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Abstract – Land degradation processes in the subtropical 

Thicket Biome in the Eastern Cape Province, South Africa, 

are observed and monitored. As a result, a significant loss of 

soil quality on such sites has been recorded. This study 

focuses on the determination of fundamental soil 

parameters like organic carbon, iron, and clay in order to 

assess ecosystem degradation. The test site in South Africa is 

surveyed for ground truth and hyperspectral image data are 

obtained. We take advantage of spectral mixture analysis to 

approximate the ‘pure’ soil signal from mixing pixel 

signatures. For a subsequent quantification of soil 

parameters, spectral feature analysis is linked with multiple 

linear regression techniques. For organic carbon and iron, 

calibrations of high accuracy are used for the prediction of 

image data. The results highly correlate with measured 

contents. In contrast, the quantification of clay content is 

still problematic mostly due to the existence of soil 

structural crusts. 

 

Keywords: Land degradation, soil organic carbon, imaging 
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1. INTRODUCTION 

 

The Subtropical Thicket Biome (Eastern Cape Province, South 

Africa) with its dense shrub vegetation in pristine conditions 

stores exceptionally large amounts of carbon for a semi-arid 

region. The predominant endemic succulent shrub Portulacaria 

afra (colloquially called Spekboom) accounts for the fixation of 

large amounts of carbon in its biomass and the peripheral soils. 

Once this type of ecosystem is degraded, it is not able to recover 

naturally. During the degradation process, mainly due to 

overgrazing by goats, semi-arid shrub land with a closed canopy 

changes to an open savannah-like system (figure 1). This is  

 

 
 

Figure 1.  Highly degraded on the one side and on the other side 

only slightly influenced nearly pristine Thicket shrub 

vegetation. Those high contrasts can be found at fence lines 

between pasture and game farms in the Eastern Cape Province. 

accompanied by a severe loss of biodiversity and ecosystem 

carbon stocks (Mills and Fey, 2003). Quantitative maps 

outlining the amount of soil organic matter, as well as iron and 

clay content in the soils of degraded Thicket ecosystems, would 

be very valuable to steer the ongoing restoration activities in the 

area. Therefore, spatially continuous quantitative information 

derived from remote sensing data is of high interest for the area. 

 

This research study aims at quantifying key soil parameters 

(organic carbon, iron, and clay content) based on airborne 

hyperspectral data. A combination of spectral feature analysis 

and multivariate statistical approaches are applied. This paper 

presents the methodological framework and intermediate results 

of the delineation of soil constituents focusing on organic 

carbon. The potential of using spectral information in the visible 

and shortwave infrared range for quantitative analysis of soil 

properties is well known. Many studies exist where laboratory, 

field, and airborne hyperspectral data in combination with 

different modelling approaches are used to describe constituents 

of the upper soil layer (e.g. Gomez et. al, 2008, Stevens et. al, 

2008). A summary of key studies using imaging spectroscopy to 

study soil properties can be found in Ben-Dor et. al, 2009. 

 

 

2. BASE DATA AND METHODS 

 

Thicket shrub vegetation covers approximately 10 % of the land 

area of the Eastern Cape Province. The slightly hilly terrain is 

mainly used for livestock and game farming. The underlying 

shales and sandstones have resulted in the development of 

loamy and sandy soils at surface (Cambisols and Luvisols, see 

Mills and Cowling, 2006). Within this region a test area (75 x 3 

km) was selected with the highest variance of Subtropical 

Thicket vegetation classes (see figure 2). This increases the 

transferability of methods developed to the entire Thicket 

Biome region. 

 

 
 

Figure 2.  Distribution of Subtropical Thicket Vegetation and 

location of the research area in the Eastern Cape, South Africa. 
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Table A.  Range of values determined by chemical analysis of 

164 collected soil samples (analysis conducted by 

University of Stellenbosch, South Africa). 

 

 Corg [%] Iron [%] Clay [%] 

Min 0.21   0.90   0.00 

Max 5.85 10.62 23.80 

Mean 1.21   3.06   6.46 

 

Hyperspectral remote sensing data obtained from the airborne 

HyMap sensor (operated by HyVista Corporation, Australia) 

were recorded over the study area in October 2009. Additional 

ground reference data was collected in two field surveys in 

2009. Within 164 plots, field spectra of exposed soils (using an 

ASD Field Spec Pro Spectrometer), soil samples, information 

about vegetation coverage density and type, and surface 

conditions (especially soil crusts and stone coverage) were 

taken. The soil samples were chemically analysed for organic 

carbon, dithionite extractable iron, and clay content using the 

Walkley-Black, CBD and pipette method, respectively (see 

table A). After the samples were dried, ground and sieved, the 

soil fraction less than 2 mm was spectrally measured in the 

laboratory. Hyperspectral image data are orthorectified and 

corrected for atmospheric effects using the ATCOR procedure 

including inflight calibration to enhance the accuracy of spectral 

signals (Richter, 2010). HyMaps bad bands (1, 95 to 100) are 

removed and a Savitzky-Golay filter is applied to remove small 

remaining artefacts. Field and laboratory data sets are also 

Savitzky-Golay filtered and resampled to HyMaps spectral 

resolution and the 119 suitable spectral bands. 

 

2.1  Spectral Mixture Analysis 

To minimize the spectral influence of vegetation on a non 

homogenous soil pixel, a linear mixture model is applied. For 

selected subscenes potential spectral endmembers are derived 

using the automated Sequential Maximum Angle Convex Cone 

approach (SMACC, see Gruninger et. al, 2004). The algorithm 

searches for extreme pixels in the n-dimensional feature space 

of hyperspectral image data. To support the detection of 

endmembers for bare soil and dry vegetation SMACC is also 

applied to a preclassified image, where pixels with a 

Normalized Differenced Vegetation Index (NDVI) higher than 

0.2 are excluded. From this pool of endmembers we selected 

five to six endmembers for each of the classes: photosynthetic 

active vegetation (PV), non-photosynthetic active vegetation 

(NPV), and bare soil (BS). To perform linear spectral unmixing 

we utilized Multiple Endmember Spectral Mixture Analysis 

(µMESMA) according to Bachmann, 2007. This approach was 

developed for the retrieval of subpixel ground cover fractions in 

semi-arid regions. A high accuracy for µMESMA unmixing was 

detected for semi-arid regions in south-western Spain which is 

characterised by similar land coverage (Bachmann, 2007). The 

automated algorithm derives quantitative cover fractions for the 

two vegetation classes PV and NPV and BS according to the 

basic equation of the linear mixture model 

 

AEMS ⋅=        (1) 

 

The spectrum S measured in m bands can be modeled by the 

endmember matrix EM with n endmembers and the abundance 

matrix A of the dimensions m*n. µMESMA is applied using a 

partially constrained algorithm, with abundances of each class 

between 0 and 1, but the sum-to-1 constraint not fulfilled. 

 

2.2  Approximation of soil signature 

The unmixing results are used to approximate the soil spectral 

signal by simple residual analysis of the linear mixture equation 

NPVNPVPVPV AEMAEMSSR ⋅−⋅−=     (2) 

 

with the soil residuum SR, the original pixel spectrum S and the 

particular endmember EM of PV and NPV used by µMESMA 

to determine the related abundances A for each spectrum. The 

residual part we refer to as soil residuum SR, which includes the 

spectral signal coming from the soil fraction and any 

unexplained signals not triggered by bare soil or the two 

vegetation classes. A successful approximation of the soil signal 

presumes in the first instance an accurate mixture model for 

each pixel and some additional criteria that assure the quality of 

the extracted spectra. The following quality requirements are set 

up to filter out these pixels: Sum of the three abundances not 

less than 0.5, minimal soil abundance of 0.4, abundance of PV 

or NPV not higher than 0.25, and a low root mean squared error 

(RMSE). In addition, the mean reflectance of the extracted soil 

residuum is set to be above 10 %, to filter out dark pixels where 

eventually unexplained signal highly influences the calculated 

soil residuum. A pixel fulfilling these requirements is supposed 

to show a valid soil spectrum, while other pixels are masked. 

 

Figure 3 shows examples for approximated soil spectra of two 

pixels with different soil fractions. For the pixel spectrum of 

example 1 µMESMA calculated abundances of 3 % for PV and 

13 % for NPV, respectively, while example 2 shows the 

extracted soil residuum for a comparably dark pixel with 3 % of 

PV and 24 % of NPV. To approximate the 100 % soil 

endmember of each pixel the calculated residual spectrum is 

scaled according to the remaining abundance of SR with 

 

NPVPVSR A-A-1A =       (3) 

 

Hence, the reconstructed soil residuum of example 1 is brighter 

(ASR = 0.84) and the soil residuum of example 2 (ASR = 0.73) 

darker than the related original pixel spectrum. In the visible 

range a reduction of the red edge characteristic for vegetation is 

apparent. 
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Figure 3.  Examples for reconstructed ‘pure’ soil signatures 

from pixel spectra of different µMESMA abundances. 

   Original pixel spectrum,    scaled approximated soil residuum. 

 

2.3  Determination of soil constituents 

A first analysis for testing the correlation of soil spectral 

signatures with measured soil contents was conducted for the 

laboratory and field dataset by using statistical regression 

techniques. For this purpose the ParLes software for 

chemometrics which is based on partial-least-squares regression 

was applied (Viscarra Rossel, 2008). Correlation accuracies of 

R2
Cal between 0.75 and 0.83 were achieved for soil organic 

carbon, iron, and clay (Bayer, 2010). 
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Table B.  Number of spectral features used and total number of 

calculated variables for determination of key soil constituents. 

 

 

Absorption 

features 

(6 var.) 

Curve 

features 

(1 var.) 

Features of 

convex hull 

(2 var.) 

Total 

number of 

variables 

Corg 2 0 2 16 

Iron 3 1 1 21 

Clay 4 0 2 28 

 

The approximated soil spectra are used for the quantification of 

the three chosen soil parameters from airborne hyperspectral 

image data. The developed approach parameterises 

characteristic spectral features and determines their relationship 

to measured chemical contents by subsequent regression 

analysis. In the first step, the input spectra are analysed for 

spectral characteristics in terms of specific absorption features 

(AF), features of the spectral curve itself (CV), and its 

continuum as convex hull of each spectrum (CO). Diagnostic 

spectral characteristics described in respective literature are 

included here (e.g. Viscarra Rossel and Behrens, 2010, Gomez 

et. al, 2008). For instance, for delineation of organic carbon two 

AF (around 1726 and 2340 nm) and two CO features (VIS 

range between 450 and 740 nm and NIR/SWIR range between 

1000 and 1750 nm) are used. Special care is taken not to include 

spectral characteristics in wavelength ranges where typical 

features of PV and NPV occur. This minimises the influence of 

vegetation signature potentially remaining in the spectrum of 

the approximated soil residuum. Each AF is parameterised from 

continuum removed spectra by the following six variables: 

depth and wavelength of maximal absorption, absorption at 

supposed characteristic wavelength, feature width, area, and 

asymmetry. Each CV feature is characterised by the mean slope 

of the spectral curve in a defined wavelength range. For CO 

features the mean slope and mean reflectance of the convex hull 

in a defined wavelength range are calculated. Table B shows the 

number of spectral features analysed for the determination of 

soil organic carbon, iron, and clay. 

 

With the calculated feature variables and the chemical reference 

values related to this parameter, a first multiple regression 

including leave-one-out analysis was conducted to identify and 

remove outlier samples as well as insignificant variables. 

Variables are considered insignificant if the absolute value of a 

regression coefficient is smaller than twice its standard 

deviation, calculated during the leave-one-out analysis (see 

Kessler, 2007). According to the partial-least squares principle a 

final multiple linear regression model is established for each 

soil parameter including the related significant feature variables 

and chemical reference values. 

 

 

3. RESULTS 

 

On the hyperspectral image data of the Thicket Biome, South 

Africa, spectral mixture analysis was carried out with overall 

low RMSE errors. Thus, it can be assumed that with the three 

classes PV, NPV, and BS and the given endmembers the 

mixture model is capable of modelling most of the spectral 

mixture for the specific land coverage and species occurrence 

present in the Thicket Biome. An example of image-derived 

abundances and calculated RMSE is given in Figure 4. Areas 

where green vegetation is detected correlate with vegetated 

spots clearly visible in the coloured-infrared image. Dry 

vegetation appears throughout the image, pixel having between 

15 and 35 % NPV are prevalent. Bare soil is the dominant 

fraction with abundances between 35 and 80 %, except where 

green vegetation is present. The results show that the majority 

of pixels in this ecosystem can be explained with sufficient 

accuracy. A mixture of bare soil and dry vegetation is 

predominant. 

 

The calibration accuracy R2
cal of the regression model 

developed for organic carbon is 0.89 for the laboratory spectral 

dataset and with 0.82 slightly lower when utilizing the field 

dataset. The accuracy for iron is 0.79 and for clay 0.54, 

respectively (laboratory dataset). Thus, the model accuracies for 

soil organic carbon and iron, determined by a combination of 

spectral feature analysis combined with linear multiple 

regression techniques, are in the same range as statistical PLSR 

approaches provide. Though, the described approach is thought 

to be more robust as it reduces statistical adaptation. Thus it will 

allow a transfer of the established regression coefficients to 

hyperspectral airborne data collected of the study area. 

 

Prediction results are shown with the focus on soil organic 

carbon (figure 5). The calibration was done by using the 

laboratory spectral dataset. So as to take neighbourhood effects 

into account, a moving window filter is applied to the maps of 

pixelwise calculated soil organic carbon contents. The filter with 

a small kernel size of 3 averages a pixel if no more than two 

pixels are missing in its direct surrounding. Thus, the filter 

interpolates singular missing pixels but does not extrapolate into 

borders of larger areas of excluded pixels (compare figure 5 A 

and B). The small filter kernel retains the manipulation of the 

statistics of calculated values at a low extent. Calculated Corg 

 

 
 

  

  

  

  
 

Figure 4.  µMESMA derived quantitative cover fractions for a 

detail of the HyMap data (shown as coloured-infrared image). 

The abundances for classes photosynthetic active vegetation 

(PV), non-photosynthetic active vegetation (NPV), and bare soil 

(BS) are given as well as the RMSE determined for each pixel. 

CIR 

NPV PV 

BS RMSE 

0      1 0      1 
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Figure 5.  Quantification of soil organic carbon from HyMap 

image data, A: Derived contents of soil organic carbon grouped 

in classes ranging up to 4.0 % Corg, B: Reasonings for exclusion 

of pixels (1: Abundance of PV or NPV > 0.25, 2: High RMSE, 

3: Sum of abundances < 0.5, 4: Soil abundance < 0.4, 5: 

Inaccurate calculation of Corg by feature-based model, 6: Mean 

reflectance of extracted soil residuum < 10 %). 

 

ranges from 0 to 4.0 %, reaching the highest values in the 

surrounding of spots with green and dry vegetation, respectively 

(figure 5 A). This can be a result of vegetation signal remaining 

after the extraction procedure. As well it can be logical 

consequence of increased input of organic carbon around 

growing and recycled vegetation. Figure 5 B shows the detailed 

reasoning for the exclusion of pixels where no soil organic 

carbon could be quantified. Nevertheless, the ‘valid’ pixels 

provide a detailed impression of soil organic carbon distribution 

close to the surface. The comparison of calculated contents of 

soil organic carbon with chemical contents measured from field 

samples show good correlations. This leads to the assumption 

that for this purpose a calibration established using laboratory 

spectral data can be transferred to airborne hyperspectral data. 

 

Comparable feature-based approaches are also conducted for 

soil iron and clay content. Especially when focussing on clay, 

surface structural crusts must be taken into account. This is 

because in crusted soils, clay content is increased directly at the 

surface and slightly reduced underneath. 

 

 

4. CONCLUSIONS AND OUTLOOK 

 

From the preliminary results it is concluded that a detailed 

quantification of soil organic carbon can be achieved with the 

proposed combination of methods. Spectral mixture analysis is 

applied as a type of pre-treatment step for the modelling of 

‘pure’ soil spectra from mixing signatures by residual analysis. 

Subsequent analysis of characteristic spectral features 

(absorption features, characteristics of the spectral curve itself, 

and its continuum) are linked to measured chemical contents 

using multiple regression techniques. High correlation 

accuracies can be determined for the calibration by using 

laboratory and field spectral datasets (R2
Cal = 0.89 for Corg). 

Results predicting soil organic carbon from airborne HyMap 

image data show a high correlation with contents of the upper 

soil layer measured from field samples. Detailed maps of soil 

parameters help to visualise the total ecosystem degradation and 

current status of the Thicket Biome region. Degradation trends 

can be monitored with ongoing surveys. 

 

Further research aims to enhance the described methodology as 

well as to draw special attention to the influences of land 

coverage and surface conditions (e.g. soil structural crusts) on an 

accurate derivation of soil constituents. To link soil surface 

information with the deeper profile, another field survey with a 

detailed mapping of soil profiles and soil types in the working 

area is scheduled for summer 2011. A further objective is to test 

and adapt the proposed methodology on data with the designated 

specifications of the future EnMAP satellite in order to allow for 

future satellite surveys. 
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