirements for the
system. If the system satisfies some specified conditions,
there is a straight-forward way to define the controller
and the corresponding energy function. The paper is origi-

1 Note that the term ”fully potentially coupled” does not exclude
the additional presence of inertial couplings between the collocated
and non-collocated states.



nating from developments in Cartesian impedance control
of flexible joint robots Albu-Schäffer et al. [2005, 2007],
Ch. Ott et al. [2008] and contains a generalization of the
approach presented therein, allowing to treat for example
fully coupled, nonlinear stiffness potentials. Revisiting this
topic after first addressing it in the context of impedance
control Albu-Schäffer et al. [2005] is motivated by the
revival of interest in this type of underactuated systems
due to recent intensive research on robots with Variable
Impedance Actuation (VIA) Morita et al. [1999], Bicchi
and Tonietti [2004], Migliore et al. [2005], Palli et al. [2007],
Vanderborght et al. [2006], Koganezawa [2005], English
and Russell [1999], Morita and Sugano [1997], Hurst and
Rizzi [2008], Wolf and Hirzinger [2008], Albu-Schäffer et al.
[2008], Wolf et al. [2011], Petit et al. [2010], web site
[2011]. Due to the very large, nonlinear compliance of VIA
systems, the proposed method has special relevance in this
context.
A controller based solely on the collocated variables may,
however, have a limited control performance. In order to
increase performance, an inner control loop is proposed for
the considered class of systems. Its effect is interpreted as
the shaping of the kinetic energy of the actuators. The con-
troller itself is not passive any more, but it will be shown
that the controlled actuator dynamics in combination with
the torque feedback controller is passive. Based on these
passivity properties, the asymptotic stability can be shown
by invoking La Salle’s invariance principle.
The derived conditions are discussed and some simple
examples are given. Based on the presented method, a
controller for VIA robots is derived as an example. Finally
experimental results with the VSA-based DLR hand-arm-
system Grebenstein et al. [2011] validate the method.

2. PROBLEM STATEMENT

Consider an Euler-Lagrange system with damping, satis-
fying:

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= τm −Dẋ. (1)

The Lagrangian L(x, ẋ) = T (x, ẋ)−U(x) is the difference
of the kinetic energy 2 T (x, ẋ) and the potential energy
U(x). Conditions for the potential energy U(x) will be
formulated in Sec. 2.1 to closer specify the class of systems
for which the proposed control approach is valid. x ∈ Rn
is the vector of generalized coordinates, τm ∈ Rn the
vector of generalized control input forces. Furthermore,
the system contains a dissipative friction force specified
by the positive definite damping matrix 3 D ∈ Rn×n. In
the case of an underactuated system with k independent
actuators, the control input has the form

τm =

(
u
0

)
, with u ∈ Rk, k ≤ n. (2)

The general task we would like to address is the control of
k independent output variables given by

y = h(x) (3)

2 T (x, ẋ) is positive definite with respect to ẋ, i.e. T (x, ẋ) > 0 ∀ẋ 6=
0.
3 The results can be easily extended to the case of positive semidefi-
nite damping matrices using results from dissipative systems analysis
van der Schaft [2002].

to desired constant values yd ∈ Rk. Accordingly, the state
vector can be then partitioned into x = (θ, q), with θ ∈ Rk
being the directly actuated states corresponding to the
input u and q ∈ Rn−k being the un-actuated states. A
simplified version of this problem will be formulated next,
in order to present the main idea in a compact form in
this paper. The extension to the general case specified
above, required to treat for example the general VIA model
introduced in Albu-Schäffer et al. [2010] is currently in
preparation.

2.1 Simplified problem (n = 2k)

Let us first consider a system with n = 2k. In this case
θ, q ∈ Rk. Furthermore, consider the mapping h(x) to be
chosen as such that y = q. The task is therefore to control
q to a desired constant value qd.
The equation of the equilibrium for (1), obtained by setting
the state derivatives ẋ (and therefore also the kinetic
energy T (x, ẋ)) to zero, is:

∂U(x)

∂x
= τm. (4)

Using the partitioning into actuated and non-actuated
states, this leads to

fθ(θ, q) :=
∂U(θ, q)

∂θ
= u (5)

fq(θ, q) :=
∂U(θ, q)

∂q
= 0. (6)

Consider a desired equilibrium point xd = (θd, qd) which
satisfies (6). Now let us assume that the following second
order partial derivatives are bounded, i.e. there exists
constants α1, α2, α3, α4 > 0 such that the inequalities

α2‖q‖2 > qT
∂2U(θ, q)

∂q2
q >α1‖q‖2 (7)

α3 >

∥∥∥∥∂2U(θ, q)

∂q∂θ

∥∥∥∥>α4 (8)

hold 4 ∀x ∈ Rn . These are the central assumptions on
the structure of the Lagrangian, which define the class of
systems for which the control approach can be applied.
Sec. 5 is dedicated to the interpretation and discussion of
these conditions.

Additionally, for Sec. 3 only, we assume that
∥∥∥∂2U(θ,q)

∂θ2

∥∥∥ is

bounded from below, i.e. there exists α5 ∈ R such that

θT
∂2U(θ, q)

∂θ2 θ > α5‖θ‖2. (9)

3. THE CLASSICAL APPROACH: PD CONTROL
WITH FEED-FORWARD COMPENSATION BASED

ON DESIRED POSITION

A very simple (but restrictive) approach to the control
problem stated above uses only the desired and measured
values of the collocated states for the controller. A typical
controller structure is as follows:

u = fθ(θd, qd)−Kp1θ̃ −Kdθ̇, (10)

4 The usual Euclidean norm for vectors and the corresponding
induced matrix norm is assumed throughout the paper.



with θ̃ = θ − θd. This is basically a PD controller with
feed-forward compensation, as suggested by the classical
linearization approach. However, under the conditions (7),
(8), (9) global convergence can be shown if ‖Kp1‖ is
sufficiently large. While such controllers have been often
proposed for particular robotic systems Takegaki and Ari-
moto [1981], Tomei [1991], Albu-Schäffer and Hirzinger
[2001], we formulate the approach here for the quite gen-
eral underactuated system defined above and provide a
novel, straight-forward and compact approach for choosing
a Lyapunov function. Therefore, although mainly intro-
duced for readability and motivation purposes, this section
has in our view a substantial value by itself.
A Lyapunov function for the closed loop system (1), (2),
(10) is given by

V1(x, ẋ) = T (x, ẋ) + VP1(x) = T (x, ẋ) + U(x) + VC1(x),
(11)

with the total potential energy VP1(x) being the sum of
the plant potential energy U(x) and the controller energy

VC1(x) = −U(xd)−
∂UT

∂x
(xd)(x−xd)+

1

2
θ̃
T
Kp1θ̃. (12)

With the notation

UP1(x) = U(x) +
1

2
θTKp1θ (13)

the total potential energy takes the very simple form

VP1(x) = UP1(x)−UP1(xd)−
∂UP1

T

∂x
(xd)(x−xd). (14)

It can easily be verified that VP1(xd) = 0 and also that
xd is an extremal point of VP1(x) since ∂VP1

∂x (xd) = 0.

It follows that VP1(x) is positive definite if its Hessian 5 ,
given by

HP1(x) =


∂2U(θ, q)

∂q2

∂2U(θ, q)

∂q∂θ
∂2U(θ, q)

∂θ∂q

∂2U(θ, q)

∂θ2 +Kp1

 (15)

is positive definite. In this case xd is the only extremal
point. The equilibrium points of the system, given by

fθ(θ, q) = fθ(θd, qd)−Kp1θ̃ (16)

fq(θ, q) = 0 (17)

correspond to the extrema of VP1(x), implying that xd is
in this case the only equilibrium point.
It can be easily seen that under the conditions (7), (8), (9)
it is always possible to choose the gain matrix Kp1 high
enough, such that HP1(x), and consequently V1(x, ẋ) =
T (x, ẋ) + VP1(x) are positive definite 6 . The plant is
obviously passive with respect to u,θ while the controller
is passive w.r.t. θ,−u since

V̇C1(x) =−∂U
T

∂x
(xd)ẋ+ θ̃

T
Kp1θ̇

=

(
−∂U

T

∂θ
(xd) + θ̃

T
Kp1

)
θ̇

=−uT θ̇ − θ̇TKdθ̇ (18)

5 which is identical to the Hessian of UP1(x)
6 Actually, it is quite straight-forward to see that the positive

definiteness condition is fulfilled if

∥∥∥Kp1 +
∂2U(θ,q)

∂θ2

∥∥∥ > α2
3/α1 or,

more conservatively, ‖Kp1‖ > α2
3/α1 + |α5|.

where (10) and the fact that f q(xd) = 0 have been used.
Therefore we have

V̇1(x, ẋ) = −ẋTDẋ− θ̇TKdθ̇ (19)

from which we can conclude stability. Moreover, asymp-
totic stability of the closed loop system can be shown using
La Salle’s theorem.
Remark 1: The equilibrium conditions (16), (17) can be
written due to f q(xd) = 0 as

fθ(θ, q) +Kp1θ= fθ(θd, qd) +Kp1θd (20)

fq(θ, q) = fq(θd, qd, ) (21)

or
f tot(x)− f tot(xd) = 0 (22)

with f tot(x) =

[
fθ(θ, q) +Kp1θ

fq(θ, q)

]
. Note that (14) can

be then recognized as

VP1(x) =

∫ x

xd

(f tot(x)− f tot(xd))dx. (23)

Remark 2: The controller presented in this section is a
high gain controller. In practice, the lower bounds for Kp1

may be quite restrictive. In some particular cases, as for
example in impedance or stiffness control Hogan [1985],
Albu-Schäffer et al. [2007], one may want to implement
controller gains arbitrarily close to zero. This is obviously
not possible using this approach. In contrast, the method
introduced in the next section does not impose lower bounds
on the controller gain matrix Kp1, allowing it to be
any positive definite matrix. Moreover, the feed-forward
compensation will not be done based on desired values, but
on measured ones, providing higher performance for large
displacements from the desired equilibrium.

4. PASSIVE, LINK SIDE EQUIVALENT
CONTROLLER

Controller (10) contains a nonlinear compensation at the
equilibrium point and a collocated state PD-type feedback.
Obviously, the feed-forward compensation is inaccurate for
displacements from the equilibrium. The imposed condi-
tions, however, ensure that the restoring proportional term
grows faster than this error, if the proportional gain is high
enough. In order to permit arbitrarily small proportional
gains we need to provide a more precise feed-forward
compensation based on current values. To obtain a passive
controller, a collocated feedback, using only directly actu-
ated states θ and θ̇ is needed. In this section we develop
a controller fulfilling these requirements.

Due to property (7) equation (6) has exactly one solution
for q for every value of θ (see Appendix). This implicitly
defined function will be denoted by q̄:

∃q̄ : Rk → Rk such that f q(θ, q̄(θ)) = 0, ∀θ ∈ Rk, (24)

Property (24) results from the fact that U(x) is positive
definite with respect to q and has exactly one extremum
for each θ therein.
The matrix of partial derivatives of q̄ satisfies then

J q̄(θ) =
∂q̄(θ)

∂θ
= −

(
∂2U(θ, q̄)

∂q2

)−1
∂2U(θ, q̄)

∂q∂θ
. (25)

This follows directly by differentiating f(θ, q̄) with respect
to θ. As shown in the Appendix, if the properties (7),



(8) are satisfied then J q̄(θ) is nonsingular and q̄(θ) is a
diffeomorphism.
Remark: In most cases, it will not be possible to solve
equation (6) analytically. However, it is ensured that the
equation has exactly one solution and that the problem of
numerically finding this solution has only one minimum
due to its convex nature. It is therefore reasonable to
assume that the equation can be solved with existing nu-
merical methods up to a sufficient accuracy in short time.
This implies mainly some requirements on the available
computation power. For a detailed discussion of this topic
and its implications see sec. 6. It will be thus assumed in
the following that q̄(θ) is available for the further con-
troller design.
The main idea in the controller design is to use the new
variable q̄(θ) for the controller feedback instead of q or θ
in order to stabilize the system around xd. This variable
was chosen such that it will be equal to q in any static
situation, i.e.

∀θ ∈ Rk : ẋ = 0 ⇒ q = q̄(θ), (26)

such that one can construct a collocated controller, which
is statically equivalent to a noncollocated one based on q.
Using (5), the following control input can be defined:

u = fθ(θ, q̄(θ))− JTq̄ (θ)Kpe(θ)−Kdθ̇, (27)

with (e(θ) = q̄(θ) − qd). Kp is a constant, positive
definite, symmetric gain matrix and Kd is a (possibly)
state dependent, positive definite damping matrix.

4.1 Lyapunov function

Consider the following Lyapunov function candidate for
the closed loop system:

V (x, ẋ) = T (x, ẋ) + U(θ, q) + VC(θ, q̄) (28)

with

VC(θ, q̄) = −U(θ, q̄) +
1

2
e(θ)TKpe(θ). (29)

Remark: Note that
∂U(θ, q̄(θ))

∂θ
= fθ(θ, q̄(θ)), (30)

since f q(θ, q̄(θ)) = 0. Therefore

V̇C(θ, q̄) =−θ̇T
(
fθ(θ, q̄(θ))− JTq̄ (θ)Kpe(θ)

)
(31)

=−uT θ̇ − θ̇TKdθ̇ (32)

and thus VC(θ, q̄) is a ”candidate energy function” for the
controller, which is passive if the potential energy U(x) is
bounded from below.
For the desired equilibrium configuration defined by {x =
xd, ẋ = 0} the required property V (xd, ẋd) = 0 is directly
verified, due to the fact that in this configuration q = q̄
holds.

In order to show that V (x, ẋ) is positive definite, consider
first the difference ∆Uq(θ, q) = U(θ, q)−U(θ, q̄). Showing
that ∆Uq(θ, q) is positive for q 6= q̄ is equivalent to
showing that U(θ, q) has the only extremum at q = q̄
for any given θ, which is seen here as a parameter. This
follows from the fact that

∂U(θ, q)

∂q
(q̄) = fq(θ, q̄) = 0 (33)

and that the Hessian (given by (7)) is positive definite.
Furthermore, (7) generally implies

|U(θ, q1)− U(θ, q2)− (q1 − q2)Tf q(θ, q2)| (34)

≥ 1

2
α1||q1 − q2||2, ∀θ, q1, q2 ∈ Rk

In particular, for q1 = q, q2 = q̄(θ) one obtains

∆Uq(θ, q) ≥ 1

2
(q − q̄)Tα1(q − q̄) (35)

From (28) it follows that

V (x, ẋ)≥ T (x, ẋ) +
1

2
(q − q̄)Tα1(q − q̄) (36)

+
1

2
e(θ)TKpe(θ) ≥ 0.

The equality holds only for q = q̄ = qd, which, considering
that q̄(θ) is a diffeomorphism, implies θ = θd. It follows
that V (x, ẋ) = 0 is fulfilled only for {x = xd, ẋ = 0}.

4.2 Equilibrium condition

Using the controller (27), the equilibrium conditions
(5),(6) become:

fθ(θ, q) = fθ(θ, q̄(θ))− JTq̄ (θ)Kpe(θ) (37)

fq(θ, q) = 0. (38)

The only solution of (38) is q = q̄. By substituting it into
(37) it follows that q̄ = qd, and from the fact that q̄(θ)
is a diffeomorphism θ = θd results. It can be therefore
concluded that the equilibrium equations have exactly one
solution, namely x = xd with xd = (θd, qd).

4.3 Derivative of the Lyapunov function

The derivative of the energy function of the plant,

H(x, ẋ) = T (x, ẋ) + U(x), (39)

is known to be

Ḣ(x, ẋ) =−ẋTDẋ+ τTmẋ

=−ẋTDẋ+ uT θ̇. (40)

This leads together with (32) to the derivative of the
Lyapunov function:

V̇ (x, ẋ) = −ẋTDẋ− θ̇TKdθ̇ (41)

This function is negative semi-definite. It can be therefore
concluded that the system is stable.

4.4 Global asymptotic stability

Global asymptotic stability can be shown based on La
Salle’s invariance theorem. The results can be summarized
in the following proposition:

Proposition 1. The system given by (1),(2),(3), to-
gether with the controller given by (27) is globally asymp-
totically stable if the conditions (7),(8) are globally valid.

Proof: As mentioned in sec. 4, (24) holds if (7) holds. In
order for q̄ to be a global diffeomorphism, it is sufficient
that J q̄(θ) is nonsingular. This is fulfilled if (Zeidler [1986],
pp.174):

supθ∈Rk

∥∥J−1
q̄ (θ)

∥∥ <∞. (42)



Fig. 1. Pendulum fixed by a spring

In view of (7), (8) this condition is satisfied, since:∥∥J−1
q̄ (θ)

∥∥ < ∥∥∥∥∥
(
∂2U(θ, q)

∂q∂θ

)−1
∥∥∥∥∥
∥∥∥∥∂2U(θ, q)

∂q2

∥∥∥∥ < α2α4.

(43)
The Lyapunov function from Sec. 4.1 can be used to show
the global asymptotic stability, by additionally noting that
from (36) it follows that V (x, ẋ) → ∞ for x → ∞ or
ẋ→∞ when q̄(θ) is a diffeomorphism. The system state
will converge into the largest invariant set for which ẋ = 0
holds. But there does not exist any trajectory for which
ẋ = 0 holds except for the restriction to the equilibrium
point. Therefore asymptotic stability can be concluded.
2

5. DISCUSSION OF THE CONDITIONS ON THE
POTENTIAL ENERGY

A short discussion adapted from Albu-Schäffer et al. [2005]
of the conditions (7) and (8), which ensure that q̄(θ) is a
diffeomorphism, will be given in this section together with
some simple examples. Condition (7) ensures that for any
constant θ the system has only one equilibrium, which
means that the full system state is statically uniquely
determined by θ. Loosely speaking, condition (7) says that
”the binding forces should grow faster than the diverging
forces between θ and q”. For the very simple example of
a vertical pendulum in the gravity field, connected by a
torsional spring k to a fixed position (Fig. 1), condition
(7) is always satisfied if k > mgl. Indeed, for the extreme
case that k << mgl the system would have many isolated
equilibrium points for each θ, some of them even unstable.
Condition (8) ensures that, given (7), the mapping q̄(θ) is
a diffeomorphism, which means that every desired q can be
reached at equilibrium using an appropriate θ. Consider
systems of point masses connected by springs. The system
in Fig. 2(left) would satisfy condition (8) while system in
Fig. 2(right) would not, although it satisfies (7). Indeed,
in the latter system q2 cannot be controlled independently
from q1 by the inputs θ1 and θ2 only.
Note that the conditions refer only to the potential energy.
There might exist inertial couplings between the states
which allow stabilization of the system, as in the example
from Fig. 3. The system can be indeed stabilized around
the upright position Fantoni et al. [2000], but this cannot
be achieved based on shaping of potential energy only. In
this case, the conditions (7),(8) are not satisfied.

6. SOLVING THE ALGEBRAIC EQUATION
NUMERICALLY

The presented approach centrally relies on finding a so-
lution to equation (6). Except for very simple cases, this
requires to numerically solve the equation. This is a rather

θ1
τ1

θ2
τ2

q1

q2

θ1
τ1

θ2
τ2

q1

q2

Fig. 2. Left: spring mass system satisfying (7). Right:
spring mass system not satisfying (7).

Fig. 3. The acrobot: only one of the two joints is actuated,
the second joint can move freely. This underactuated
system is not satisfying condition (7)

simple numerical task, since it is ensured that the function
f q has only one solution (and its derivative only one
minimum). Thus we have a convex optimization problem.
Appropriate numerical root finding algorithms will there-
fore converge from any starting point to the solution. By
using a good initial value it will be possible to reach the
desired accuracy within very few iteration steps.

Note that equation (6) can be transformed to

q = W (θ, q) (44)

with

W (θ, q) = q − 1

α2

∂U(θ, q)

∂q
. (45)

The partial derivative ∂W (θ,q)
∂q satisfies then, given (7), the

inequality∥∥∥∥∂W (θ, q)

∂q

∥∥∥∥ =

∥∥∥∥I − 1

α2

∂2U(θ, q)

∂q2

∥∥∥∥ < δ < 1 (46)

for a suitable δ. It follows that

‖W (θ, q1)−W (θ, q2)‖ < δ‖q1 − q2‖ (47)

and therefore that W (θ, q) is a contraction 7 . The unique-
ness of the solution consequently results also from the
fixed-point theorem. A way of finding q̄(θ) is to use the
fixed-point iteration

qi = W (θ, qi−1), i = 1, 2, ... (48)

The result will linearly converge to q̄. Newton methods can
be further used in order to increase convergence speed. As
initial values a reasonable choice q0 = qd or q0 = θ would
be.

7. IMPROVING THE CONTROL PERFORMANCE

The stability of the system is closely related to the pas-
sivity property of the controller and the plant and to
7 Note that W (θ, q) can be seen as the derivative of the potential
UT (θ, q) = 1/2qT q − 1/α1U(θ, q) with respect to q.



Fig. 4. Passive interconnection of two Lagrangian systems.

their feedback interconnection. This involves the very de-
sired robustness property with respect to plant parame-
ter uncertainty and to unmodeled but passive dynamics.
However, it also implies some limitations of the control
performance. A reason therefore is the restriction to the
feedback of the collocated variables θ, θ̇.

The controller is based so far on collocated measurements
only. In some particular situations, the presented ap-
proaches can be extended in order to include also noncol-
located feedback for improving the transient performance
while remaining within the passivity framework. Since the
example and experiments include this noncollocated feed-
back loop, the approach, first introduced in Albu-Schäffer
et al. [2005], is further developed in the following.

Consider therefore in this section the more restricted class
of purely elastically coupled underactuated systems, mean-
ing that there is no inertial coupling between collocated
and noncollocated states 8 ”. Such systems can be rep-
resented as the passive feedback interconnection of two

Lagrangian subsystems (Fig. 4), with τ a = ∂U(θ,q)
∂θ being

the generalized potential force dual to θ̇ and v being the
control input. The two subsystems have the Lagrangians
L1 and L2 such that

L(x, ẋ) = L1(θ, θ̇) + L2(q, q̇,θ) (49)

is the overall Lagrangian. This case is relevant for the VIA
example, as can be seen in Sec. 8. Then the Lagrange
equations of the first, collocated subsystem are:

d

dt

(
∂L1(θ, θ̇)

∂θ̇

)
− ∂L1(θ, θ̇)

∂θ
= v − τ a (50)

Consider a control input of the form

v = (I −Kt)τ a +Ktu (51)

with Kt being a constant positive definite matrix and u a
new control input. Equation (50) becomes

K−1
t

[
d

dt

(
∂L1(θ, θ̇)

∂θ̇

)
− ∂L1(θ, θ̇)

∂θ

]
=u− τ a (52)

If the left hand side of the equation corresponds again to
a passive system, now w.r.t. {u − τ a, θ̇} and with a new

Lagrangian L̂1(θ, θ̇), then the controller design and the
analysis can be continued for the new system with the
scaled Lagrangian and the new control input u using the
methods from Sec. 4. Note that the controller (51) is not
passive but the controlled system allows again a passive
representation.

Remark 3: The requirement, that the left hand side (52)
is again a Lagrangian systems is usually not satisfied for
8 while there might be inertial coupling within each subgroup.

arbitrary positive definite Kt. This is however always true
at least for Kt = γI, γ > 0. For the example in the
next section, in which the inertia matrix of L1 is diagonal,
Kt can also be any diagonal p.d. matrix. General p.d. Kt

matrices can be used only in very specific cases.

8. EXAMPLE: VARIABLE STIFFNESS ROBOT

The control of a VSA robot is presented as an example for
the design approach. For covering exactly the large variety
of VIA designs existing so far one needs a model as general
as the one introduces in Albu-Schäffer et al. [2010]. For
simplicity, in this example the following reduced model is
assumed:

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ (53)

Bθ̈ + τ = τm (54)

τ =ψ(θ − q,σ) (55)

The vectors q ∈ Rk and θ ∈ Rk contain the link and motor
side positions respectively. M(q) ∈ Rk×k, C(q, q̇)q̇, and
g(q) ∈ Rk are the components of the rigid body dynamics:
inertia matrix, centripetal and Coriolis vector, and gravity
vector. The vector τ ∈ Rk represents the joint torques,
τ ext ∈ Rk the external torques acting on the robot, and
τm ∈ Rk the motor torques. B = diag(Bi) ∈ Rk×k is the
diagonal, positive definite motor inertia matrix. The vector
ψ(θ − q,σ) describes the nonlinear torque characteristics
of the VSA joints, see Fig. 5. Each element belongs to a
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Fig. 5. The stiffness characteristic of the variable stiffness
actuators as implemented in the DLR Hand Arm
system. The curve family represents increasing stiff-
ness adjustment parameters σ = 0 − 0.175 rad. The
stiffness curves are symmetric around the equilibrium
position.

strictly increasing function family, parameterized by the
position σ of a second, stiffness adjusting actuator. In
this example the dynamics of this actuator is ignored,
being in general faster than the main actuator dynamics.
Considering this dynamics as well corresponds to the
general case stated in Sec. 2 and will be subject of an
extended version of the paper. ψ(θ − q,σ) is obtained as
the derivative of an elastic potential Vψ(q − θ,σ) which
satisfies properties (7), (8). The conditions imply that
the instantaneous stiffness of the VS actuators is upper
and lower bounded, which is always the case for a real
mechanical system.

8.1 Torque feedback: shaping the kinetic energy

Notice that subsystem (54) has the structure from (50),
with

L1 =
1

2
θ̇
T
Bθ̇, τ a=̂τ x1=̂θ, v=̂τm

A torque feedback of the form



τm =BB−1
θ u+ (I −BB−1

θ )τ (56)

leads to a new subsystem with scaled motor inertia.

Bθθ̈ + τ = u. (57)

The torque controller can therefore be interpreted as a
scaling of the kinetic energy of the rotors in order to reduce
the vibrations caused by the joint flexibility.

8.2 Regulation of the desired position: shaping the potential
energy

For the new system described by (53), (57), the controllers
developed in Sec. 4 will be applied. The system has the
form presented in Sec. 2 with

T (x) =
1

2
q̇TM(q)q̇ +

1

2
θ̇
T
Bθ̇ (58)

U(x) = Vψ(q − θ,σ) + Vg(q), (59)

where Vg(q) is a potential function for g(q).
The equations (5), (6) of the equilibrium are in this case

fθ(θ, q) =−ψ(q − θ,σ) = u (60)

fq(θ, q) =ψ(q − θ,σ) + g(q) = 0. (61)

The new control variable q̄(θ) is given by the the solution
of (61) for q.

Checking the conditions Condition (7) requires that the
second order partial derivative

∂2U(θ, q)

∂q2
=
∂2Uψ(θ, q)

∂q2
+
∂g(q)

∂q
(62)

is a p.d., bounded quadratic form. The condition is nor-
mally fulfilled for robots with rotational joints 9 . The con-
dition simply states that the instantaneous joint stiffness
should be high enough to sustain the robot in the gravity
field.
Condition (8) is also satisfied globally, since

∂2U(θ, q)

∂θ∂q
=
∂2Vψ(θ, q)

∂θ∂q
. (63)

Consequently, q̄(θ) is a global diffeomorphism.
It follows from Proposition 1 that the controller

u = g(q̄)− JTq̄ (θ)Kp(q̄ − qd)−Kdθ̇ (64)

globally asymptotically stabilizes the desired position qd.
The relation fθ(θ, q̄) = −ψ(q̄−θ,σ) = g(q̄) derived from
(60), (61) has been used in order to write the controller
in a more intuitive form. The controller therefore simply
consists of PD terms and online gravity compensation
based on q̄ and an inner torque loop.

9. EXPERIMENTAL VALIDATION ON THE DLR
HAND-ARM SYSTEM

Sec. 4 introduced a controller based on the link side equiv-
alent variable q̄. In the following, the advantage of q̄ on
the stability of the system in comparison to q is validated
in experiments. Furthermore, the static equivalency of the
9 It is well known that ∂g(q)/∂q is bounded in this case.
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(a) Feedback variable: motor position θ
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(b) Feedback variable: link side equivalent posi-
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(c) Feedback variable: link side equivalent posi-
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Fig. 6. Measurements of the controllers (65) - (67) on
the DLR Hand Arm System. The use of (65) per-
mits to sustain the robot’s own weight only for high
proportional stiffness gains KP , Fig. 6(a). The link
side equivalent controller (66) instead shows stable
behaviour even for low stiffnesses, see Fig. 6(b). The
use of q as feedback variable (67) leads to unstable
behaviour, as shown in Fig. 6(c), due to the non-
collocation of q and τm.
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Fig. 7. A measurement of the contraction method to
compute q̄. The tracking quality of q is very high, only
limited by dynamic effect and the model uncertainty.

controller using q and q̄ is shown. Finally, the computation
procedure based upon contraction mapping as given in
Sec. 6 to solve the static equilibrium equation is evaluated.

9.1 Stability

To check the stability properties of the proposed approach,
the controllers (10), (27) as well as an alternative based on
feedback of q were implemented on the VSA robot DLR
Hand Arm System Grebenstein et al. [2011], according to



u = g(qd)−KP (θ − θd)−KDθ̇. (65)

u = g(q̄)− JTq̄ (θ)KP (q̄ − qd)−KDθ̇, (66)

and
u = g(q)−KP (q − qd)−KDθ̇, (67)

The desired torque u is the input command to the torque
feedback loop (56). The stability properties of the con-
trollers can be observed in the measurements depicted in
Fig. 6. The motor side measurement θ is used in controller
(65) and depicted in Fig. 6(a). The controller (66) makes
use of the static equivalent q̄ as feedback variable (Fig.
6(b)) and the link side measurement q is used in controller
(67) and depicted in Fig. 6(c). A fixed reference position
qd is commanded in all three cases. A human disturbed
the link impulsively the experiments, at times marked in
the plots. No active link side damping control is used, since
the elastic property of the spring should not be affected in
the considered control mode. The behaviour of the three
controllers is:

• Using the motor variable based controller (65) a
disturbance results in link oscillations, damped only
through the low mechanical joint damping, see (Fig.
6(b)). The link position tracking is good for the static
case and high proportional gain KP = 200Nm/rad
(until t = 8s). However, for a low gain KP =
20Nm/rad (from t = 8s) the robot collapses under
its own weight since the lower bound condition on KP

is not fulfilled.
• The controller (66) shows similar stable dynamic be-

haviour as (65) and still provides a statically cor-
rect 10 link side position (Fig. 6(b)). The advantage of
the online gravity compensation based upon q̄ can be
seen once a low proportional gain KP is commanded,
as the robot is able to sustain its own weight and still
shows the expected, weakly damped behaviour. This
time, the oscillation frequency is lower due to lower
overall stiffness, given by the serial interconnection of
the physical and the controller spring,
• The behaviour of controller (67) is shown in Fig.

6(c). The static link position tracking quality is high.
However, after the disturbance is applied, the non-
collocated feedback leads to uncontrolled oscillations,
until the joint is switched off. The active behaviour of
the controller can be observed as the motor motion
opposes several times the link motion and thereby
injects energy into the system.

9.2 Contraction Mapping

The effectiveness of the contraction mapping method (48)
is shown in Fig. 7. To generate this plot, the controller (66)
with the gains KP = 0 and KD = 0 was used, what results
in a zero torque controller with gravity compensation.
Then the link was disturbed manually. As the motor
follows the link motion by the gravity offset, q̄ follows the
measured q precisely, only limited by dynamic effects and
the model uncertainty. The update rate of the controller
is 3.33 kHz where 48 is solved each cycle. The constant α2

is chosen to be the maximal stiffness value α2 > ψ(θ −
q,σ)max ∼ 800 Nm/rad. θv is the actual motor position
and q̄i−1 is the link side equivalent position taken from
the last cycle step.
10Only limited by model uncertainty.

A video showing the experiments can be seen on
http://www.robotic.dlr.de/336 .

10. CONCLUSIONS AND OUTLOOK

The two presented controllers are both well suited for
regulating the considered class of underactuated systems
based on a robust, collocated, thus passive approach. With
the link side equivalent controller, we can exactly reach the
desired equilibrium position with arbitrary low feedback
gains, thus allowing for very compliant behaviour. The
new stability analysis strictly based on energy formulations
allows straight-forward treatment of nonlinear stiffness.
The approach has been validated on a variable stiffness
robot. The presented kinetic energy shaping method can
improve considerably the transient performance and pro-
vide an almost ideal compliant behaviour. However, addi-
tional damping based on the link side velocity is needed in
some applications for achieving critical damped behaviour
of the system. This issue has been addressed in Petit and
Albu-Schäffer [2010] in the context of VIA systems. The
integration of that approach into the framework of this
paper is subject of current work.

In order to show the uniqueness of the solution q̄(θ) for
each θ, let us consider the function U(θ, q) with θ = θ0

as a parameter Uθ0 = U(θ0, q). Finding the solutions of

fq(θ0, q) :=
∂Uθ0

(q)

∂q
= 0 (.1)

is equivalent to finding the extremal points of Uθ0
(q).

Since its Hessian ∂2U(θ0,q)
∂q2 is positive definite due to (7), it

follows that Uθ0
(q) has one global minimum for each θ0.

Thus there is exactly one solution of fq(θ0, q) = 0 and
therefore q̄(θ) is a well defined function. Since the norm
of the Jacobian of q̄(θ) is lower bounded due to (7), (8)∥∥∥∥∂q̄(θ)

∂θ

∥∥∥∥ > α4

α2
, (.2)

it follows that q̄(θ) is a global diffeomorphism (Zeidler
[1986], pp.174).
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Albu-Schäffer, A., Ch. Ott, and Hirzinger, G. (2007). A
unified passivity based control framework for position,
torque and impedance control of flexible joint robots.
The International Journal of Robotics Research, 26(1),
23–39.
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