
3D State Decomposition Modeling Method

for MBSE in Space Engineering

Hao Zhang∗

German Aerospace Center (DLR), Simulation and Software Technology, Braunschweig, 38108,Germany
Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing, 100190, China

Graduate School of Chinese Academy of Sciences, Beijing, 100190, China
Email: hao.zhang@dlr.de

Andreas Gerndt†

German Aerospace Center (DLR), Simulation and Software Technology, Braunschweig, 38108,Germany

Email: andreas.gerndt@dlr.de

Bo Liu‡

Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing, 100190, China

Email: boliu@nssc.ac.cn

The increasing number of space missions and the market environment make it mandatory
that the design process and design models have to be reused in future space missions. As
a solution to such a reuse problem, Model-Based Systems Engineering (MBSE) is highly
recommended. Since constructing a model is the first step to reach MBSE, a 3D state
decomposition modeling method is proposed in this paper. Starting from Technical Re-
quirements (TRs), the method maps them to state variables and defines states as well as
relations along three red lines of space engineering: internal subsystem, inter-subsystems,
and space mission lifecycle. Eventually, it yields decomposition of a space system into a hi-
erarchical three-dimensional model of states. Relying on the Eclipse Modeling Framework
(EMF), the model can be described and stored in a standardized format, which allows the
reuse of once defined models in subsequent space missions. This study leads to a novel
MBSE solution to implement specification, analysis, design, and operation of space mission
systems in a unified framework.

I. Introduction

There are more and more space missions. This requires development lifecycle to be decreased and
development cost to be reduced, but to keep the high quality of the products at the same time. To resolve
this conflict, different strategies are possible:

• Optimization of design models: If design models are optimized as early as possible, then the iterative
times throughout the whole design process may be decreased. Therefore, the development cost and
lifecycle can be reduced whereas the product quality can be increased even more.

• Reuse of qualified development products: If we can reuse qualified development products such as
documents, simulation models, design models, and development processes etc., then we do not need to
start everything from scratch again and again. Therefore, the time and cost required to develop a new
product will be saved. On the other hand, the product quality can still be assured.

∗Simulation and Software Technology, Lilienthalplatz 7, 38108 Braunschweig, Germany.
†Head of Department, Simulation and Software Technology, Lilienthalplatz 7, 38108 Braunschweig, Germany.
‡Deputy Director, NO.1 Nanertiao, Zhongguancun, Haidian district, Beijing, 100190, China.

1 of 14

American Institute of Aeronautics and Astronautics

• Reduction of overheads: Since a space mission is costly and has only one launch chance, many quality
assuring measures are taken to prove that the whole development process is going well. For example,
the whole development process is divided into several phases with reviews in-between.7 Engineers not
only have to achieve the goals of each phase, but also have to write a large number of documents for
these reviews, which causes high overheads for them. If we can reduce these overheads, the development
time and cost can also be saved.

Some solutions have been proposed from different point of views. Multidisciplinary Optimization (MDO),
for instance, is a research example to optimize a multidisciplinary design solution. It is defined by Sobieszczan-
ski-Sobieski as “a methodology for the design of systems where interaction between several disciplines must
be considered, and where the designer is free to significantly affect the system performance in more than
one discipline”.2 In order to perform optimization algorithms, mathematical design models have to be in-
tegrated together because they are tightly coupled. However, in order to decrease the computation burden,
the models used for multidisciplinary optimization are less complex and less accurate than the models used
for single discipline optimization.2 Furthermore, MDO lacks “a full life cycle business case” because it starts
at a stage where the design is already very detailed.5 If we want to apply MDO to the whole lifecycle of a
space mission, we need to perform further research.

High Level Architecture (HLA) is a research example to facilitate the reuse of simulation systems and
simulation-related assets.1 In the HLA, a simulation system is called a federation. Multi-simulation applica-
tions, which are called federates, are connected together to construct a distributed execution environment.
There are two important simulation assets in a HLA-based simulation system: federation object model
(FOM) and simulation object model (SOM). FOM is to provide a specification of data exchange among
federates whereas a SOM is an interface specification for each federate in the federation.3 However, HLA
can not make a FOM or a SOM “plug and play”.4 The reason is that only data needed to be exchanged
among federates are defined in a SOM or a FOM. In fact, such a data definition is highly related with
the requirements of a current simulation. In order to reuse a SOM or FOM, the simulation requirements
of a former federate or federation have to be throughly investigated. Therefore, it is difficult to reuse a
HLA-based simulation system or simulation-related assets.

All solutions proposed up to now have some shortcomings. Some of these are addressed by our approach
presented in this paper. We focus on the following aspects:

• Traceability of requirements: Requirements are the baseline to develop a space system. If we want
to reuse development products generated throughout a development process, we have to look into the
requirements behind them. For example, a SOM or a FOM in the HLA cannot be traced back to
requirements. This means, we can not make a decision whether it can be reused or not only based on
data definitions. Therefore, in order to successfully implement the reuse of development products, our
approach is to provide the ability to trace back to requirements.

• Automatic documentation generation: The high overheads for engineers mainly come from writing and
maintaining many documents. Therefore, our approach pursues the possibility to generate documents
automatically.

• Optimization of design models throughout a complete space mission lifecycle: If we can get optimized
design models on each design phase and level, product quality will be assured to the maximum degree.
As mentioned above, MDO can not perform this task yet. Therefore, our approach will also work on
it.

To achieve these goals, we are working on a solution following Model-Based Systems Engineering (MBSE),
which incorporates the three-dimensional scope of systems engineering: the full lifecycle, the full depth, and
the full technical scope.9 Since constructing a model is the first step to reach MBSE, our solution starts
from proposing a modeling method, which will be presented in this paper. The remainder of this paper
is organized as follows. Section II describes the characteristics of a space system whereas its development
process is illustrated in Section III. Section IV focuses on the requirements of a model for MBSE and briefly
lists current research work in MBSE in the space domain. Section V describes the proposed modeling
method, which includes modeling steps and modeling software environment. In Section VI, we outline
research directions for the future work.

2 of 14

American Institute of Aeronautics and Astronautics

II. Characteristics of a Space System

A space system is decomposed into subsystems, which interrelate with each other. For example, in Fig. 1,
a sounding rocket based exploration system comprises a sounding rocket subsystem, a payload subsystem,
an on-board data management subsystem, a data receiver subsystem, a raw data processing subsystem, a
science data processing subsystem, a control application etc.

launch

experiment

re-entry

sounding rocket

subsystem

payload

subsystem

on-board data

management subsystem

data receiver

subsystem

raw data processing

subsystem

science data

processing subsystem

control

application

telemetry device
pre-launch test

monitor
data store

Figure 1. This is a data flow diagram among subsystems of the sounding rocket based exploration system.
The lifecycle of the space mission is divided into the pre-launch test phase and the after-launch phase, which
comprises the launch sub-phase, the experiment sub-phase, and the re-entry sub-phase. Dependency among
the subsystems may be different in the different phases.

In this paper, we examine the raw data processing subsystem as an example. It is assigned to fulfill the
following functions:

• Reading received down-link data from the data receiver subsystem.

• Unpacking, processing, and displaying payload data.

• Generating raw data packages for the science data processing subsystem.

• Displaying the trajectory and fly events after the sounding rocket is launched.

• Monitoring the telemetry device states.

In order to fulfill these functions, the raw data processing subsystem needs to know about the following
data format specifications used in other subsystems:

• data receiver subsystem: In order to read received down-link data from the data receiver subsystem,
the communication protocol of such data has to be specified. For the monitoring of telemetry device
states, the communication protocol of state data has to be specified by the data receiver subsystem.

• payload subsystem: In order to unpack, process, and display payload data, data package format has
to be defined by the payload subsystem.

• science data processing subsystem: In order to transfer raw data packages to the science data processing
subsystem, the requirements of raw science data product format have to be specified.

• control application: Since the sounding rocket subsystem has no capabilities to transmit fly events, a
control application offers additional information about the mission which can augment the visualization
of payload data, e.g. trajectory information. The format of these data has to be defined.

3 of 14

American Institute of Aeronautics and Astronautics

III. Development Process of a Space System

A. Lifecycle Definition in the Space Domain

As shown in Fig. 2, the lifecycle of a space mission is typically divided into seven phases: Phase 0,
Phase A, Phase B, Phase C, Phase D, Phase E, and Phase F.6

Subsystem

Development Lifecycle

Phase B:

Preliminary

Definition

Phase C:

Detailed

Definition

Phase D:

Qualification &

 Production

Operations/

Utilization

Sub-phase 1

Operations/

Utilization

Sub-phase ...

Operations/

Utilization

Sub-phase n

Phase A:

Feasibility

Phase 0:

Mission

Analysis

Operations/

Utilization Lifecycle

Phase F:

Disposal

Figure 2. This figure shows a typical lifecycle of a space mission. Phase B, together with Phase C and Phase D
are defined as the subsystem development lifecycle. Phase E is defined as a system-level operations/utilization
lifecycle.

At the end of Phase A, technical requirements (TRs), which “express the customer’s need, mission
statement, associated environmental constraint and programmatic element”, are established and assigned to
subsystems. These are the “business agreement for the next phase”.7

For each subsystem, its development lifecycle starts from Phase B and ends at the end of Phase
D. During this process, the decomposition from TRs to components until implementation is carried out,
considering the relations between the subsystem and other subsystems. For example, as can be seen in
Fig. 3, a data reader component, a data processing component, a data display component etc. can be
decomposed from the raw data processing subsystem’s TRs. For the data reader component, a data reader
unit, a data store unit, and a data forwarding unit can be further decomposed. Such decomposition work
continues until each component is implemented as programs.8 Meanwhile, the external relations with the
other subsystems have to be clearly specified.

raw data processing subsystem

data reader component data processing component data display component ...

data reader unit data store unit data forwarding unit

...

Figure 3. This figure shows decomposition of the raw data processing subsystem into its essential parts. The
decomposition is refined with the development process advances. Implementation of the subsystem is achieved
in the end.

At the end of Phase D, the subsystem product is delivered8 and commences the operations/utilization
lifecycle , i.e. Phase E. “Phase E comprises all activities to be performed in order to launch, commission,
utilize, and maintain the orbital elements of the space segment and utilize and maintain the associated ground
segment”. Taking a software product as an example, “the operation process can start after completion of
the acceptance” and its “phasing and management are determined by the overall system requirements”.8

Therefore, the “major task for Phase E varies widely as a function of the type of project concerned”.7

An operations/utilization lifecyle is divided into several operations/utilization sub-phases. For ex-
ample, for a satellite space mission with on-orbit operations, Phase E may contain a system-level ground
integration test sub-phase and different on-orbit operation modes. However, the sounding rocket based explo-
ration mission mentioned above has a launch sub-phase, an experiment sub-phase, and a re-entry sub-phase
after the sounding rocket is launched. Therefore, its Phase E is divided into system-level ground integration
test sub-phases and the three after-launch sub-phases. According to its system-level requirements, three
ground integration test sub-phases are defined: the desktop-wired test sub-phase, the desktop-wireless test
sub-phase, and the pre-launch test sub-phase. Therefore, for the sounding rocket based exploration system
example, six operations/utilization sub-phases are defined in Phase E: the three pre-launch test sub-phases

4 of 14

American Institute of Aeronautics and Astronautics

and the three after-launch sub-phases.
But, for the raw data processing example, since its state in the three after-launch sub-phases is the

same, it has only four usage sub-phases throughout the space mission lifecycle: the three pre-launch test
sub-phases and the after-launch sub-phase. Usage sub-phases represent the ways for a subsystem or its
component to be used. Specifically, for the raw data processing subsystem, aside from the common functions,
the uniqueness for each usage sub-phase is:

• Desktop-wired test sub-phase: In this sub-phase, the hardware interface between the data receiver
subsystem and the raw data processing subsystem is a Universal Serial Bus (USB) device. The raw
data processing subsystem should have the ability to access it and read received down-link data.

• Desktop-wireless test sub-phase: In this sub-phase, the hardware interface between the data receiver
subsystem and the raw data processing subsystem is a wireless network card. The raw data processing
subsystem should switch the interface from a USB device to a wireless network card.

• Pre-launch test sub-phase: In this sub-phase, the data receiver subsystem involves the telemetry device.
The raw data processing subsystem should have the ability to read received down-link data and the
telemetry device states via serial communication protocol.

• After-launch sub-phase: Aside from fulfilling all of the functions in the pre-launch test sub-phase, the
trajectory and fly events of the sounding rocket should be visualized. And the raw data packages
should be transmitted to the science data processing subsystem.

Before the raw data processing subsystem is delivered, the four usage states are performed on subsystem
level to complete the subsystem-level test. After it enters Phase E, the four usage states are performed
again, but together with other subsystems on system-level operations. In Phase F, there is no special state
requirements. Therefore, the four usage sub-phases cover all of its usage state requirements throughout the
space mission lifecycle. Engineers have to take these state requirements into consideration when they design
and implement the subsystem. After the mission was performed, the lifecycle enters Phase F, which is the
implementation of the disposal plan.6

B. Traditional Document-based Development Lifecyle

To develop a space system, we have to focus on the development lifecycle of a subsystem because it
is decomposed into different subsystems. As mentioned above, the subsystem development lifecycle starts
from the beginning of Phase B and ends at the end of Phase D. To ensure that specified objectives are
achieved, “each of the phases includes milestones in the form of project reviews, the outcome of which
determines readiness of the project to move forward to the next phase”.6 As can be seen in Fig. 4, the
reviews, e.g. System Requirements Review (SRR), Preliminary Design Review (PDR), Critical Design
Review (CDR), Qualification Review (QR), and Acceptance Review (AR)6 are set down throughout the
subsystem development lifecycle.

Phase B:

Preliminary Definition

SRR PDR CDR QR AR

Phase C:

Detailed Definition

Phase D:

Qualification & Production

Figure 4. This figure shows reviews in a subsystem development lifecycle. Proof of the current development
process has to be provided for these reviews. In traditional document-based engineering process, the proof is
in documents.

In traditional document-based development lifecycle, a large number of documents must be manually
prepared and maintained for these reviews. The documentation contains system specification, interface re-
quirement document, design document, user manual, interface control document, validation plan, operational
plan etc.,8 which split information of a development lifecycle into pieces. They are generated by different
engineers, for example, the validation plan is written by quality assurance engineers, who are independent of
the developers. Therefore, controlling the versions of the documentation becomes very troublesome. Thus,
such a document-based approach bears the risk of an inconsistency among the different documents. The

5 of 14

American Institute of Aeronautics and Astronautics

consequence is that it is difficult to integrate the appropriate documents together and reconstruct a devel-
opment lifecycle. It is even more difficult to implement the reuse of correct intermediate products or the
development lifecycle.

IV. Model-Based Systems Engineering (MBSE)

A. Requirements of a Model for MBSE

As an approach to resolve the problems mentioned above, MBSE integrates information of a development
lifecycle into a model. Such a model should address the following aspects:

• It should have the ability to trace back to TRs. TRs are the baseline to develop a subsystem and they
may be changeable throughout the whole development process. With the traceability back to TRs, it
is possible to detect requirement changes and corresponding measures could be taken. Another benefit
is that we can determine quickly that a model can be reused on condition that the TRs are the same
as those of the current subsystem.

• The model should represent different usage sub-phases throughout the lifecycle of the space mission.
To achieve various usage states is the ultimate purpose to develop a subsystem. These usage sub-phase
states should be explicitly defined from the very beginning of the development process. Some of them
have been defined in TRs. Some of them need to be identified according to the possible usage states
throughout the development lifecycle, operations/utilization lifecycle, and Phase F. Such identification
needs engineers’ experience.

• The relations between the subsystem and other subsystems should be specified. As described in Section
II, the subsystems in a space system interrelate with each other. When we design and implement a
subsystem, it is impossible to ignore its relations with other subsystems. Therefore, inter-subsystem
relations have to be explicitly described in the model.

• The model can be refined throughout the subsystem development lifecycle. At the beginning of Phase
B, only TRs are specified for a subystem. At the end of the development lifecycle, the subsystem is
completely implemented. Therefore, the granularity of the model changes from a very high level to the
bottom level. Thus, the internal states and relations inside the subsystem should be illustrated and
maintained in the model.

B. Current Work in MBSE

The main concept of MBSE is to rely on a consistent model throughout the whole engineering process.
The concept can be used in any domain such as automobile, energy, and space. The goal of MBSE in
the space domain is to implement specification, analysis, design, and operations of a space mission in a
unified framework. “Virtual Satellite”,10 being developed by the Simulation and Software Technology at
DLR, Germany, is such a framework. There are also several other solutions. One approach is to develop
a space engineering standard such as the ECSS standard.11 It is based on the concept that “the key item
is data”. It defines a mechanism whereby engineering data can be reliably and efficiently exchanged.11 An
ideal implementation of this approach is expected as a space system data repository.12 Another approach
is state analysis.13 In state analysis methodology, a process for capturing system and software requirements
in the form of explicit models is defined. “A state represents a momentary condition of an evolving system
and a model describes how the state evolves and is affected by others”.13 Mission Data System (MDS),
“an embedded software architecture that leverages the state analysis methodology”,14 is currently under
development at the Jet Propulsion Laboratory (JPL).

In order to construct a model for MBSE, we will present a modeling method in Section V. It is called 3D
state decomposition modeling method, which also follows the state analysis methodology.

6 of 14

American Institute of Aeronautics and Astronautics

V. 3D State Decomposition Modeling Method

A. Hypothesis

In model-based space engineering process, the traditional development lifecycle is regarded as a model
refinement process from Phase B to Phase D. As can be seen in Fig. 5, in accordance with the synchronized
review points, the model is marked as a System Requirement Review (SRR) level model, a Preliminary
Design Review (PDR) level model, a Critical Design Review (CDR) level model, a Qualification Review
(QR) level model, or a Acceptance Review (AR) level model. Information distributed in different kinds of
documents throughout traditional development lifecycle is expected to be integrated into the appropriate
level model.

SRR level model

SRR PDR CDR QR AR

PDR level model CDR level model QR level model AR level model

Figure 5. This figure shows reviews in model-based development lifecycle. Information of a development
process is integrated into a model. The model is refined with the development process goes on, also with
reviews in-between.

B. Modeling Process

For a subsystem in a space system, the modeling work starts from its Technical Requirements (TRs). TRs
are established at the end of Phase A and “exclude requirements such as cost, methods of payment, quantity,
time or place of delivery”.7 In the modeling method, three dimensions (3D): the lifecycle of a space mission,
the separation into internal subsystems, and relations of inter-subsystems in-between are considered.

As shown in Fig. 6, based on TRs, firstly, all of the TRs are translated to variables describing certain
subsystem states. When this is done, the relations between these subsystem state variables are identified
along the three dimensions. After the decomposition was carried out on the subsystem level, further identi-
fication of state variables is performed for each state variable. Such decomposition work ends when current
decomposition meets the requirements for the model. For example, the information that a SRR level model
carries should meet the information requirements from the System Requirement Analysis phase, which is a
phase in Phase B.8 At least, it should be enough to prepare for a SRR review. The further decomposition
of a state variable may also stop when it can be implemented as programs.

In order to illustrate the method, we still take the raw data processing subsystem of the sounding rocket
based exploration system mentioned in Section II as an example.

Step 1:

Make a List of a subsytem’s (related) TRs

Step 2:

State Variables Identification for each TR

Step 3:

3D Relation Analysis

Step 4:

State Variable Assignment to each Usage Sub-phase

Step 5:

Further Identification of State Variables for each State Variable

Figure 6. This figure shows the 3D state decomposition modeling process. The level of the decomposition
depends on the current development phase.

1. Step 1: Make a List of a subsytem’s (related) TRs

The first step is to list all TRs of the subsystem. TRs can be divided into System Requirements (SRs)
and Related System Requirements (RSRs). SRs are requirements that the subsystem should fulfill, such

7 of 14

American Institute of Aeronautics and Astronautics

TR Type ID Requirement Text

SRs

SR1 The raw data processing subsystem should read received down-link data from
the data receiver subsystem.

SR2 The raw data processing subsystem should unpack, process, and display pay-
load data.

SR3 The raw data processing subsystem should generate raw data packages for the
science data processing subsystem.

SR4 The raw data processing subsystem should display the trajectory and fly events
after the sounding rocket is launched.

SR5 The raw data processing subsystem should monitor the telemetry device states.

RSRs

RSR6 The trajectory and fly event parameters will not be defined until one hour
before the launch.

RSR7 There is only one telemetry device in this mission.

RSR8 Payload data package should meet CCSDS standard.

RSR9 There are three payloads in the mission: payload A, B, and C.

RSR10 The down-link data rate is 2M byte/s.

Table 1. This is a list of TRs of the raw data processing subsystem. TRs are divided into SRs and RSRs. SRs
are the requirements that it has to fulfil. RSRs are the constraints that have to be considered when meeting
these requirements.

as functional requirements, performance requirements, operational requirements etc. RSRs are constraints
that have to be considered when implementing SRs. As required in the ECSS standard,7 a unique identifier
number is assigned to each of them. For the raw data processing subsystem example, its SRs and RSRs are
listed in Table. 1. The SRs are the functions defined in Section II, and the RSRs are the constrains when
performing them. For example, RSR6 is a prerequisite for the implementation of SR4. As descirbed in SR4,
the trajectory and fly events will be visualized after the sounding rocket is launched. In order to fulfill this
requirement, a user interface should be provided so that the data can be updated one hour before the launch,
as described in RSR6.

2. Step 2: State Variables Identification for each TR

As mentioned in Step 1, the list of TRs consists of SRs and RSRs. At this step, they are translated to
variables describing certain subsystem states. State variables of a SR or a RSR may contain Requirement
State Variables (ReqSVs), or Inter-subsystem State Variables (InterSVs), or both. A ReqSVs indicates a
state that can represent a SR or a RSR. An InterSV represents a relation between the subsystem and another
subsystem. Again, a unique identifier number is given to each of them so that it is possible to be globally
retrieved, which is crucial in subsequent model-based simulation. The work is carried out manually by the
engineers, based on their experience. Taking “SR1: The raw data processing subsystem should read received
down-link data from the data receiver subsystem” as a SR example, its ReqSV is identified and named as
ReqSV1.

• ReqSV1: The raw data processing subsystem should have the ability to read received down-link data
from different external hardware interfaces of the data receiver subsystem.

Taking “RSR6: the trajectory and fly event parameters will not be defined until one hour before the
launch” as a RSR example, its state variables consist of one ReqSV and one InterSV. The ReqSV is named
as ReqSV8. The InterSV is named as InterSV8-1, which represents an inter-subsystem relation between the
raw data processing subsystem and the control application.

• ReqSV8: The raw data processing subsystem should have the ability to update the trajectory and fly
event parameters one hour before the launch.

• InterSV8-1: The control application should have the ability to provide the trajectory and fly event
parameters one hour before the launch.

8 of 14

American Institute of Aeronautics and Astronautics

3. Step 3: 3D Relation Analysis

Once state variables are identified on subsystem level, the proposed state-based decomposition can be
carried out. The decomposition follows the three dimensions mentioned above and defines relations between
state variables. Three kinds of relations are defined:

• lifecyle relations: If a state variable has different usage states in different usage sub-phases, then each
of them is defined as a lifecyle relation of the state variable.

• inter-subsystem relations: If a state variable has a relation with another subsystem, then we say that
it has an inter-subsystem relation.

• internal-subsystem relations: If state variables can be further extracted out of a current state variable,
then they are internal-subsystem relations of the state variable.

The relation decomposition is manually done by engineers, based on their experience. When we define
state variables to represent these relations, we have the following rules:

(1) If a state variable has more than one lifecyle relation, a lifecycle relation is defined for each of the
usage sub-phases respectively. For example, the state variable of ReqSV1, “The raw data process subsystem
should have the ability to read received down-link data from different external hardware interface of the data
receiver subsystem”, has three usage states in the four defined utilization sub-phases:

• During the desktop-wired test sub-phase, the raw data processing subsystem should have the ability
to read received down-link data from the USB device.

• During the desktop-wireless test sub-phase, the raw data processing subsystem should have the ability
to read received down-link data from the wireless network card.

• During the pre-launch test sub-phase and the after-launch sub-phase, the raw data processing subsys-
tem should have the ability to read received down-link data and the telemetry device states via serial
communication protocol.

Although it has the same state in the pre-launch test sub-phase and the after-launch sub-phase, we
define four seperate lifecycle relations for ReqSV1. we name them with a unique identifier number respec-
tively: Phase-ReqSV1-1, Phase-ReqSV1-2, Phase-ReqSV1-3, and Phase-ReqSV1-4 in the sequence of the
four defined usage sub-phases.

For the state variable of ReqSV8, “The trajectory and fly event parameters will not be defined until one
hour before the launch”, it is only required in one usage sub-phase:

• During the pre-launch test sub-phase, the raw data processing subsystem should have the ability to
update trajectory and fly event data one hour before the launch.

Since the state is only required in the pre-launch test sub-phase, we define one lifecycle relation for Re-
qSV8 and give it a unique name PhaseSV8-3.

(2) If an inter-subsystem relation is identified together with a lifecycle relation, we say that the inter-
subsystem relation is also usage sub-phase related. We define a separate inter-subsystem relation for each
of them. For the ReqSV1 example, the following inter-subsystem interfaces are identified for the four usage
sub-phases:

• the desktop-wired test sub-phase: the USB device interface with the data receiver subsystem.

• the desktop-wireless test sub-phase: the wireless network card interface with the data receiver subsys-
tem.

• the pre-launch test sub-phase and the after-launch sub-phase: the serial communication interface with
the data receiver subsystem.

Like its lifecycle relations, we define four inter-subsystem relations and name them Inter-ReqSV1-1,
Inter-ReqSV1-2, Inter-ReqSV1-3, and Inter-ReqSV1-4 in accordance with the lifecycle relations.

9 of 14

American Institute of Aeronautics and Astronautics

4. Step 4: State Variable Assignment to each Usage Sub-phase

Based on the 3D relation analysis result, we assign state variables to the defined usage sub-phases. We
follow the basic principles:

• For the lifecycle relations, the assignment is based on their usage sub-phases. For example, Phase-
ReqSV1-1, Phase-ReqSV1-2, Phase-ReqSV1-3, and Phase-ReqSV1-4 are only applicable to the specific
usage sub-phases. Therefore, as can be seen in Fig. 7, we assign Phase-ReqSV1-1 to the desktop-
wired test sub-phase, Phase-ReqSV1-2 to the desktop-wireless test sub-phase, Phase-ReqSV1-3 to the
pre-launch test sub-phase, and Phase-ReqSV1-4 to the after-launch sub-phase.

• For an inter-subsystem relation, if it is related with a lifecycle relation, then it is assigned to the corre-
sponding usage sub-phase. For example, Inter-ReqSV1-1 is identified together with Phase-ReqSV1-1,
therefore, as can be seen in Fig. 7, it is assigned to the same usage sub-phase as that of Phase-ReqSV1-1.

• If an inter-subsystem relation is only applicable to some specific usage sub-phases, it is assigned to
these usage sub-phases respectively. For example, InterSV8-1, “The control application should have
the ability to provide the trajectory and fly event data one hour before the launch”, which represents
the inter-subsystem relation between the raw data processing subsystem and the control application, is
only required in the pre-launch test sub-phase. Therefore, as can be seen in Fig. 7, we assign InterSV8-1
to the pre-launch test sub-phase.

• If an inter-subsystem relation is applicable to all of the usage sub-phases, it is assigned to each of
them. For example, Inter-ReqSV11-1, “the payload subsystem should define payload data format”,
which represents the inter-subsystem relation between the raw data processing subsystem and the
payload subsystem, is required in all of the four defined usage sub-phases. Thus, as can be seen in
Fig. 7, we assign it to each of the usage sub-phases.

• If a state variable has no lifecycle relations or inter-subsystem relations, it is assigned to each of the
usage sub-phases. For example, ReqSV12, “The raw data processing subsystem should have the ability
to process the data rate of 2M byte/s”, has no lifecycle relations or inter-subsystem relations. In fact,
it is a subsystem performance requirement. It should be considered on subsystem level. Thus, as can
be seen in Fig. 7, we assign it to each of the usage sub-phases.

For the raw data processing subsystem example, the assignment of state variables to the four usage
sub-phases is shown in Fig. 7.

ReqSV12

Inter-

ReqSV3

Inter-

ReqSV2

Inter-

ReqSV2-1

Inter-

ReqSV3-1

ReqSV10

ReqSV11

Inter-

ReqSV10-1

Inter-

ReqSV11-1

pre-launch test

sub-phase

Phase-

ReqSV1-2

Inter-

ReqSV1-2
Phase-

ReqSV1-3

Inter-

ReqSV1-3

Phase-

ReqSV8-3

Inter-

ReqSV8-3

Phase-

ReqSV9-3

Inter-

ReqSV9-3

Phase-

ReqSV1-4

Inter-

ReqSV1-4

Phase-

ReqSV1-1

Inter-

ReqSV1-1

ReqSV12

Inter-

ReqSV3

Inter-

ReqSV2

Inter-

ReqSV2-1

Inter-

ReqSV3-1

ReqSV10

ReqSV11

Inter-

ReqSV10-1

Inter-

ReqSV11-1

Phase-

ReqSV7-4

Inter-

ReqSV7-4

Phase-

ReqSV8-4

Inter-

ReqSV8-4

desktop-wired test

sub-phase

ReqSV12

Inter-

ReqSV3

Inter-

ReqSV2

Inter-

ReqSV2-1

Inter-

ReqSV3-1

ReqSV10

ReqSV11

Inter-

ReqSV10-1

Inter-

ReqSV11-1

desktop-wireless test

sub-phase

ReqSV12

Inter-

ReqSV3

Inter-

ReqSV2

Inter-

ReqSV2-1

Inter-

ReqSV3-1

ReqSV10

ReqSV11

Inter-

ReqSV10-1

Inter-

ReqSV11-1

after-launch

 sub-phase

Inter-

ReqSV8-1

Figure 7. This figure shows state variable assignment of the raw data processing subsystem. It shows the
different state requirements from its different usage sub-phases throughout the space mission lifecycle.

5. Step 5: Further Identification of State Variables for each State Variable

After state variables were decomposed and assigned on subsystem level, for each usage sub-phase, further
identification of subsubsystem state variables will be extracted along the mentioned three dimensions. Steps

10 of 14

American Institute of Aeronautics and Astronautics

3-4 are repeated in order to complete the further decomposition. Again, this decomposition is carried out
manually by engineers. We also have the following rules:

• In order to avoid the number of inter-subsubsytem relations as much as possible, we avoid merging
the subsubsystem state variables decomposed from usage sub-phase-related state variables with those
decomposed from usage sub-phase-independent state variables. For the raw data processing subsystem
example, the state variable of Phase-ReqSV1-1 is usage sub-phase related, therefore, we keep its sub-
subsystem state variable CSC1, “USB data reader component,” independent of other subsubsystem
state variables.

• We can directly reuse the subsubsystem state variables decomposed from usage sub-phase-independent
state variables in all of the usage sub-phases. For the raw data processing subsystem example, the state
variable of Inter-ReqSV2 is usage sub-phase independent, therefore, its subsubsystem state variable
CSC2, “payload data processor component,” is reused in all of the four usage sub-phases.

• If state variables represents non-function requirements on subsystem level, sometimes there is not one-
to-one correspondence between components and the non-function requirement. We have to estimate
it on subsystem level. Therefore, in the model, we directly relate it to all of the subsubsystem state
variables. For the raw data processing subsystem example, its “RSR10: the data rate is 2M byte/s” is
a subsystem level non-function requirement. When we design and implement the subsystem, we must
keep in mind that it has effect on the data reader component, the data processing component, and the
data display component. Therefore, all of the further decomposed subsubsystem state variables, i.e.
CSC1, CSC2, and CSC3, are related to RSR10.

• After we got all of the subsubsystem state variables, a state variable assignment is carried out again.
The purpose is to reuse the subsubsystem state variables as much as possible. Thereafter, a good
design and implementation solution can be approximated. For the raw data processing subsystem
example, after the assignment, some components such as “CSC2: payload data processor component”
and “CSC3: payload data display component’ are reused in all of the usage sub-phases. CSC1 is
identified as an interface to the data receiver subsystem, therefore, it is an adapter and has different
states in accordance with the usage sub-phases.

As mentioned, such decomposition work ends when current decomposition meets the requirements from
the current development phase or programs can be implemented. Assuming the current development phase
is at System Requirement Analysis phase, a static system model is required. To simplify the complexity, we
only take the desktop-wired test sub-phase as an example. Its static system model is shown in Fig. 8.

SR1 SR2

RSR8

RSR10

RSR9

ReqSV1 ReqSV3

ReqSV10 Inter-ReqSV10-1
ReqSV11 Inter-ReqSV11-1

ReqSV12ReqSV2

Phase-ReqSV1-1Inter-ReqSV1-1 Inter-ReqSV2 Inter-ReqSV3 Inter-ReqSV3-1Inter-ReqSV2-1

CSC1

CSC2

CSC3

Figure 8. This is a SRR level static system model for the desktop-wired test sub-phase of the raw data
processing subsystem. With the on-going development process, the model can be refined. All of the state
variables in this model can be traced back to requirements.

As shown in Fig. 8, we can get the following information from the static system model:

11 of 14

American Institute of Aeronautics and Astronautics

• Three subsubsystem state variables are acquired: CSC1, CSC2, CSC3. CSC1 is from usage sub-phase-
related state variables, so we keep it independent of CSC2 and CSC3. CSC2 and CSC3 are from usage
sub-phase-independent state variables, so we can directly reuse them in the other usage sub-phases.

• Each state variable can be traced back to TRs. If a TR changes, we can immediately know the
affected state variables. Since the implementation will be accomplished at the end of the development
lifecycle and the model is refined accordingly, we can make a conclusion that every state variable can be
directly traced back to TRs. A benefit from this is the automatic test case generation and execution.
Furthermore, if there has been already a subsubsystem state variable whose TRs are exactly the same as
CSC1, CSC2, or CSC3, we can directly reuse it because of the same TRs. With the development process
goes on, the reuse possibility of other level model can also be evaluated. With such an advantage, we
can implement the reuse of intermediate products on each level even the whole development lifecycle.

• “RSR10: the data rate is 2M byte/s” is a non-functional performance requirement. It is stated for the
whole subsystem. All of the components should contribute to it. As can be seen in Fig. 8, RSR10 is
directly related to CSC1, CSC2, and CSC3. Such correspondence helps to ensure that all of the TRs
are exactly considered when we design and implement a subsystem.

C. Modeling Software Environment

One important aspect in implementing MBSE is to construct the model in a computer-aided environ-
ment. Therefore, we describe the modeling process with xCore.15 Firstly, a meta model that represents the
modeling process is generated. A tree view of the meta model can be seen in Fig. 9.

Figure 9. This is a tree view of the meta model representing the 3D state decomposition modeling process.
With data defintions in the meta model, state-based decompostition can be performed in the Eclipse Modeling
Framework (EMF).

As can be seen in Fig. 9, we can define the following items in the meta model:

• We can define TRs of a subsystem in the data type of “SystemRequirementItem”. All of the instances
of “SystemRequirementItem” are a list of TRs.

• We can define usage sub-phases in the data type of ”PhaseCategory”. It is based on usage state
requirements throughout the lifecycle of a space mission.

12 of 14

American Institute of Aeronautics and Astronautics

• We can define development phases in the data type of ”LevelCategory”. Thereafter, we can specify the
current level of a model or a state variable. For example, if the current model is a SRR level model,
then “LevelCategory” has a value of “RequirementAnalysisLevel”. With such a specification, we can
label a model with the synchronized review points. If we want to reuse the intermediate products of
a development process, we just need to evaluate the possibility to reuse the appropriate level model.
For a state variable, if it has a “LevelCategory” value, then it is marked as the last decomposed state
variable from its SRs or RSRs. For the raw data processing subsystem example, assuming that the
current development phase is at System Requirement Analysis phase, CSC1, CSC2, and CSC3 are the
last state variables of the current level model, then all of their “LevelCategory” are given a value of
“RequirementAnalysisLevel”.

• We can define state variables in the data type of “StateVariable”. At the very first beginning, they are
variables to represent states of TRs on subsystem level. With the decomposition work advances, they
turn into parameters in programs. In any case, they can trace back to the TRs.

• We can define the three kinds of relations in the data type of “PhaseRelation”, “InterRelation”, and
“InternalRelation”. With these relations, the model can be decomposed level by level until the sub-
system is implemented.

Since xCore is well integrated into Eclipse Modeling Framework (EMF),16 which is a model-based frame-
work for modeling and automatic code generation, engineers can use EMF’s graphical modeling environment
and manually construct a subsystem model. The model is stored as a “.xmi’ file, a standardized format.
Thereafter, model-based simulation as well as model-based verification and validation can be performed on
top of the model-based framework.

VI. Conclusion

As the first step to achieve the goals of MBSE, a 3D state decomposition modeling method was proposed
in this paper. With this method, information of a development process can be integrated into a model. Based
on the model, we will conduct further research on the following topics:

• An analysis of the information that has to be integrated into the model. As described in this paper,
the model in MBSE can be marked as a SRR level model, a PDR level model, a CDR level model, a
QR level model, or an AR level model according to current review points. Therefore, in order to carry
all of the information generated between these reviews, an analysis on what the information is and
how to integrate it into the model will be studied.

• An analysis of what can exactly be reused in different development phases. As described in this paper,
the intermediate development products could be reused on different levels. Therefore, an analysis on
what these products are and how to extract them from the model will be carried out.

• Automatic documentation generation. As described in this paper, in traditional document-based en-
gineering process, many documents have to be manually written and maintained, which is very time-
consuming and error-prone. Since MBSE integrates all of the information of a development process
into a model, it would be possible to automatically generate these documens. To make it a reality,
model-based simulation and model-based verification and validation methods will be developed. By
that time, the overheads caused by writing documentation will disappear and engineers can focus only
on the modeling work.

• Automatic test case generation and execution. As described in this paper, the model starts from
TRs and ends as programs. Therefore, a suite of test cases that can cover all of the TRs may be
automatically generated, even executed. The feasibility of the automatic test case generation and
execution will be demonstrated.

• Multidisciplinary analysis throughout the lifecycle of a space mission. As described in Section I, in
MDO, it is impossible to implement a lifecycle analysis because the multidisciplinary design model can
not trace back to requirements and the models for multidisciplinary analysis are not the same as the
models used inside one single discipline. Now, with a lifecyle model for one discipline, plus distributed

13 of 14

American Institute of Aeronautics and Astronautics

simulation technology such as HLA and high performance computation technology, it is reasonable
for us to conduct further research on a solution to perform consistent analysis and optimization of
multidisciplinary design models throughout the whole lifecycle of a space mission.

However, time-based behavior of states has not been included in the model yet. All of these problems
need to be studied and addressed in the future.

Our work is based on “Virtual Satellite” software framework, which leads to a novel solution to imple-
ment MBSE throughout the whole lifecycle of a space mission.

Acknowledgments

The authors would like to acknowledge the financial support from the China Scholarship Council (CSC)
for this research.

References

1“IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)-Framework and Rules,” August
2010, URL: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5553438 [cited 9 August 2012].

2Sobieszczanski-Sobieski, J. and Haftka, R. T., “Multidisciplinary Aerospace Design Optimization: Survey of Recent
Developments,” Structural Optimization, Vol. 14, 1997, pp. 1-23.

3“IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)-Object Model Template (OMT)
Specification,” August 2010, URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5557731&contentType=Standards
[cited 9 August 2012].

4Reid, M., “An Evaluation of the High Level Architecture (HLA) as a Framework for NASA Modeling and Simulation,”
Proceedings of the 25th NASA Software Engineering Workshop, Goddard Space Flight Center , Maryland, November 2000.

5Agte, J., deWeck, O., Sobieszczanski-Sobieski, J., Arendsen, P., Morris, A., and Spieck, M., “MDO: Assessment and
Direction for Advancement - an Opinion of One International Group,” Structural and Multidiscipilnary Optimization, Vol. 40(1),
2010, pp. 17–33.

6“ECSS-M-ST-10C Rev.1 - Project planning and implementation,” URL: http://www.ecss.nl [cited 20 July 2012].
7“ECSS-E-ST-10-06C - Technical requirements specification,” URL: http://www.ecss.nl [cited 20 July 2012].
8“ECSS-E-ST-40C Space Engineering - Software,” URL: http://www.ecss.nl [cited 20 July 2012].
9Jansma, P. A. T. and Jones, R. M., “Advancing the Practice of Systems Engineering at JPL,” IEEE Aerospace Con-

ference, Big Sky, Montana, USA, March 4-11 2006.
10Schaus, V., Fischer, P. M., Luedtke, D., Braukhane, A., Romberg, O., and Gerndt, A., “Concurrent Engineering

Software Development at German Aerospace Center - Status and Outlook,” Proceedings of the 4th International Workshop on
System and Concurrent Engineering for Space Applications, European Space Agency (ESA), 2010.

11“ECSS-E-TM-10-25A Space Engineering-Engineering Design Model Data Exchange (CDF),” URL:
http://atlas.estec.esa.int/uci wiki/tiki-index.php [cited 20 July 2012].

12“ECSS-E-TM-10-23A Space Engineering-Space System Data Repository,” URL: http://atlas.estec.esa.int/uci wiki/tiki-
index.php [cited 20 July 2012].

13Ingham, M., Rasmussen, R., Bennett, M., and Moncada, A., “Engineering Complex Embedded Systems with State
Analysis and the Mission Data System,” AIAA Intelligent Systems Technical Conference, AIAA, Chicago, IL, USA, September
20-22 2004.

14Rasmussen, R., Ingham, M., and Dvorak, D., “Achieving Control and Interoperability through Unified Model-based
Systems and Software Engineering,” AIAA Infotech at Aerospace 2005, Arlington, VA, Arlington, VA, USA, September 26-29
2005.

15URL: http://wiki.eclipse.org/Xcore [cited 20 July 2012].
16Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E., EMF: Eclipse Modeling Framework, 2nd ed , Addison-

Wesley, 2009.

14 of 14

American Institute of Aeronautics and Astronautics

	Introduction
	Characteristics of a Space System
	Development Process of a Space System
	Lifecycle Definition in the Space Domain
	Traditional Document-based Development Lifecyle

	Model-Based Systems Engineering (MBSE)
	Requirements of a Model for MBSE
	Current Work in MBSE

	3D State Decomposition Modeling Method
	Hypothesis
	Modeling Process
	Step 1: Make a List of a subsytem's (related) TRs
	Step 2: State Variables Identification for each TR
	Step 3: 3D Relation Analysis
	Step 4: State Variable Assignment to each Usage Sub-phase
	Step 5: Further Identification of State Variables for each State Variable

	Modeling Software Environment

	Conclusion

