Inbetriebnahme einer Testanlage und experimentelle Untersuchung zur katalytischen Dehydrierung ausgewählter Komponenten von Kerosin für die Wasserstoff-erzeugung im Flugzeug

Bachelorarbeit

am Deutschen Zentrum für Luft- und Raumfahrt e.V.
Institut für Technische Thermodynamik
Betreuerin: Dipl.-Ing. Karolina Pearson

Hochschule Ansbach
Energie- und Umwelsystemtechnik
Prof. Dr. Hans-Achim Reimann

vorgelegt von
Christopher Müller-Braun
Matrikelnummer: 36854
Juli 2012
Erklärung

Ich versichere, dass ich die Arbeit selbstständig angefertigt, nicht anderweitig für Prüfungszwecke vorgelegt, alle benützten Quellen und Hilfsmittel angegeben, sowie wörtliche und sinngemäße Zitate gekennzeichnet habe.

Ort, Datum ____________________________ Unterschrift ___________________________
Inhaltsverzeichnis

Erklärung .. 1

Inhaltsverzeichnis .. I

Formelzeichen ... IV

Abkürzungsverzeichnis .. IV

Formelverzeichnis .. V

Tabellenverzeichnis ... VI

Abbildungsverzeichnis ... VII

1. Hintergründe zu dem Projekt Green Air .. 1

 1.1. Vorstellung des Projekts .. 1

 1.1.1. Elektrifizierung im Flugzeug ... 2

 1.1.2. Einsatz der Brennstoffzelle .. 2

 1.2. Methoden der Wasserstofferzeugung .. 4

 1.2.1. Elektrolyse ... 4

 1.2.2. Dampfreformierung ... 5

 1.2.3. Partielle Oxidation .. 6

 1.2.4. Autotherme Reformierung ... 7

 1.2.5. Kværner-Verfahren .. 7

 1.2.6. Vergasung ... 8

 1.2.7. Biochemische Herstellung ... 8

 1.3. Dehydrierung in der Industrie ... 9

 1.3.1. Adiabatischer Festbettreaktor ... 9

 1.3.2. Isothermer Festbettreaktor ... 10

 1.3.3. Wanderbettverfahren ... 11

 1.3.4. Fließbettverfahren .. 11
1.4. Katalytische Dehydrierung von Kerosin für Fahrzeuge ... 12

2. Grundlagen zu den Versuchen ... 15

2.1. Chemische Grundlagen der Dehydrierung ... 15

2.2. Eigenschaften von Kerosin ... 16

2.3. Funktion des Katalysators ... 19

2.4. Versuchsbedingungen aus der Literatur ... 22

3. Experimente ... 23

3.1. Auslegung der Testanlage .. 23

3.1.1. Aufbau des Teststandes ... 23

3.1.2. Regelung der Stellelemente ... 26

3.1.3. Analysegeräte und Messtechnik .. 27

3.2. Versuchsplan zur Ermittlung der Betriebsbedingungen ... 29

3.3. Durchführung der Versuche .. 30

3.3.1. Aufbereitung des Katalysators ... 30

3.3.2. Dehydrierung von Kohlenwasserstoffen .. 32

3.3.3. Rektifikation von Jet A-1 Kerosin ... 33

4. Versuchsergebnisse und Auswertung .. 35

4.1. Auswerteprogramm in Visual Basic for Applications .. 35

4.2. Diskussion der Ergebnisse .. 40

4.2.1. Einfluss der Durchflussmenge .. 40

4.2.2. Einfluss des Drucks ... 43

4.2.3. Einfluss der Kontaktzeit zum Reaktorbett .. 47

4.2.4. Auswirkung eines Wasserstoff Co-Feeds .. 51

4.2.5. Versuche mit Reinstoffen ... 57

4.2.6. Untersuchung von Kerosinfraktionen .. 61

4.2.7. Versuch zur Reduzierung der Verkokung ... 65
5. Zusammenfassung und Ausblick ... 67
 5.1. Zusammenfassung .. 67
 5.2. Fazit ... 67
 5.3. Ausblick .. 68

Literaturverzeichnis ... 70
Anhang ... 71
Formelzeichen

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Erläuterung</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>\dot{V}</td>
<td>Volumenstrom</td>
<td>m³/h</td>
</tr>
<tr>
<td>X_{H_2}</td>
<td>Wasserstoffkonzentration</td>
<td>vol-%</td>
</tr>
<tr>
<td>\dot{m}</td>
<td>Massenstrom</td>
<td>kg/h</td>
</tr>
<tr>
<td>$x_{Lehrraum}$</td>
<td>Lehrraum zwischen Pellets</td>
<td>-</td>
</tr>
<tr>
<td>i.N.</td>
<td>in Normzustand</td>
<td>-</td>
</tr>
<tr>
<td>M</td>
<td>Masse</td>
<td>Kg</td>
</tr>
<tr>
<td>P</td>
<td>Druck</td>
<td>Bar</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
<td>%</td>
</tr>
<tr>
<td>T</td>
<td>Zeitpunkt der Messung</td>
<td>S</td>
</tr>
<tr>
<td>V</td>
<td>Volumen</td>
<td>m³</td>
</tr>
<tr>
<td>ΔH</td>
<td>Energie</td>
<td>kJ/mol</td>
</tr>
<tr>
<td>P</td>
<td>Dichte</td>
<td>kg/m³</td>
</tr>
</tbody>
</table>

Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABB</td>
<td>Asea Brown Boveri</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Aluminiumoxid</td>
</tr>
<tr>
<td>APU</td>
<td>auxiliary power unit</td>
</tr>
<tr>
<td>Ausb.</td>
<td>Ausbeute</td>
</tr>
<tr>
<td>DLR</td>
<td>Deutsches Zentrum für Luft- und Raumfahrt</td>
</tr>
<tr>
<td>EADS</td>
<td>European Aeronautic Defence and Space Company</td>
</tr>
<tr>
<td>FBD</td>
<td>fluizided bed dehydrogenation</td>
</tr>
<tr>
<td>FBG</td>
<td>Fernleitungs-Betriebsgesellschaft</td>
</tr>
<tr>
<td>FC</td>
<td>Fuel Cell</td>
</tr>
<tr>
<td>FCV</td>
<td>Fuel Cell Vehicle</td>
</tr>
<tr>
<td>FID</td>
<td>Flammenionisationsdetektor</td>
</tr>
<tr>
<td>GC</td>
<td>Gaschromatographie</td>
</tr>
<tr>
<td>JTI</td>
<td>Joint Technology Initiative</td>
</tr>
<tr>
<td>Symbol</td>
<td>Erläuterung</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>K</td>
<td>Kalium</td>
</tr>
<tr>
<td>MFC</td>
<td>mass flow controller</td>
</tr>
<tr>
<td>MS</td>
<td>Massenspektroskopie</td>
</tr>
<tr>
<td>NECAR</td>
<td>new electric car</td>
</tr>
<tr>
<td>PAF</td>
<td>microwave plasma assisted reforming</td>
</tr>
<tr>
<td>PDh</td>
<td>partial dehydrogenation fuel processing</td>
</tr>
<tr>
<td>Pt</td>
<td>Platin</td>
</tr>
<tr>
<td>R</td>
<td>Reaktor</td>
</tr>
<tr>
<td>r.K.</td>
<td>reale Kontaktzeit</td>
</tr>
<tr>
<td>Sec</td>
<td>Sekunde</td>
</tr>
<tr>
<td>Sn</td>
<td>Zinn</td>
</tr>
<tr>
<td>SPS</td>
<td>speicherprogrammierbare Steuerung</td>
</tr>
<tr>
<td>STAR</td>
<td>steam activated reforming</td>
</tr>
<tr>
<td>ULSK</td>
<td>ultra low sulphur kerosine</td>
</tr>
<tr>
<td>VBA</td>
<td>Visual Basic for Applications</td>
</tr>
<tr>
<td>WLD</td>
<td>Wärmeleitfähigkeitsdetektor</td>
</tr>
</tbody>
</table>

Formelverzeichnis

Formel 1.1: Oxidation an der Anode ... 3
Formel 1.2: Reduktion an der Kathode ... 3
Formel 1.3: Wasserstoff aus Elektrolyse ... 5
Formel 1.4: Bei der Reduktion entsteht Sauerstoff .. 5
Formel 1.5: Aus Methan wird Wasserstoff und Kohlenmonoxid 5
Formel 1.6: Wassergas-Shift-Reaktion ... 6
Formel 1.7: Summengleichung der Dampfreformierung ... 6
Formel 1.8: Aus dem Kohlenwasserstoff wird Wasserstoff und Kohlenmonoxid 6
Formel 1.9: Die Shift-Reaktion ... 6
Formel 1.10: Die autotherme Reformierung ... 7
Formel 1.11: Das Kværner-Verfahren ... 8
Formel 1.12: Boudouard-Reaktion ... 8
Formel 1.13: Vergasungsreaktion .. 8
Formel 1.14: Wassergas-Shift-Reaktion.. 8
Formel 1.15: Wasserstoff aus bakteriellem Stoffwechsel .. 9
Formel 1.16: Steamreforming mit Methanol .. 14
Formel 2.1: Methylcyclohexan zu Toluol ΔH=205kJ/mol ... 16
Formel 2.2: Cyclohexan zu Benzol ΔH=206kJ/mol ... 16
Formel 2.3: Decalin zu Naphthalin ΔH=332kJ/mol .. 16
Formel 2.4: Aufbereiten des Katalysators ... 21
Formel 3.1: Theoretischer Volumenstrom an produziertem Wasserstoff 23
Formel 3.2: Decalin dehydriert über Tetrahydronaphthalin zu Naphthalin 29
Formel 3.3: Volumenstrom Gas .. 30
Formel 3.4: Masse an nötigem Katalysator aus Reaktorbett und Reaktorbettdichte 30
Formel 4.1: Wasserstoffstrom im Produktgas .. 37
Formel 4.2: Zunahme des Wasserstoffs in der Anlage .. 37
Formel 4.3: Zunahme des Wasserstoffs in den Leitungen ... 37
Formel 4.4: Insgesamt erzeugter Wasserstoff .. 38
Formel 4.5: Definition der Ausbeute ... 38
Formel 4.6: Definition der Produktivität ... 38
Formel 4.7: Berechnung der realen Kontaktzeit .. 40

Tabellenverzeichnis

Tabelle 1.1: Vergleich der Wasserstoff-Herstellungsverfahren .. 7
Tabelle 2.1: Stoffgruppenverteilung des verwendeten Jet A-1 Kerosins in gew-% 18
Tabelle 3.1: Versuchsplan zur Ermittlung der besten Versuchsbedingungen 29
Tabelle 4.1: Gemittelte Ergebnisse bei 1 bar Druck ... 42
Tabelle 4.2: Gemittelte Ergebnisse bei 5 bar Druck ... 44
Tabelle 4.3: Kohlenstoff auf dem Katalysator in Masseprozent nach den Versuchen 46
Tabelle 4.4: Bisherige Erkenntnisse aus Druck, Space Time und Feed-Menge für die Ausbeute ... 49
Tabelle 4.5: Übersicht über die Versuche mit Wasserstoff als Co-Feed 55
Abbildungsverzeichnis

Abbildung 1.1: APU am Heck eines Flugzeugs (20) ... 1
Abbildung 1.2: Funktionsprinzip der Brennstoffzelle (6) ... 3
Abbildung 1.3: Schema zur Stromerzeugung mit Brennstoffzelle im Flugzeug (1) 3
Abbildung 1.4: Schema der Dampfreformierung .. 6
Abbildung 1.5: Partielle Oxidation ... 7
Abbildung 1.6: Schema der autothermen Reformierung ... 7
Abbildung 1.7: Adiabates Festbettverfahren .. 10
Abbildung 1.8: Isothermer Festbettreaktor .. 10
Abbildung 1.9: Wanderbettverfahren ... 11
Abbildung 1.10: Fließbettverfahren ... 12
Abbildung 1.11: Das Schema eines möglichen Kohlenwasserstoffkreislauf als
Wasserstoffspeicher (9) ... 13
Abbildung 1.12: Necar 5 von Daimler Chrysler .. 14
Abbildung 2.1: Stoffzusammensetzung des verwendeten Jet A-1 Kerosins 19
Abbildung 2.2: Kristallstruktur von Metallen ... 19
Abbildung 2.3: Links vorne der Pulverkatalysator, rechts vorne die Pellets. Im Hintergrund ein
Glaswollestopfen zum fixieren des Katalysators im Reaktorohr mit Überwurfmutter 21
Abbildung 3.1: Schema zum Aufbau der Anlage ... 24
Abbildung 3.2: Versuchsareal zur katalytischen Dehydrierung ... 26
Abbildung 3.3: Die Benutzeroberfläche der SPS-Steuerung ... 27
Abbildung 3.4: Gesamter Versuchsstand zur partiellen Dehydrierung 28
Abbildung 3.5: Reaktorohr mit Überwurfmuttern für einfaches entnehmen. Im Vordergrund
der Katalysator in Pulver- und Pelletform und ein Glasstopfen zum Packen des Katalysators
... 31
Abbildung 3.6: Start der automatischen Aufbereitung .. 32
Abbildung 3.7: Charakteristischer Temperatureinbruch (grün) zu Beginn des Versuchs 33
Abbildung 3.8: Teststand zur Rektifikation und katalytischen Dehydrierung 34
Abbildung 4.1: Vergleich der beiden Wasserstoffmessungen an einem beliebigen Versuch . 36
Abbildung 4.2: Beispielhaftes Ergebnis der automatischen Versuchsauwertung
(Mittelwerte) .. 39
Abbildung 4.3: Beispielhaftes Ergebnis der automatischen Versuchsauwertung (Verlauf) .. 39
Abbildung 4.4: Mittelwerte der Produktivität bei 2 Sekunden Space Time und 1 bar Druck . 41
Abbildung 4.5: Verkokung der Katalysatorpellets nach dem Versuch................................. 41
Abbildung 4.6: Mittelwerte der Ausbeute bei 2 Sekunden Space Time und 1 bar Druck 42
Abbildung 4.7: Produktivität Wasserstoff bei 1 bar Druck .. 43
Abbildung 4.8: Ausbeute Wasserstoff bei 1 bar Druck ... 43
Abbildung 4.9: Produktivität Wasserstoff bei 5 bar Druck .. 44
Abbildung 4.10: Ausbeute Wasserstoff bei 5 bar Druck ... 44
Abbildung 4.11: 1 bar Druck, 2 Sekunden Space Time ... 45
Abbildung 4.12: 5 bar Druck, 2 Sekunden Space Time ... 45
Abbildung 4.13: 1 bar Druck, 6 Sekunden Space Time ... 45
Abbildung 4.14: 5 bar Druck, 6 Sekunden Space Time ... 45
Abbildung 4.15: 1 bar Druck, 10 Sekunden Space Time ... 45
Abbildung 4.16: 5 bar Druck, 10 Sekunden Space Time .. 45
Abbildung 4.17: Kohlenstoff auf dem Katalysator .. 47
Abbildung 4.18: Ausbeute angeordnet nach realer Kontaktzeit .. 48
Abbildung 4.19: Produktivität angeordnet nach realer Kontaktzeit ... 48
Abbildung 4.20: Vergleich Druck und reale Kontaktzeit .. 49
Abbildung 4.21: Reinheit des produzierten Wasserstoffs ... 50
Abbildung 4.22: Farbunterschied der Katalysatoroberfläche nach dem Versuch..................... 51
Abbildung 4.23: Bisherige Verkokung ... 51
Abbildung 4.24: Produktivität der beiden bisher besten Versuche ... 51
Abbildung 4.25: Versuch mit fünf Volumenprozent Wasserstoff als Co-Feed 52
Abbildung 4.26: Verkokung mit H₂ ... 52
Abbildung 4.27: Drei Versuche mit Bedingungen der Green Air Partner 53
Abbildung 4.28: Vergleich eines Green Air Versuchs (7,5 bar) mit Versuchen mit 5 bar Druck ... 54
Abbildung 4.29: Entstehende Gase bei den Versuchen ... 55
Abbildung 4.30: Versuch mit 6 Sekunden Space Time im Vergleich mit den Vorangegangenen bei 2 Sekunden ... 56
Abbildung 4.31: Versuch mit 20 g/h Feed im Vergleich mit den Vorangegangenen bei 30 g/h ... 57
Abbildung 4.32: Versuch mit Decalin und 30 g/h Feed-Strom ... 58
Abbildung 4.34: Versuch mit Decalin und 10 g/h Feed-Strom .. 60
Abbildung 4.35: Verkokung mit Decalin... 60
Abbildung 4.36: Reinheit Wasserstoff.. 61
Abbildung 4.37: Stoffzusammensetzung der Kerosinfraktionen .. 62
Abbildung 4.38: Fraktioniertes Kerosin 5 w-% ... 63
Abbildung 4.39: Fraktioniertes Kerosin 10 w-% ... 63
Abbildung 4.40: Fraktion Kerosin 15 w-% ... 63
Abbildung 4.41: Fraktion Kerosin 20 w-% ... 64
Abbildung 4.42: Fraktion Kerosin 30 w-% ... 64
Abbildung 4.43: Kohlenstoff auf dem Katalysator ... 64
Abbildung 4.44: Leitungen vor dem Ofen ohne Isolierung und Heizschnüre......................... 65
Abbildung 4.45: Verbesserung durch eine niedrigere Temperatur in der Vorheizstrecke...... 66
1. Hintergründe zu dem Projekt Green Air

1.1. Vorstellung des Projekts

Die beteiligten Unternehmen setzen sich aus vier Industrieunternehmen, sieben Hochschulen beziehungsweise Instituten und zwei kleinen und mittleren Unternehmen, welche sich in den Bereichen der Katalyse und der Brennstoffzelle auszeichnen, zusammen. Auch mit anderen europäischen „Joint Technology Initiative“ (JTI) Projekten soll eng zusammen gearbeitet werden (3).
1.1.1. Elektrifizierung im Flugzeug
Im Laufe der Zeit sind immer mehr Elemente im Flugzeug hinzugekommen, die elektrische Energie benötigen. Außerdem werden Flugzeuge immer größer, was auch die Steuereinrichtungen wie das Ruder immer größer werden lässt. Somit wird auch die dafür bestimmte Pneumatikleitung immer länger und der Energieaufwand für den Druck größer. Das zunehmende Gewicht hat Einfluss auf den Treibstoffverbrauch und die Schadstoffemissionen. Das DLR befasst sich daher unter anderem mit dem „Power Optimised Aircraft“ Projekt. Dabei sollen die bisherigen Systeme, Hydraulik, Pneumatik und elektrische Energie in Zukunft durch ein rein elektrisches System ersetzt werden, mit dem notfalls kleine, stationäre Pneumatiksysteme betrieben werden können, sollten sich Komponenten nicht weiter substituieren lassen (4).

Im Flugzeug werden bisher Hilfstriebwerke, sogenannte APUs, benutzt, um elektrische und pneumatische Energie zur Verfügung zu stellen. Das Triebwerk ist eine autonome Gasturbine, die am Boden elektrische Energie für das Bordnetz liefert und das Flugzeug unabhängig macht. Weiterhin kann sie abhängig von der Flughöhe auch als Reservequelle für das elektrische Bordnetz genutzt werden. Moderne APUs laufen mit konstanter Drehzahl, die auf einen Generator zur Stromerzeugung übertragen wird und so Strom erzeugt. Der spezifische Brennstoffverbrauch solcher Kleingasturbinen ist relativ ungünstig und nur dann zu rechtfertigen, wenn ein geringes Gewicht wichtiger ist als ein geringer Treibstoffverbrauch, also nur kurze Laufzeiten vorliegen (2). Diese Einheit soll nun durch eine Brennstoffzelle ersetzt werden.

1.1.2. Einsatz der Brennstoffzelle
Hintergründe zu dem Projekt Green Air

Formel 1.1: Oxidation an der Anode

\[H_2 \rightarrow 2H^+ + 2e^- \]

Formel 1.2: Reduktion an der Kathode

\[2H^+ + \frac{1}{2}O_2 + 2e^- \rightarrow H_2O \quad (5) \]

Abbildung 1.2: Funktionsprinzip der Brennstoffzelle (6)

Green Air zielt auf das Schlüsselproblem der Brennstoffzellenanwendung an Bord eines Flugzeuges ab. Kerosin wird in absehbarer Zeit der Treibstoff für Flugzeuge bleiben, und so soll der Wasserstoff aus dem vorhanden Medium gewonnen werden (Abbildung 1.3). Während andere Verfahren zur Treibstoffreformierung bereits intensiver erforscht sind, untersucht der Zusammenschluss der Projektpartner zwei völlig neue und unkonventionelle Methoden:

- Mikrowellen unterstützte Plasmareformierung (microwave plasma assisted reforming „PAF“)
- Partielle Dehydrierung von Kerosin (partial dehydrogenation fuel processing „PDh“)

Abbildung 1.3: Schema zur Stromerzeugung mit Brennstoffzelle im Flugzeug (1)

Ergänzend wird die Kerosinfraktionierung erforscht. Es sollen günstige Fraktionen aus dem Kerosin destilliert werden, welche den PDh Reformierungsprozess erleichtern.
Sowohl die physikalischen als auch die chemischen Grundlagen dieser Methoden, als auch Sicherheitskonzepte zur Integration in Flugzeugen, werden im Projekt ausgearbeitet. Im Laufe dieser Arbeit, soll ein Teststand zum PDh-Verfahren aufgebaut werden (3).

1.2. Methoden der Wasserstofferzeugung

1.2.1. Elektrolyse

Die Brennstoffzelle ist die Umkehrung des Prinzips der schon früher entdeckten Elektrolyse. Elektroden, welche an eine Gleichstromquelle angeschlossen sind, werden in ein Wasserbad eingetaucht. Wird das Wasser mit Ionen aus Salz, Säure oder Lauge angereichert, übernimmt es den Ladungstransport. Ist der Stromkreis geschlossen, bildet sich an der positiven Anode gasförmiger Sauerstoff und an der negativen Kathode gasförmiger Wasserstoff. An der Kathode läuft folgende Reaktion ab:
Formel 1.3: Wasserstoff aus Elektrolyse

\[2 \text{H}_2\text{O} + 2 \text{e}^- \rightarrow \text{H}_2 + 2 \text{OH}^- \]

Die Elektronen, welche an der Anode abfließen, lösen folgende Reaktion aus:

Formel 1.4: Bei der Reduktion entsteht Sauerstoff

\[2 \text{OH}^- \rightarrow \frac{1}{2} \text{O}_2 + \text{H}_2\text{O} + 2 \text{e}^- \]

Damit sich die Gase nicht wieder vermischen, teilt das Diaphragma die beiden Zellenhälften. Zwei Gasabscheider trennen die entstandenen Gase dann von der Flüssigkeit ab. Auf diese Weise produzierter Wasserstoff macht jedoch nur 4 vol-% der Gesamtproduktion aus (7). Der Energieverbrauch der Elektrolyse beträgt 4,3 bis 4,6 kWh/m³i.N. Wasserstoff und macht bei der Erzeugung erneuerbaren Energien, wie der Windkraft sin. Wird überschüssig Energie erzeugt, kann diese so gespeichert werden.

1.2.2. Dampfreformierung

Formel 1.5: Aus Methan wird Wasserstoff und Kohlenmonoxid

\[\text{CH}_4 + \text{H}_2\text{O} \leftrightarrow 3 \text{H}_2 + \text{CO} \]

Der zweite Schritt ist die Hochtemperatur-Konvertierung bei 320 °C bis 400 °C mit der anschließende Niedertemperatur-Konvertierung, die bei etwa 180 °C bis 240 °C abläuft. Bei dieser Wassergas-Shift-Reaktion in nachgeschalteten Konvertern wird aus dem Kohlenmonoxid und Wasserdampf, Kohlendioxid und weiterer Wasserstoff erzeugt. Ist der Kohlenmonoxidanteil nach der ersten Reformierung noch bei 10 bis 15 vol-%, so liegt er nach der zweiten nur noch bei 0,3 bis 0,6 vol-%. Die Konvertierung funktioniert folgendermaßen:
Hintergründe zu dem Projekt Green Air

Formel 1.6: Wassergas-Shift-Reaktion

\[CO + H_2O \leftrightarrow CO_2 + H_2 \]

Die Gesamtreaktion lautet somit:

Formel 1.7: Summengleichung der Dampfreformierung

\[C_nH_m + 2n H_2O \rightarrow (2n + \frac{m}{2}) H_2 + n CO_2 \]

Abbildung 1.4: Schema der Dampfreformierung

Der auf den unteren Heizwert, des eingesetzten Kraftstoffs, bezogenen Wirkungsgrad beträgt heutzutage über 80 % (7).

1.2.3. Partielle Oxidation

Formel 1.8: Aus dem Kohlenwasserstoff wird Wasserstoff und Kohlenmonoxid

\[C_nH_m + \frac{m}{2} O_2 \rightarrow n CO + \frac{m}{2} H_2 \]

In der anschließenden Wassergas-Shift-Reaktion wird mit hier zugeführtem Wasserdampf Kohlenmonoxid entfernt.

Formel 1.9: Die Shift-Reaktion

\[CO + H_2O \rightarrow CO_2 + H_2 \]

Der thermische Wirkungsgrad beträgt etwa 70 % und der Anteil am gesamten produzierten Wasserstoff in Deutschland macht etwa 25 % aus (7).
1.2.4. Autotherme Reformierung

Die autotherme Reformierung (Abbildung 1.6) ist eine Kombination der Dampfreformierung und der partiellen Oxidation.

Abbildung 1.6: Schema der autothermen Reformierung

Die benötigte Wärme wird im Reformer selbst erzeugt, daher die Bezeichnung autotherm. Durch präzise Dosierung der Luftmenge, definiert durch die Kenngröße Lambda, entspricht die bei der Verbrennung erzeugte Wärme, genau der bei der Reformierung benötigten Wärme.

Formel 1.10: Die autotherme Reformierung

\[2 \text{CH}_4 + 2 \text{H}_2\text{O} + \text{O}_2 \rightarrow 2 \text{CO}_2 + 6 \text{H}_2 \]

Da die Temperatur jedoch über der des Dampfreformers liegt, entstehen aus dem Luftstickstoff vergleichsweise mehr Stickstoff-Oxide (7). In Tabelle 1.1 ist der Wasserstoffgehalt der drei üblichsten Reformierungsverfahren im Vergleich zu sehen.

Tabelle 1.1: Vergleich der Wasserstoff-Herstellungsverfahren (7)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Dampfreformer</th>
<th>partielle Oxidation</th>
<th>autothermer Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>max. H_2-Gehalt</td>
<td>80 vol-%</td>
<td>34 vol-%</td>
<td>45 vol-%</td>
</tr>
<tr>
<td>typischer H_2-Gehalt</td>
<td>75 vol-%</td>
<td>31 vol-%</td>
<td>40 vol-%</td>
</tr>
<tr>
<td>zusätzler Energieaufwand</td>
<td>> 0</td>
<td>< 0</td>
<td>= 0</td>
</tr>
</tbody>
</table>

1.2.5. Kværner-Verfahren

Hintergründe zu dem Projekt Green Air

Formel 1.11: Das Kværner-Verfahren

\[C_nH_m + Energie \rightarrow nC + \frac{m}{2}H_2 \]

Der bei der Kühlung entstehende Heißdampf kann wieder zur Stromerzeugung genutzt werden. Werden so alle verwertbaren Produkte wie der Wasserstoff, die Kohle und der Dampf berücksichtigt, arbeitet solch eine Anlage mit fast 100 Prozent Wirkungsgrad. Sinn macht dieses Verfahren, wenn genügend Erdgas, aber zu wenig Kohle vorhanden ist und der Wasserstoff vollständig gespeichert werden kann, oder direkt verwendet wird (7).

1.2.6. Vergasung

Formel 1.12: Boudouard-Reaktion

\[C + CO_2 \leftrightarrow 2 CO \]

Formel 1.13: Vergasungsreaktion

\[C + H_2O \rightarrow H_2 + CO \]

Formel 1.14: Wassergas-Shift-Reaktion

\[H_2O + CO \rightarrow CO_2 + H_2 \]

(7)

1.2.7. Biochemische Herstellung

Formel 1.15: Wasserstoff aus bakteriellem Stoffwechsel

\[
2 \text{H}_2\text{O} \rightarrow \text{O}_2 + 4 \text{e}^- + 4 \text{H}^+ \quad \text{Hydrogenase} \quad 2 \text{H}_2 + \text{O}_2
\]

Da der Stoffwechsel mit den Umgebungsbedingungen wie aerob oder anaerob zusammenhängt, kann eine Kultur zuerst „gezüchtet“ und nach Veränderung der Bedingungen gezielt zur Produktion von reinem Wasserstoff eingesetzt werden (7).

1.3. **Dehydrierung in der Industrie**

1.3.1. **Adiabatischer Festbettreaktor**

Im adiabatischen Festbettreaktionsystem arbeiten mehrere Reaktoren parallel. Jeder erfüllt im Wechsel eine der drei Aufgaben: Reaktion, Regeneration und Wärmezufuhr. Die endotherme Reaktion gewinnt ihre Energie aus dem überhitzten Katalysator, welcher in einem Reaktor aufgewärmt wird. Im gerade aktiven Reaktor läuft die Reaktion ab, welche den Katalysator abkühlt und deaktiviert. Der Katalysator wird anschließend wieder aufbereitet (Abbildung 1.7).
Hintergründe zu dem Projekt Green Air

1.3.2. Isothermer Festbettreaktor

Der isotherme Festbettreaktor wurde entworfen, um mit heißen Flüssigkeiten oder Gasen die Temperatur im Reaktor über die Reaktion annähernd konstant zu halten. Der Reaktor ist ähnlich wie ein Wärmetauscher aus vielen dünnen Röhren in einem Behälter mit heißem Medium aufgebaut.

1.3.3. Wanderbettverfahren

Bei dem Wanderbettverfahren (Abbildung 1.9)läuft der Katalysator langsam durch mehrere, separate Reaktoren bis in einen Regenerator. Von dort gelangt er durch einen Erhitzer zurück zum ersten Reaktor.

![Abbildung 1.9: Wanderbettverfahren](image)

1.3.4. Fließbettverfahren

Am Fließbettverfahren sind zwei Fließbettreaktoren beteiligt. Der erste ist für die Dehydrierung und der zweite für die Regeneration und Erwärmung verantwortlich. Im FBD (Fluidized Bed Dehydrogenation) oder auch *Snamprogetti Yarsinte* Prozess werden Alkene in einem Wirbelschichtverfahren dehydriert. Der Katalysator wird mit dem Produktgas ausgetragen und dann abgetrennt, allerdings wird er nicht zurück in den Reaktor, sondern in den Regenerator eingebracht. Dort wird er ebenfalls mit einem Wirbelschichtverfahren aufbereitet und wie in Abbildung 1.10 zu sehen, geringe Mengen ausgetragenes Material wieder zurück in den Reaktor geleitet.
Somit besteht auch hier der Vorteil des kontinuierlichen Prozesses, ohne separate Aufbereitungszeit. Ein Nachteil ist die geringere Selektivität im Vergleich zum Festbett und die Katalysatorabnutzung. Die Regelung zum Transport der richtigen Katalysatormengen zwischen dem Reaktor und dem Regenerator macht die Prozessführung komplex (8).

1.4. Katalytische Dehydrierung von Kerosin für Fahrzeuge

Die möglichen Speichermöglichkeiten von Reinwasserstoff wären:

- bei niedriger Temperatur von 20 °K in flüssiger Form und in thermisch hoch isolierten Behältern, wobei ein erheblicher Energieaufwand für die Verflüssigung notwendig ist
- bei hohem Druck und gasförmig bei bisher 350 bar, seit kurzem aber auch bei Drücken bis 700 bar, wobei die Kompressionsleistung zu berücksichtigen ist
- in Metallhydriden, was prinzipiell einfach ist und eine sichere Handhabung bedeutet. Jedoch stellt die speicher- und nutzbare Menge an Wasserstoff nur wenige Prozent des Speichergewichts dar, was in der Luftfahrt noch problematischer ist als beim Automobil

In den oben aufgezeigten Optionen der Wasserstoffspeicherung ist die gespeicherte Energiedichte beträchtlich niedriger als bei konventionellen, flüssigen Kraftstoffen (5).

Die Nutzung der bisherigen Treibstoffe als *Speichermedium* ist daher eine logische Konsequenz, welche den positiven Nebeneffekt hat, dass die bisherige Infrastruktur
Hintergründe zu dem Projekt Green Air

Abbildung 1.11: Das Schema eines möglichen Kohlenwasserstoffkreislaufs als Wasserstoffspeicher (9)

Das Dehydrieren und direkte Nutzen von Wasserstoff an stationären Anlagen, wie in einzelnen Haushalten oder auch im Zusammenschluss von Häuserblöcken stellt ein sinnvolles System dar (9).

Bei dem Einsatz einer katalytischen Dehydrierungsanlage an einer Tankstelle wäre das Speicherproblem des Wasserstoffs jedoch nur weiter auf das Fahrzeug verlegt worden.
Dieses müsste weiterhin auf Systeme mit zu hohem Gewicht, oder energetisch ungünstigen Speichermethoden zurückgreifen, um den Wasserstoff zu speichern. Die Daimler AG, ein Unternehmen welches mehr an Brennstoffzellen als an Batterien forscht, hat bereits Versuchsfahrzeuge mit einer On-Board Reformierung von Methanol aufgebaut. Bei etwa 280 °C wird Methanol und Wasser verdampft und zu Wasserstoff, Kohlenmonoxid und Kohlendioxid umgesetzt, wobei Kohlenmonoxid weiter oxidiert wird. Die Gesamtformel lautet:

Formel 1.16: Steamreforming mit Methanol

\[\text{CH}_3\text{OH} + \text{H}_2\text{O} \rightarrow 3 \text{H}_2 + \text{CO}_2 \]

2. Grundlagen zu den Versuchen

2.1. Chemische Grundlagen der Dehydrierung
Die Hydrierung und Dehydrierung typischer organischer Kohlenwasserstoffe unterscheidet, dass die Hydrierung exotherm und die Dehydrierung endotherm abläuft. Die Energie der Reaktion beträgt ca. 70 kJ/mol H\textsubscript{2} (9).

Die Gleichgewichtsreaktion wird mittels eines Katalysators durchgeführt. Wegen der geringeren Partialdrücke ist die Dehydrierung in der Gasphase bevorzugt durchzuführen. Mit dem steten Entfernen des Wasserstoffs vom Katalysator durch eine Strömung, wird die Reaktion zur Dehydrierung hin verschoben.

Wichtige Dehydrierungsprozesse in der Industrie sind:

- Alkane zu Alkenen
- n-Butan zu Isobuten
- Ethylbenzol zu Styrol
- Naphthen zu Benzol
- Alkohol zu Aldehyden
- Zyklohexanol zu Zyklohexanon (8)

Hierzu einige Reaktionsbeispiele häufig genutzter Kohlenwasserstoffe:
Grundlagen zu den Versuchen

Formel 2.1: Methylcyclohexan zu Toluol $\Delta H=205\text{kJ/mol}$

\[
\begin{array}{c}
\text{CH}_3
\end{array}
\quad \xrightarrow{-3\text{ H}_2} \quad \begin{array}{c}
\text{CH}_3
\end{array}
\]

Formel 2.2: Cyclohexan zu Benzol $\Delta H=206\text{kJ/mol}$

\[
\begin{array}{c}
\text{CH}_3
\end{array}
\quad \xrightarrow{-3\text{ H}_2} \quad \begin{array}{c}
\text{CH}_3
\end{array}
\]

Formel 2.3: Decalin zu Naphthalin $\Delta H=332\text{kJ/mol}$

\[
\begin{array}{c}
\text{CH}_3
\end{array}
\quad \xrightarrow{-5\text{ H}_2} \quad \begin{array}{c}
\text{CH}_3
\end{array}
\]

Die Rolle und Funktion des Katalysators wird in Kapitel 2.3. näher erläutert.

2.2. Eigenschaften von Kerosin

Kerosin wird aus Rohöl gewonnen und die Zusammensetzung hängt stark vom Herkunftsort ab. Sogar von Bohrloch zu Bohrloch kann es Abweichungen in der Zusammensetzung geben. Grundsätzlich ist Rohöl ein Gemisch aus Kohlenwasserstoffen mit 1 bis über 60 Kohlenstoffatomen pro Molekül. Der Schwefelanteil beträgt zwischen 0,5 bis 1,5 Gewichtsprozent, kann teilweise sogar bis zu 8 Gewichtsprozente betragen. Der Siedebereich beginnt bei Umgebungsdruck bei 70 °C und geht bis 525 °C. Durch Destillation können, aufgrund der unterschiedlichen Siedetemperaturen, verschiedene Fraktionen voneinander getrennt werden.

Die universelle Summenformel von Jet A-1 wird, vom Institut für Antriebstechnik im DLR in Köln, mit \(C_{12}H_{23} \) angegeben und setzt sich aus Kohlenwasserstoffen mit 5 bis 17 Kohlenstoffatomen zusammen. Sie können in drei wesentliche Klassen eingeordnet werden.

- Alkane (Paraffine) = gesättigte Kohlenwasserstoffe ohne Ringstruktur
- Cycloalkane (Cycloparaffine) = gesättigte Kohlenwasserstoffe mit Ringstruktur
- Aromaten = Kohlenwasserstoffe mit einem oder mehreren Benzolringen (11)

Es finden sich auch Alkene im Kerosin, welche wegen ihrer chemisch reaktiven Doppelbindung aber unerwünscht sind. Definitionsgemäß liegt der Anteil unter 2 gew-%. Der Schwefelgehalt von Jet A-1 liegt bei höchstens 0,3 gew-%.

Die Spezifikation dieses Kerosins begrenzt den Aromatenanteil auf maximal 22 vol-%, da diese stärker zur Rußbildung neigen und zum Leuchten der Flamme, was eine höhere Strahlenbelastung in der Brennkammer bedeutet.

Die in den Green Air Versuchen verwendete Charge wurde genau analysiert. Die Analyse wurde zunächst Qualitative anhand mit einem GCMS (Gaschromatographie und Massenspektroskopie) und anschließend Quantitative im GCFID (Gaschromatographie und
Flammenionisationsdetektor) untersucht. Es stellt sich die in Tabelle 2.1 gezeigte Zusammensetzung heraus:

Tabelle 2.1: Stoffgruppenverteilung des verwendeten Jet A-1 Kerosins in gew-%

<table>
<thead>
<tr>
<th>Cₙ</th>
<th>Iso-Alkane</th>
<th>Cycloalkane</th>
<th>Di-Cycloalkane</th>
<th>Aromaten</th>
<th>Di-Aromaten</th>
<th>n-Alkane</th>
<th>Sum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0,12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,12</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0,01</td>
<td>0</td>
<td>0,20</td>
<td>0</td>
<td>0</td>
<td>0,21</td>
</tr>
<tr>
<td>8</td>
<td>0,11</td>
<td>1,50</td>
<td>0</td>
<td>0,13</td>
<td>0</td>
<td>0,64</td>
<td>2,38</td>
</tr>
<tr>
<td>9</td>
<td>2,02</td>
<td>2,72</td>
<td>0</td>
<td>6,15</td>
<td>0</td>
<td>2,87</td>
<td>13,76</td>
</tr>
<tr>
<td>10</td>
<td>6,42</td>
<td>7,13</td>
<td>0,96</td>
<td>5,99</td>
<td>0,68</td>
<td>7,33</td>
<td>28,51</td>
</tr>
<tr>
<td>11</td>
<td>4,09</td>
<td>2,02</td>
<td>1,19</td>
<td>6,08</td>
<td>0,68</td>
<td>9,12</td>
<td>23,18</td>
</tr>
<tr>
<td>12</td>
<td>2,90</td>
<td>1,52</td>
<td>0</td>
<td>2,85</td>
<td>1,11</td>
<td>6,67</td>
<td>15,05</td>
</tr>
<tr>
<td>13</td>
<td>3,76</td>
<td>0,32</td>
<td>0</td>
<td>0,89</td>
<td>0</td>
<td>5,03</td>
<td>10,00</td>
</tr>
<tr>
<td>14</td>
<td>2,23</td>
<td>0,16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,78</td>
<td>5,17</td>
</tr>
<tr>
<td>15</td>
<td>0,45</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,92</td>
<td>1,37</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Sum.</td>
<td>22,10</td>
<td>15,38</td>
<td>2,15</td>
<td>22,29</td>
<td>2,47</td>
<td>35,61</td>
<td>100</td>
</tr>
</tbody>
</table>

2.3. Funktion des Katalysators

Grundlagen zu den Versuchen

Katalysatoren für wichtige Dehydrierungsprozesse umfassen Chromoxid, Molybdän, Platin, Eisen, Kalium, Silber, Kupfer, Nickel und Zink auf einem Träger aus Aluminiumoxid, Chromoxid, Siliziumoxid, Aktivkohle oder Magnesium. (8)

2010 wird in „Catalysis Today“ eine Untersuchung eines GreenAir-Partners zu einem Pt/Al₂O₃ Katalysator veröffentlicht. Es wurden Katalysatoren mit einem Gewichtsprozent Platin und jeweils null, einem und drei Gewichtsprozent Zinn zur Dehydrierung von Decalin, Tetralin, Dodecan und Cyclohexan verglichen. Bei allen Versuchen war die Variante 1%Pt-1%Sn/Al₂O₃ die produktivste. (15)

Ein weiterer Partner aus dem Projekt Green Air, die Universität Bologna, führte Untersuchungen zur Stabilität des Katalysators durch. Bei einem Treffen der Projektpartner wurde präsentiert, dass ein halbes Gewichtsprozent Kalium die Deaktivierung des Katalysators reduziert. (16)

Der Katalysator, welcher für die Versuche verwendet wird, stammt von dem Projektpartner Johnson Matthey Catalysts. Diese auf Katalysatoren spezialisierte Firma, produzierte nun einen 1%Pt-1%Sn-0,5%K/Al₂O₃ Katalysator und stellt ihn dem DLR in Stuttgart zur Verfügung.

Der Katalysator hat bei Johnson Matthey den vorläufigen Namen GA8 und ist der favorisierte Kandidat einer langen Versuchsreihe ähnlicher Katalysatoren mit unterschiedlicher
Zusammensetzung. Die meisten Katalysatoren wurden zunächst als Pulver gefertigt. Auch einige Projektpartner haben den Katalysator als Pulver erhalten und selbst verpresst. Ein so verarbeitetes Material ist schwer handhabbar, sowohl thermisch als physikalisch weniger stabil als sphärische γ-Al_2O_3 Pellets. Das Institut Technische Thermodynamik vom DLR in Stuttgart erhielt als erstes ein Produkt in Pelletform (Abbildung 2.3).

Abbildung 2.3: Links vorne der Pulverkatalysator, rechts vorne die Pellets. Im Hintergrund ein Glaswollestopfen zum fixieren des Katalysators im Reaktorohr mit Überwurfmutter

Das Platin wird als Platinoxid aufgebracht und muss vor den Versuchen erst reduziert werden.

Formel 2.4: Aufbereiten des Katalysators

\[
\text{PtO}_2 + 2 \text{H}_2 \rightarrow \text{Pt} + 2 \text{H}_2\text{O}
\]
2.4. Versuchsbedingungen aus der Literatur

Die ersten Anhaltspunkte, welche als grundlegende Versuchsbedingungen ausprobiert werden, stammen aus Thesenpapieren oder Informationen von Projektpartnern.

In den erwähnten Veröffentlichungen ist der Druck sowohl mit Normdruck, als auch mit 5 bar angegeben. Es werden daher Versuche mit 1 bar und 5 bar verglichen.

3. Experimente

3.1. Auslegung der Testanlage

Die Testanlage wurde nach den Erkenntnissen der erörterten Bedingungen geplant. Ein Problem vieler Informationsquellen ist, dass bei den Versuchsbedingungen nur die Space Time (Verweilzeit) oder die Gas hourly Space Velocity (Raumgeschwindigkeit) angegeben werden. Die Space Time ist definiert als $\frac{m^3 \text{Kat}}{m^3 \text{Gas} \cdot \text{U.V.}}$ und drückt aus, wie lange das Medium Kontakt mit dem Katalysatorbett hat. Die Space Velocity ist die Inverse der Space Time und gibt Auskunft über die Belastung des Katalysators mit dem umzusetzenden Medium, also wie viel Gas im Reaktor umgesetzt werden muss. (8) Da bei der Berechnung das Gasvolumen in Normbedingungen angegeben wird, erhält man eine Größe, die unabhängig von der Geometrie oder den Bedingungen während des Versuchs einen Vergleich der Ergebnisse unterschiedlichster Anlagen zulässt. Somit gehen aber auch viele Informationen über das Reaktorrohr, den Druck oder die Temperatur verloren.

Für die Anlage am DLR sind die Bauteile so gewählt, dass sie bis 10 bar stabil sind. Um bei einem unvorhergesehenen Reaktionsablauf und einem Druckanstieg nicht Gefahr zu laufen, die teuren Messgeräte zu zerstören, sind Versuchsbedingungen bis 7,5 bar vorgesehen. Für die Auslegung wurde ein Kerosinstrom von 30 g/h als Standard angesetzt.

Mit der Dichte von 788,1 g/l (18) ergibt sich ein Volumenstrom von 38 ml/h. Die mittlere Ausbeute wird bei einem Treffen der Projektpartner im Jahr 2011 mit 80 l$_{H2i.N.}$/l$_{Kerosin}$ angegeben.

Formel 3.1: Theoretischer Volumenstrom an produziertem Wasserstoff

$\hat{V}_{H_2} = 0,038 \frac{l}{h} \cdot 80 \frac{l_{H_2i.N.}}{l} = 3,04 \frac{l_{H2i.N.}}{h}$

Der „mass flow controller“ (MFC), welcher das Produktgas misst, wird daher auf 4,5 l/h als maximalen Auslass ausgelegt. Bei einem zu großen Ventil verschiebt sich der untere Messbereich nach oben und kleine Durchflüsse beim An- und Abfahren, können nicht mehr gemessen werden.

3.1.1. Aufbau des Teststandes

Die Anlage wurde nach folgendem Schema in Abbildung 3.1 aufgebaut:
Abbildung 3.1: Schema zum Aufbau der Anlage

Der Ofen der Firma Gero hat eine Heizleistung von 1,5 kW und kann Temperaturschwankungen bei der endothermen Reaktion leicht ausgleichen. Vor dem Rektor vereint sich der Treibstoff mit einem zweiten Gasstrom.

3.1.2. Regelung der Stellelemente

3.1.3. Analysegeräte und Messtechnik

Zunächst durchströmt das Produktgas aus der Anlage einen permanenten Gasanalysator der Firma ABB. Der AO 2020 mit einem Caldos 27 Analysator Modul misst die Konzentration von Wasserstoff. Die Messung erfolgt über die Wärmeleitfähigkeit (WLD) der Stoffe und benötigt daher einen Mindestdurchfluss um genau messen zu können. Das Produktgas wird bei diesem Messverfahren nicht beeinflusst und kann anschließend weiter analysiert werden.

Um an weiteren Geräten Untersuchungen vornehmen zu können, ist in der folgenden Abgasleitung noch ein Anschluss für Gasbeutel angebracht.

3.2. Versuchsplan zur Ermittlung der Betriebsbedingungen

Um das Verhalten der Anlage und die Einflüsse von Druck, Temperatur, Kontaktzeit, Co-Feed, Feed-Menge und Feed-Zusammensetzung erkennen zu können, wurde ein umfangreicher Versuchsplan aufgestellt. Zunächst wurden Versuche mit Decalin und noch vorhandenem Pulverkatalysator durchgeführt, um die aufgebaute Anlage in Betrieb zu nehmen und Erfahrung mit der Prozessführung zu erlangen. Decalin ist ein bizyklisches Alkan, welches mit Wasserstoff gesättigt ist. Dieser Kohlenwasserstoff mit der Summenformel $\text{C}_{10}\text{H}_{18}$ kann zu Tetrahydronaphthalin ($\text{C}_{10}\text{H}_{12}$) und weiter zu Naphthalin ($\text{C}_{10}\text{H}_{8}$) dehydriert werden.

\begin{equation}
\text{Decalin dehydriert über Tetrahydronaphthalin zu Naphthalin}
\end{equation}

Das ULSK (ultra low sulphur kerosine) mit maximal 3 ppm Schwefel wird nach dem in Tabelle 3.1 gezeigten Plan untersucht.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
 & 1 bar & & & 5 bar & \\
\hline
Space & 20 g/h Feed & 30 g/h Feed & 50 g/h Feed & 20 g/h Feed & 30 g/h Feed \\
Time & 20 g/h Feed & 30 g/h Feed & 50 g/h Feed & 20 g/h Feed & 30 g/h Feed \\
\hline
6 Sec & 20 g/h Feed & 30 g/h Feed & 50 g/h Feed & 20 g/h Feed & 30 g/h Feed \\
Space & Time & & & & \\
10 Sec & 20 g/h Feed & 30 g/h Feed & 50 g/h Feed & 20 g/h Feed & 30 g/h Feed \\
Space & Time & & & & \\
\hline
\end{tabular}
\caption{Versuchsplan zur Ermittlung der besten Versuchsbedingungen}
\end{table}

Es werden Versuche bei 1 bar mit einer Space Time von 2, 6 und 10 Sekunden und einem Feed-Strom von 20, 30 und 50 g/h durchgeführt. Die Versuche mit 20 und 30 g/h Feed sollen
bei 5 bar nochmals wiederholt werden. Im Anschluss daran werden ausgewählte Versuche mit einem Co-Feed aus Wasserstoff durchgeführt.

3.3. Durchführung der Versuche

Das Wissen über die Anlage wächst mit jedem der vielen Versuche und viele Details tragen dazu bei, die Arbeitsschritte immer gleich und repräsentativ zu gestalten. Der Arbeitsablauf ist nachfolgend beschrieben.

3.3.1. Aufbereitung des Katalysators

Die benötigte Katalysatormenge wird aus dem Feed-Strom und der Space Time berechnet. Der Volumenstrom des verdampften Feeds multipliziert mit der Space Time ergibt das Volumen des Reaktorbettes, aus welchem sich mit der Reaktorbettdichte die benötigte Katalysatormenge errechnen lässt.

Formel 3.3: Volumenstrom Gas

\[\dot{V}_{\text{Gas}} = \frac{\dot{m} \cdot V_{\text{ideales Gas}}}{M_{\text{Feed}}} \]

Formel 3.4: Masse an nötigem Katalysator aus Reaktorbett und Reaktorbettdichte

\[m_{\text{Kat}} = \left(\dot{V}_{\text{Gas}} \cdot \text{Space Time} \right) \cdot \rho_{\text{Reaktorbett}} \]

Abbildung 3.5: Reaktorrohr mit Überwurfmuttern für einfaches entnehmen. Im Vordergrund der Katalysator in Pulver- und Pelletform und ein Glasstopfen zum Packen des Katalysators

Ist das Rohr wieder fixiert wird das Thermoelement in die Schüttung gedrückt. Der Programmablauf zur Aufbereitung (Abbildung 3.6) sieht vor, das Zuleitungsrohr der Gase und den Ofen auf 350 °C zu erwärmen und lässt 1,2 l H₂/h durch die Anlage laufen. Sobald der Ofen 345 °C und der Wasserstoffanteil im Abgas 95 % erreicht haben, beginnt das Programm die Zeit zu zählen. Nach zwei Stunden werden die Heizleitungen abgeschaltet und das Magnetventil des Wasserstoffs geschlossen.
Abbildung 3.6: Start der automatischen Aufbereitung

Die Automatisierung läuft so zuverlässig, dass über Nacht aufbereitet werden kann und an jedem Arbeitstag ein fünfstündiger Versuch mit Vorbereitung für eine neue Aufbereitung möglich ist.

3.3.2. Dehydrierung von Kohlenwasserstoffen

Abbildung 3.7: Charakteristischer Temperatureinbruch (grün) zu Beginn des Versuchs

In Abbildung 3.7 ist ein Screenshot von der Benutzeroberfläche dargestellt, in dem das charakteristische Verhalten beim Anfahren des Versuchs zu sehen ist. Grün ist die Ofentemperatur dargestellt, welche bei Reaktionsbeginn um ca. 12 °C einbricht und beim Gegenregeln kurz überschwingt. Gleichzeitig steigt die Menge an austretendem Gas (pink: die Messkurve des MFC) schlagartig an, um den Druck (blau) konstant zu halten.

3.3.3. Rektifikation von Jet A-1 Kerosin

Elementaranalysator auf den Schwefelgehalt gemessen und anschließend in der Anlage zur partiellen Dehydrierung eingesetzt.

Abbildung 3.8: Teststand zur Rektifikation und katalytischen Dehydrierung

Links in Abbildung 3.8 ist die Rektifikationskolonne zu sehen. In der Mitte der Versuchsaufbau zur Dehydrierung und, gut zu sehen, die Analysegeräte unter dem Aufbau zur Dehydrierung. Rechts das Fach zur Probenaufbewahrung und die SPS mit 2 PCs.
4. Versuchsergebnisse und Auswertung

4.1. Auswerteprogramm in Visual Basic for Applications

Das manuelle Zuordnen der ca. 75 Messungen aus dem Varian GC an die Uhrzeit der SPS beanspruchte vor der Automatisierung der Auswertung sehr viel Zeit.

Im zweiten Teil wird die eigentliche Auswertung vorgenommen. Zunächst werden alle aufgenommenen Werte, bis der Feed-Strom größer Null ist, gelöscht und ab den verbleibenden Werten bis zur Minute 300 ausgewertet. Die mitgeschriebenen Werte des Massenflussreglers, welcher das austretende Produktgas misst, sowie die

Abbildung 4.1: Vergleich der beiden Wasserstoffmessungen an einem beliebigen Versuch

Versuchsergebnisse und Auswertung

Formel 4.1: Wasserstoffstrom im Produktgas

\[\dot{V}_{H_2} = \dot{V}_{Produkt} \cdot \frac{X_{H_2}}{100} \]

Formel 4.2: Zunahme des Wasserstoffs in der Anlage

\[\dot{V}_{H_2} = (0,45 l - V_{Feed t_1-t_2}) \cdot (X_{t_1/100} - X_{t_2/100}) + \left(\frac{(t_1 - t_2)}{3600} \right) \cdot P \]

Im ersten Term wird das Anlagenvolumen abzüglich des aufgefangenen Kondensats berechnet. Im zweiten Term wird die Differenz der Wasserstoffkonzentration zu dem vorher verwendeten Wert gebildet. Dividiert durch die Zeit, über die man die Differenz des Wasserstoffs bildet, erhält man wieder eine zeitabhängige Größe. Anschließend wird diese mit dem Druck in der Anlage multipliziert.

Auch der Rohrleitungsabschnitt zwischen Systemaustritt und Eintritt in die Gasanalyse wird berücksichtigt. In diesem Abschnitt herrscht kein Überdruck mehr.

Formel 4.3: Zunahme des Wasserstoffs in den Leitungen

\[\dot{V}_{H_2} = 0,00166 \cdot l \cdot \frac{X_{H_2}}{100} \]

Zuletzt wird der in das System eingebrachte Wasserstoff berücksichtigt. Ist das Magnetventil für den Wasserstoff geöffnet, also aktiviert, wird der Volumenstrom am Gaseinlass von dem Volumenstrom am Produktgasaustritt automatisch abgezogen.

Der Einfluss des Co-Feeds auf den Prozentanteil von Wasserstoff im Produktgas kann hier vernachlässigt werden, da er nicht erfasst werden kann und nur sehr geringen Einfluss hat. Aus 30 g/h Kerosin werden nach Formel 3.1 bei maximaler Ausbeute etwa 3,1 Liter pro Stunde Wasserstoff umgesetzt. Bei einem Co-Feed von 7 % des Feed-Gases bei
Normbedingungen ergibt sich bei 30g/h Kerosin nur 0,258 Liter pro Stunde Wasserstoff. Die Abweichung von der Konzentration ist gering aufgrund des sehr geringen Anteils am gesamten Produktgasstrom und wird daher vernachlässigt.

Damit ergibt sich aus den Formeln für den Wasserstoffvolumenstrom:

Formel 4.4: Insgesamt erzeugter Wasserstoff

\[
\dot{V}_{H_2} = \dot{V}_{Produkt} \cdot \frac{X_{H_2}}{100} + (0,45l - V_{Feed} \cdot t_{1-t_2}) \cdot \frac{X_{H_2} \cdot t_{1-t_2}}{100} + \left(\frac{t_1 - t_2}{3600} \right) \cdot P + 0,00166l \cdot \frac{X_{H_2}}{100} - \dot{V}_{CoFeed}
\]

Müsste jeder Mittelwert und jede Differenz von Hand berechnet werden, wäre dies eine mögliche Fehlerquelle und sehr zeitaufwendig.

Die Ausbeute ist austretender Produktgasvolumenstrom in Normliter pro Stunde durch eingebrachten Feed in Kilogramm pro Stunde.

Formel 4.5: Definition der Ausbeute

\[
Ausbeute_{H_2} \left(\frac{l \cdot N.}{kg Feed} \right) = \frac{\dot{V}_{H_2} \left(\frac{l \cdot N.}{h} \right)}{m_{Feed} \left(\frac{kg}{h} \right)}
\]

Die Produktivität ist der Quotient des austretenden Produktgasvolumenstroms und der verwendeten Masse Katalysator. Im Programm erscheint eine Abfrage zur eingewogenen Menge an Katalysator.

Formel 4.6: Definition der Produktivität

\[
Produktivität_{H_2} \left(\frac{l \cdot N.}{kg Kat.:h} \right) = \frac{\dot{V}_{H_2} \left(\frac{l \cdot N.}{h} \right)}{m_{Kat.} \left(\frac{kg}{h} \right)}
\]

Mit diesen Funktionen werden die Volumenströme, Ausbeuten und Produktivität der anderen Kohlenwasserstoffen automatisch berechnet.

Im dritten Teil der automatischen Auswertung wird der Mittelwert der Ausbeuten des Wasserstoffs und der Kohlenwasserstoffe über die gesamte Versuchszeit gebildet und diese in einem Säulendiagramm (Abbildung 4.2) abgebildet.
Versuchsergebnisse und Auswertung

Abbildung 4.2: Beispielhaftes Ergebnis der automatischen Versuchsauswertung (Mittelwerte)

Außerdem werden der Volumenanteil an Wasserstoff, die Ausbeute und Produktivität und der Druck über den Versuchszeitraum in einem Liniendiagramm (Abbildung 4.3) dargestellt.

Abbildung 4.3: Beispielhaftes Ergebnis der automatischen Versuchsauswertung (Verlauf)
Versuchsergebnisse und Auswertung

Aus diesen immer gleichen Darstellungen kann eine schnelle Aussage zu dem Erfolg der Versuche getroffen werden. Somit ist eine erste Auswertung eines Versuchs immer gleich und die Zeit kann besser für Überlegungen über den Prozess genutzt werden.

Das Programm wurde im Code ausführlich kommentiert und mit einem technischen Mitarbeiter der Abteilung besprochen, um die fortführende Nutzung und eventuell nötige Erweiterungen zu gewährleisten. Der Programmcode befindet sich auf einer CD im Anhang.

4.2. Diskussion der Ergebnisse
Die ersten Versuche werden mit Pulverkatalysator und Decalin durchgeführt, um die Funktionstüchtigkeit und Stabilität der Anlage austesten zu können, ohne das spezielle Kerosin oder die Charge an Pelletkatalysator zu verbrauchen. Nach Verbesserung der Regelung am auslassenden MFC, welcher den Druck einstellt, ist die Anlage funktionsbereit.

4.2.1. Einfluss der Durchflussmenge

Formel 4.7: Berechnung der realen Kontaktzeit

\[t_{Kontakt} = 1 \div \frac{m_{Feed} \cdot \rho_{Dampf}}{V_{Reaktionsbett} \cdot \chi_{Lehraum}} \]

mit

\[\frac{kg}{s} \cdot \frac{m}{m^3} = s \]
Obwohl die Menge an Katalysator bei 20 g/h Feed am geringsten ist, zeigen sich hier die besseren Ergebnisse bei den geringen Durchflüssen mit niedrigeren Geschwindigkeiten. Bei langsam strömendem Feed ist die Flächenbelastung für den Katalysator nicht so hoch, wie bei großen Mengen Feed in kurzer Zeit. Auf dem Katalysator wurde mittels einem Elementaranalysator nach dem Versuch der Kohlenstoff auf den Katalysatorpellets gemessen.

Die Verkokung in Abbildung 4.5 zeigt, dass bei dem Versuch mit 20 g/h viel weniger Kohlenstoff entsteht als bei dem Versuch mit 50 g/h. Wird die Flächenbelastung zu hoch, nimmt das Cracken an dem Katalysator zu und die Ergebnisse der Versuche nehmen deutlich ab.

Die Ausbeute der ersten Versuche sind separat dargestellt, um anschaulich dargestellt werden zu können.
Versuchsergebnisse und Auswertung

Abbildung 4.6: Mittelwerte der Ausbeute bei 2 Sekunden Space Time und 1 bar Druck

Die Versuche wurden bei 6 s Space Time aber gleichen Durchflüssen und gleichem Druck wiederholt, was einer realen Kontaktzeit von 0,8499 s entspricht. Die Space Time wurde ebenfalls auf 10 s festgelegt, was dann einen Kontakt von 1,4 s bedeutet. Die Ergebnisse sind in Tabelle 4.1 zu sehen.

Tabelle 4.1: Gemittelte Ergebnisse bei 1 bar Druck

<table>
<thead>
<tr>
<th>Feed-Strom</th>
<th>Space Time 2 Sec</th>
<th>0,28</th>
<th>Space Time 6 Sec</th>
<th>0,85</th>
<th>Space Time 10 Sec</th>
<th>1,42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produktivität H₂</td>
<td>162,4</td>
<td>87,2</td>
<td>53,5</td>
<td>107,5</td>
<td>87,7</td>
<td>423,6</td>
</tr>
<tr>
<td>Ausbeute H₂</td>
<td>7,2</td>
<td>3,9</td>
<td>2,4</td>
<td>14,3</td>
<td>11,7</td>
<td>56,6</td>
</tr>
<tr>
<td>Ausb. Methan</td>
<td>0,4</td>
<td>0,2</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>1,7</td>
</tr>
<tr>
<td>Ausb. Ethan</td>
<td>0,1</td>
<td>0,0</td>
<td>0,0</td>
<td>0,01</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Ausb. Ethen</td>
<td>0,2</td>
<td>0,1</td>
<td>0,0</td>
<td>0,4</td>
<td>0,1</td>
<td>0,8</td>
</tr>
<tr>
<td>Ausb. Propan</td>
<td>0,04</td>
<td>0,0</td>
<td>0,0</td>
<td>0,1</td>
<td>0,0</td>
<td>0,6</td>
</tr>
</tbody>
</table>
Die Ausbeute und Produktivität werden in folgenden Graphen veranschaulicht.

![Ausbeute Wasserstoff](image1.png) ![Produktivität Wasserstoff](image2.png)

Bei Abbildung 4.7 und Abbildung 4.8 lassen sich die Ausreißer bei 6 Sekunden Space Time und 50 g/h ULSK und bei 10 Sekunden Space Time und 30 g/h ULSK dadurch erklären, dass das erzeugte Produktgas bereits die 4,5 l/h, auf welche der MFC begrenzt ist, überschreitet. Wenn der Druck in der Anlage ansteigt, sind die Bedingungen der Versuchsreihe nicht mehr identisch. Ansonsten zeigt sich, dass sich mit 20 g/h bessere Ergebnisse erzielen lassen.

Die letzte Messung von 50 g/h bei 10 s Space Time wird nicht mehr durchgeführt, da die benötigte Menge Katalysator von 11,12 g nicht mehr in dem Rohrabschnitt im Ofen untergebracht werden kann.

Für den Versuch ist eine geringe Strömungsgeschwindigkeit des Feeds besser, da im Vergleich mit einer hohen, auch bei gleichbleibender realer Kontaktzeit mit dem Katalysatorbett, die Flächenbelastung des Katalysators geringer ist. Dies bewirkt eine Minderung des Crackens und eine Steigerung der Ausbeute und Produktivität bedeutet.

4.2.2. Einfluss des Drucks

Durch die guten Ergebnisse bei den ungewollten Druckanstiegen war sogleich die nächste Variable in den Blick gerückt. In der nächsten Versuchsreihe, werden 5 bar als Anlagendruck eingestellt. In Tabelle 4.2 ist ein deutlicher Anstieg der Produktivität und Ausbeute zu sehen.
Versuchsergebnisse und Auswertung

Da bei der Katalysatorberechnung mittels der universellen Space Time, die Menge an Katalysator gleich bleibt, die Flussgeschwindigkeit bei höherem Druck aber abnimmt, ist die Lehrrohrgeschwindigkeit bei 5 bar erheblich niedriger. Dies bedeutet automatisch eine viel höhere reale Kontaktzeit und eine geringere Flächenbelastung.

Tabelle 4.2: Gemittelte Ergebnisse bei 5 bar Druck

<table>
<thead>
<tr>
<th>Space Time</th>
<th>Feed-Strom</th>
<th>20 g/h</th>
<th>30 g/h</th>
<th>20 g/h</th>
<th>30 g/h</th>
<th>20 g/h</th>
<th>30 g/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Sec</td>
<td>r.K.</td>
<td>1,42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Sec</td>
<td>r.K.</td>
<td>4,25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Sec</td>
<td>r.K.</td>
<td>7,08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>352,6</td>
<td>15,7</td>
<td>3,6</td>
<td>0,3</td>
<td>1,2</td>
<td>0,6</td>
</tr>
<tr>
<td>312,4</td>
<td>13,9</td>
<td>1,2</td>
<td>0,1</td>
<td>0,7</td>
<td>0,2</td>
</tr>
<tr>
<td>424,8</td>
<td>81,0</td>
<td>8,7</td>
<td>0,0</td>
<td>4,3</td>
<td>0,9</td>
</tr>
<tr>
<td>374,6</td>
<td>50,1</td>
<td>2,7</td>
<td>0,0</td>
<td>1,8</td>
<td>0,8</td>
</tr>
<tr>
<td>431,6</td>
<td>96,4</td>
<td>8,0</td>
<td>0,0</td>
<td>4,9</td>
<td>1,9</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

In folgenden Graphiken ist die Ausbeute und Produktivität der Durchflüsse über die Space Time veranschaulicht.

![Ausbeute Wasserstoff bei 5 bar Druck](Abbildung 4.10)

![Produktivität Wasserstoff bei 5 bar Druck](Abbildung 4.9)

Die Produktivität (Abbildung 4.9) und die Ausbeute (Abbildung 4.10) sind bei 5 bar deutlich höher, als bei 1 bar, doch steigen auch die Werte der Kohlenwasserstoffe (Tabelle 4.2) etwas an.

Betrachtet man nicht nur die Mittelwerte der gesamten Zeit, sondern auch den Verlauf ergibt sich das auf folgender Seite dargestelltes Bild mit den Abbildung 4.11 bis Abbildung 4.16.
Versuchsergebnisse und Auswertung

Abbildung 4.11: 1 bar Druck, 2 Sekunden Space Time

Abbildung 4.12: 5 bar Druck, 2 Sekunden Space Time

Abbildung 4.13: 1 bar Druck, 6 Sekunden Space Time

Abbildung 4.14: 5 bar Druck, 6 Sekunden Space Time

Abbildung 4.15: 1 bar Druck, 10 Sekunden Space Time

Abbildung 4.16: 5 bar Druck, 10 Sekunden Space Time

Bei Versuchen mit verhältnismäßig viel Katalysator ist der Einbruch der Werte gleich zu Beginn der Reaktion nicht so drastisch. Mit einem Längeren Katalysatorbett dauert die Verkokung über die gesamte Bettlänge länger. Die starke Deaktivierung der Versuche mit dem Testkerosin ULSK, welches nur 3 ppm Schwefel besitzt, wird allein durch das Verkoken des Katalysators hervorgerufen.

Man kann auch sehen, dass sich alle Versuche am Ende trotz Verkokung einem Gleichgewichtswert nähern. Das kommt daher, dass auch wenn die Oberfläche des Katalysators durch Verkokung inaktiv ist, der Feed durch thermische Einflüsse weiterhin zu Kohlenstoff umgesetzt wird. Wenn Kohlenstoff entsteht, muss auch Wasserstoff freigesetzt werden. Deshalb erreicht die Produktivität nicht Null trotz inaktivem Kat.

Tatsächlich ist der Kohlenstoffwert auf der Oberfläche des verwendeten Katalysators sehr hoch. In der Tabelle 4.3 sind die Ergebnisse aus dem Elementaranalysator aufgeführt.

Tabelle 4.3: Kohlenstoff auf dem Katalysator in Masseprozent nach den Versuchen

<table>
<thead>
<tr>
<th></th>
<th>1 bar</th>
<th>5 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 g/h Feed</td>
<td>30 g/h Feed</td>
</tr>
<tr>
<td>2 Sec Space Time</td>
<td>10,48 gew-%</td>
<td>-</td>
</tr>
<tr>
<td>6 Sec Space Time</td>
<td>7,15 gew-%</td>
<td>6,54 gew-%</td>
</tr>
<tr>
<td>10 Sec Space Time</td>
<td>5,46 gew-%</td>
<td>9,90 gew-%</td>
</tr>
</tbody>
</table>

Abbildung 4.17: Kohlenstoff auf dem Katalysator

In der Graphik sieht man deutlich, dass der Kohlenstoff mit zunehmender Feed-Strom-Geschwindigkeit und ebenso mit steigender Space Time abnimmt. Die Versuche mit ungewolltem Druckanstieg wurden wieder farblich abgesetzt. So bleibt nur ein Versuch, der nicht in die Reihe passt. Dieser Versuch mit 50 g/h Feed bei 1 bar und 2 Sekunden Space Time war der erste Versuch der Testreihe und kann deshalb aufgrund fehlender Routine beim Aufbereiten und Anfahren von den anderen Versuchen abweichen.

4.2.3. Einfluss der Kontaktzeit zum Reaktorbett

Zusammenhänge mit der Space Time sind weniger deutlich zu erkennen, als bei den bisherigen Größen.

Die Produktivität ist das Verhältnis von umgesetztem Wasserstoff zu eingesetztem Katalysator. Bei den Versuchen mit 5 bar nimmt die reale Kontaktzeit von 1,4 über 4,3 bis 7 Sekunden zu. Bei den großen Differenzen wird die größere Menge an Katalysator beim Umströmen des Reaktorbetts genutzt um die Kohlenwasserstoffe zu katalysieren. Bei den Versuchen mit 1 bar Druck nimmt die Kontaktzeit von 0,3 über 0,9 bis 1,4 Sekunden zu. Bei dieser geringen Steigerung der Kontaktzeit wirkt sich die zunehmende Menge des Katalysators weniger auf die Größe der Produktivität aus. Auch wenn die Ausbeute des Wasserstoffs aus dem Kerosindampf insgesamt zunimmt, wird die Produktivität schlechter.
Außerdem ist zu sehen, dass bei einer Steigerung der realen Kontaktzeit über 4 Sekunden die Produktivität nicht mehr zunimmt.

Bisherige Erkenntnisse sind in Tabelle 4.4 noch einmal veranschaulicht.

Tabelle 4.4: Bisherige Erkenntnisse aus Druck, Space Time und Feed-Menge für die Ausbeute

<table>
<thead>
<tr>
<th>Zunahme</th>
<th>1 bar</th>
<th>5 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Sec Space Time</td>
<td>20 g/h Feed</td>
<td>20 g/h Feed</td>
</tr>
<tr>
<td>6 Sec Space Time</td>
<td>30 g/h Feed</td>
<td>30 g/h Feed</td>
</tr>
<tr>
<td>10 Sec Space Time</td>
<td>50 g/h Feed</td>
<td>50 g/h Feed</td>
</tr>
<tr>
<td>2 S 6 S 10 S</td>
<td>1 bar</td>
<td>5 bar</td>
</tr>
</tbody>
</table>

Die universelle Space Time alleine ist keine ausreichende Größe, um Versuchsbedingungen vollständig zu beschreiben. Es sollte immer die reale Kontaktzeit mit berücksichtigt werden.

Deutlich ist der Einfluss des Drucks und somit auch der realen Kontaktzeit, wird der Versuch über den zeitlichen Verlauf betrachtet. Hier werden nochmals die Versuche mit jeweils 450 °C Reaktortemperatur, 20 g/h Feed-Strom 10 s Space Time aber einmal 1 bar Druck mit 1,4 s realer Kontaktzeit und einmal 5 bar Druck mit 7 s realer Kontaktzeit in Abbildung 4.20 gegenübergestellt.

Abbildung 4.20: Vergleich Druck und reale Kontaktzeit
Obwohl die gleiche Menge an Katalysator verwendet wird, ist die Ausbeute und Produktivität stark unterschiedlich. Auch wenn im Versuch mit 5 bar wegen der längeren Aktivität des Katalysators mehr Kohlenwasserstoffe entstehen, ist die Zunahme an Wasserstoff erheblich. Für Abbildung 4.21 wurde der Stickstoff aus dem Produktgas gerechnet und die entstandenen Kohlenwasserstoffe als Differenz zu 100 vol-% Wasserstoff abgezogen.

Abbildung 4.21: Reinheit des produzierten Wasserstoffs

Der gemittelte Produktgasstrom beträgt bei dem Versuch mit 1 bar 0,289 l/h, davon 0,250 l/h an Wasserstoff. Bei dem Versuch mit 5 bar sind es 2,359 l/h Produktgas und 1,920 l/h Wasserstoff. Der Kohlenstoff auf den Pellets beträgt bei dem niedrigeren Druck nur 5,5 gew-% des Katalysatorgewichts, bei dem höheren sind es bereits 12,8 % des Gewichts. Obwohl der Wasserstoffstrom um das 7,7-fache ansteigt, ist die Verkokung nur um das 2,3 fache gestiegen. Der hohe Druck begünstigt zudem den Kontakt der Kohlenwasserstoffe mit dem Katalysator.

Trotzdem ist das Verkoken in diesem hohen Grad sehr problematisch für eine kontinuierliche Prozessführung. Bei den bisher betrachteten Zeiträumen handelte es sich nur um jeweils 5 Stunden.

4.2.4. Auswirkung eines Wasserstoff Co-Feeds

Die Anlage wird wie bisher mit Stickstoff gespült und erst zu Versuchsbeginn wird der Wasserstoffstrom angeschaltet.
Versuchsergebnisse und Auswertung

Abbildung 4.25: Versuch mit fünf Volumenprozent Wasserstoff als Co-Feed

Laut Berichten von einem Projektpartner waren die besten Ergebnisse mit den Bedingungen 10 bar Druck, 450 °C Reaktortemperatur, 2 Sekunden Space Time, 30 g/h ULSK und 7 % H₂ Co-Feed erreicht worden. Diese Bedingungen werden ebenfalls getestet. Da die Anlage nicht bei diesem Druck betrieben werden kann, werden die Versuche bei 7,5 bar Druck gefahren.

Die bisherigen Ergebnisse mit höherer Space Time und niedrigerem Durchfluss sind besser. Auch zu Ende dieses Versuchs sind die Werte niedriger und die Deaktivierung läuft sogar etwas schneller ab.

Um die Versuche mit den vorangegangenen Ergebnissen vergleichen zu können, wird ein Versuch mit gleichen Bedingungen, jedoch bei 5 bar durchgeführt (Abbildung 4.28).
Abbildung 4.28: Vergleich eines Green Air Versuchs (7,5 bar) mit Versuchen mit 5 bar Druck

Versuchsergebnisse und Auswertung

Abbildung 4.29: Entstehende Gase bei den Versuchen

In Abbildung 4.29 ist zu sehen, wie bei dem Versuch mit den Betriebsbedingungen der Projektpartner (grün), zeitweise mehr Kohlenwasserstoffe als reiner Wasserstoff entsteht. Das erklärt, warum die Wasserstoff Ausbeute und Produktivität erst später ansteigt. In der Graphik ist auch zu sehen, dass der Versuch mit einem H$_2$-Co-Feed eine höhere Wasserstoffreinheit hat als der Versuch ohne Co-Feed.

Weiter wird ein Versuch bei 6 Sekunden Space Time und 30 g/h Feed gefahren, da nach eigenen Erkenntnissen, mit höherer Kontaktzeit ein geringerer Einbruch der Produktivität und Ausbeute erwartet wird. Diese Ergebnisse können mit dem bisher besten Versuch mit nur 20 g/h Feed verglichen werden, auch wenn dieser nur mit 5 vol-% Wasserstoff durchgeführt wird.

Tabelle 4.5: Übersicht über die Versuche mit Wasserstoff als Co-Feed

<table>
<thead>
<tr>
<th></th>
<th>1 bar</th>
<th>5 bar</th>
<th>7,5 bar Green Air</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 g/h Feed</td>
<td>30 g/h Feed</td>
<td>50 g/h Feed</td>
</tr>
<tr>
<td>2 sec</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6 sec</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10 sec</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
In Tabelle 4.5 ist zu sehen, wie von dem Green Air Versuch ausgehend der Druck, die Space Time und zuletzt der Feed-Strom an die bisherigen Erkenntnisse angepasst werden.

Diese Abbildung ist gleich wie die Abbildung 4.28, allerdings wurde der Versuch ohne Co-Feed durch den Versuch mit Co-Feed und 6 Sekunden Space Time ersetzt. Dieser Versuch produzierte anfangs wieder mehr als 4,5 l/h Produktgas. Die Produktivität ist nicht bedeutend angestiegen, doch ist die Ausbeute um ein vielfaches besser.

Zur Vollständigkeit ist noch der Vergleich mit den besten Betriebsbedingungen bei 20 anstatt 30 g/h Feed in Abbildung 4.31 abgebildet.
Mit den geringen Durchflüssen wird wieder ein gutes Ergebnis erzielt. Die Startwerte der Produktivität und Ausbeute erzielen die bisher höchsten Werte insgesamt und der Versuch zeigt den bisher stabilsten Verlauf, auch wenn er wieder stetig fällt. Die bisherigen Erkenntnisse bestätigen sich also auch bei den Versuchen mit Wasserstoff als Co-Feed.

Ein Wasserstoffstrom im verdampften Feed verzögert das Verkoken des Katalysators und hält die Reaktion etwas länger in Gang.

4.2.5. Versuche mit Reinstoffen

Da nun das Verhalten eingeschätzt werden kann, werden Versuche mit Reinstoffen durchgeführt. Durch Untersuchung von Cycloalkanen wie beispielsweise Decalin, Aromaten wie n-Butylbenzol oder Alkane wie Decan oder Dodecan, soll erkannt werden, wie sich die Stoffe einzeln verhalten. So können am Ende Versuche mit idealen Stoffgemischen durchgeführt werden.
Begonnen wurde mit Decalin, mit dem bereits zur Inbetriebnahme Versuche ohne Druck und mit 350 °C gefahren wurden. Der erste Versuch wird mit 5 bar, 7 % Wasserstoff Co-Feed, 450 °C und 6 Sekunden Space Time gefahren, womit bisher die besten Ergebnisse erzielt werden können. Um die Vergleichbarkeit mit den anderen Versuchen mit Co-Feed zu bewahren, wird ein Feed-Strom von 30 g/h verwendet. In den ersten 25 Minuten nahm der Druck nicht bedeutend zu, der Produktgasstrom lag jedoch am Maximum von 4,5 Litern pro Stunde. Dann stieg der Druck plötzlich innerhalb von etwa 9 Minuten auf 9,2 bar an (Abbildung 4.32).

![Diagramm Versuch mit Decalin](image)

Abbildung 4.32: Versuch mit Decalin und 30 g/h Feed-Strom

Die Stellfeder des Sicherheitsventils hielt den Druck der Anlage zwar dann konstant, doch wurde das austretende Gas nicht mehr gemessen und der Versuch musste abgebrochen werden. Die verwendeten Bedingungen dehydrierten den Reinstoff so gut, dass die Anlage nicht in der Lage ist, die Katalyse vernünftig durchzuführen. Für weitere Versuche muss ein größeres Ventil in den MFC, welcher das Produktgas ausströmen lässt, eingebaut werden.

Abbildung 4.33: Kondensat aus dem Versuch mit Decalin. Am Boden des Behälters viel Naphthalin Sediment

In Abbildung 4.33 ist das Kondensat zu sehen, in dem sich der Feststoff abgesetzt hat. Der Kühler wurde nach diesem Versuch gut gespült und gereinigt. Es wurde noch ein weiterer Versuch gestartet, bei dem nur ein Massenstrom von 10 g Decalin in einer Stunde in das System gegeben wird. Bei diesem kleinen Volumenstrom, den die Pumpe gerade noch kontinuierlich und konstant fördern kann, soll ein Versuch gefahren werden, bei dem das Überdruckventil nicht auslöst. Es werden außerdem wieder 450 °C, 6 Sekunden Space Time aber nur 1 bar Druck, um mehr Spielraum nach oben zu haben, eingestellt. Der Versuch läuft ebenfalls nur ca. 3 Stunden, bevor das Überdruckventil öffnete. Der Druck wurde aber über den Kondensatauslass wieder auf etwa 1 bar Druck abgelassen und bis zur fünften Stunde weiter geführt (Abbildung 4.34).
Versuchsergebnisse und Auswertung

Insgesamt ist bei der Dehydrierung mit Decalin fest zu halten, dass es zu fast keiner Verkokung kommt.

Abbildung 4.34: Versuch mit Decalin und 10 g/h Feed-Strom

Abbildung 4.35: Verkokung mit Decalin
In Abbildung 4.35 ist zu sehen, dass die Menge an Kohlenstoff auf der Oberfläche des Katalysators lediglich ein Gewichtsprozent beträgt. Dieser Reinstoff mit der stabilen Ringstruktur ist gegen Veränderungen durch Reaktionen besser geschützt.

Abbildung 4.36: Reinheit Wasserstoff

Abbildung 4.36 zeigt die Kohlenwasserstoffe im Produktgas im Verhältnis zum Druck. Man kann sehen, dass mit höherem Druck, welcher die Reaktion verstärkt, auch mehr Kohlenwasserstoffe gebildet werden und die Wasserstoffreinheit sinkt.

4.2.6. Untersuchung von Kerosinfraktionen

Versuchsergebnisse und Auswertung

Abbildung 4.37: Stoffzusammensetzung der Kerosinfraktionen

In den Fraktionen 5 gew-% bis 20 gew-% ist zu sehen, dass die Cycloalkane zu Gunsten der Aromaten abnehmen. Wie bereits erwähnt sind die Cycloalkane stabile Ringe, welche voll gesättigt sind und sich leichter dehydrieren lassen und weniger Cracken. Aromaten sind gleichermaßen Ringstrukturen, welche jedoch mehrfach ungesättigt sind. Die Dehydrierung ist nur über eine Substitution möglich, was Cracken anderer Stoffe erfordert. In Iso-Alkanen treten wegen der ungewöhnlichen Bindungswinkel Spannungen auf, die diese Stelle des Moleküls sehr reaktiv macht. Über die Fraktionierung ist bei den iso-Alkanen, wie auch bei den unverzweigten n-Alkanen, nur eine geringe Änderung zu sehen.
Die Versuche nahmen folgenden Verlauf:

In den Abbildung 4.38 bis Abbildung 4.42 sind die Ausbeute und Produktivität auf der linken y-Achse dargestellt. Auf der rechten sind die Wasserstoffreinheit und die Kohlenwasserstoffanteile in Volumenprozent aufgetragen.

Auch wenn geringfügig eine abnehmende Aktivität zu erkennen ist, lässt sich bei der starken Verkokung kein Einfluss des höheren Schwefelgehaltes erkennen. Erst wenn das Problem des Crackens behoben ist, können die Versuche diesbezüglich wiederholt werden.

Bei zunehmend schwerer siedenden Bestandteilen, sinkt der Anfangswert des erzeugten Wasserstoffs. Zu Beginn der Reaktion wird anfangs eine geringe Menge Wasserstoff gebildet, weshalb der Volumenprozent Anteil der Kohlenwasserstoffe sehr hoch ist. Die Produzierte Menge an Nebenprodukten ist jedoch weiter gering.

Auch der Endwert der Wasserstoffreinheit fällt von anfangs knapp unter 90 vol-% bis am Ende auf nur noch 78 vol-%. Wie schon erwähnt nehmen die stabilen Cycloalkane zu Gunsten der reaktionsfreudigeren...

Abbildung 4.38: Fraktioniertes Kerosin 5 w-%

Abbildung 4.39: Fraktioniertes Kerosin 10 w-%

Abbildung 4.40: Fraktion Kerosin 15 w-%
Aromaten ab. Somit steht wieder das Problem des Verkokens im Vordergrund.

Die Messungen des Kohlenstoffs am Elementaranalysator ergaben auch keine ersichtlichen Tendenzen, wie in Abbildung 4.43 gezeigt. Die Unregelmäßigkeiten sind im Bereich der Messabweichung.

Abbildung 4.41: Fraktion Kerosin 20 w-%

Abbildung 4.42: Fraktion Kerosin 30 w-%

Der Einfluss des Schwefels lässt sich erst untersuchen, nachdem das Verkoken des Katalysators reduziert werden kann.
4.2.7. Versuch zur Reduzierung der Verkokung

Abbildung 4.44: Leitungen vor dem Ofen ohne Isolierung und Heizschnüre

Die Feed-Leitung wird mit einer Heizleitung auf 400 °C gewärmt, um Auskondensieren zu verhindern und keine große Temperaturdifferenz zum Reaktor zu haben. Die Temperatur zur Regelung der Heizleitung wird an einem der beiden T-Stücke gemessen, welche an dem Kreuzstück vor dem Reaktor hängen. An dieser Stelle der beheizten Strecke muss viel Energie eingebracht werden, um diese massiven Teile auf die gewünschte Temperatur zu bringen. Dies kann aber dazu führen, dass an anderen Stellen der Rohre mit nur einem Millimeter Wandstärke die Temperatur viel höher ist.

In dem verbleibenden Versuchszeitraum wird noch ein Versuch gefahren bei dem die Heizleitung des Feed-Stroms niedriger eingestellt wird. Damit soll überprüft werden, ob das Verkoken durch das überhitzen der Leitung bereits vor dem Ofen verursacht wird. Man
wählt die Versuchsbedingungen von 5 bar, 20 g/h Feed, 6 Sekunden Space Time und 450 °C im Reaktor. Die Heizleitung wird nur auf 300 °C erwärmt.

Abbildung 4.45: Verbesserung durch eine niedrigere Temperatur in der Vorheizstrecke
5. Zusammenfassung und Ausblick

5.1. Zusammenfassung
Da bis 2020 die Abgase in der Luftfahrt reduziert werden sollen, wird von der EADS Deutschland ein EU-Projekt geleitet, welches das Ziel hat, eine kerosinbetriebene Hilfsturbine gegen eine Brennstoffzelle auszutauschen. Im Projekt Green Air soll unter anderem die Wasserstofferzeugung aus Kerosin mittels katalytischer Dehydrierung untersucht werden.

Der Vorgang der Dehydrierung ist die Reverse zur Hydrierung und läuft exotherm ab. Probleme des Verfahrens sind das Cracken bei hohen Temperaturen. Als Katalysator wird Platin genutzt, welches ein kubisch flächenzentriertes Atomgitter hat. In dieses lagert sich der Wasserstoff ein, wobei die Bindung zu den Kohlenstoffatomen stark geschwächt wird.

Anhand von Berichten aus allgemeinen Veröffentlichungen und Besprechungen mit Projektpartnern werden die Dimensionen der Testanlage berechnet. Zur Auswertung der Versuche wurde noch ein Programm in VBA-Excel geschrieben, welches die Versuchsdaten automatisch einliest und die wichtigsten Kenngrößen berechnet.

5.2. Fazit
Mit den Versuchen konnten die Einflüsse der möglichen Variablen untersucht werden. Bei entsprechenden Betriebsbedingungen in der Anlage zur katalytischen Dehydrierung wurden sehr gute Startwerte ermittelt, welche die Erwartung an die Ausbeute übertraf.

Mit niedriger Flussgeschwindigkeit kann die Reaktion besser ablaufen und erhöhter Druck verbessert den Kontakt zu dem Katalysator. Beides steigert die Ausbeute und die
Produktivität der Versuche. Während die Space Time keine Aussagekraft hat, kann mit einer realen Kontaktzeit von ca. 4 Sekunden mit dem Katalysatorbett die besten Ergebnisse von Ausbeute und Produktivität erzielt werden.

Um das Verkoken zu verringern wurde ein Co-Feed aus Wasserstoff in den Reaktor mit eingebracht. Das Resultat war aber nicht ausreichend um den Prozess deutlich zu verbessern. Da die Zersetzung der Kohlenwasserstoffe möglicherweise bereits vor dem Reaktor stattfindet, ist ein Umbau der Zuleitungen nötig.

Das Verkoken ist das größte Problem der Prozessführung bisher.

5.3. Ausblick

Um das Problem mit dem ungewollten Druckanstieg bei Versuchen zu beseitigen, wird das Ventil des auslassenden MFC mit 4,5 l/h gegen eines mit 10 l/h ausgetauscht.

Das größere Problem mit der Verkokung soll beseitigt werden, indem der Verdampfer direkt vor dem Ofen angebracht wird und die Strecke bis in den Reaktor minimiert wird. Diese wird dann bei niedrigeren Temperaturen beheizt. Zudem soll der Wasserstoff, welcher als Co-
Feed genutzt wird, bereits vor dem Verdampfer in den noch flüssigen Kerosinstrom untergemischt werden.

Die Reaktivierung kann untersucht werden, indem die abgebrannten Pellets aus dem EA noch einmal in einem Versuch eingesetzt werden. Es sind annähernd gleiche Startwerte wie bei frischem Katalysator zu erwartet.

Versuche mit reinen Einzelkomponenten können weitere Aufschlüsse ergeben, bei welcher Zusammensetzung des Kerosins, bestimmte Parameter besonders vorteilhaft sind, oder Nachteile mit sich bringen.

Desweiteren soll ein Reaktorohr mit einem größeren Durchmesser verwendet werden, um bei der Untersuchung der Kontaktzeit und Flussgeschwindigkeit eine größere Variabilität zu schaffen.

Literaturverzeichnis

3. Cordis. Generation of Hydrogen by Kerosene Reforming via efficient and low emission
new alternative, innovative, refined technologies for aircraft application. [Online] [Cited: 07
03, 2012.]

4. DLR. The Power Optimised Aircraft Project. [Online] [Cited: 07 03, 2012.]

5. Heinzel, Mahlendorf, Roes. Brennstoffzellen. 3. Auflage. Heidelberg : C.F. Müller Verlag,

6. SBZ Monteur. [Online] [Cited: 07 13, 2012.] http://www.sbz-
monteur.de/2009/01/06/strom-und-warme-selbst-gemacht/.

for hydrogen generation in organic chemical hydride method. [ed.] Science Direct.

10. Wallentowitz, Reif. Handbuch Kraftfahrzeugelektronik. Wiesbaden : Vieweg Verlag,
2006. p. 95.

1998.
Anhang

Anhang

I. Produktivität bei unterschiedlichem Druck und unterschiedlicher Space Time

II. Certificate of analysis (18)

III. Datenblatt Kerosin Jet A-1

IV. Datenblatt Decalin

V. CD mit den Ergebnissen der Versuche und dem Auswertungsprogramm in VBA-Excel
I. Produktivität bei unterschiedlichem Druck und unterschiedlicher Space Time

Figure 1: 1 bar Druck, 2 Sekunden Space Time

Figure 2: 5 bar Druck, 2 Sekunden Space Time

Figure 3: 1 bar Druck, 6 Sekunden Space Time

Figure 4: 5 bar Druck, 6 Sekunden Space Time

Figure 5: 1 bar Druck, 10 Sekunden Space Time

Figure 6: 5 bar Druck, 10 Sekunden Space Time
II. Certificate of analysis

CERTIFICATE OF ANALYSIS

"Aviation Fuel Quality Requirements for Jointly Operated Systems"

APPLICABLE ISSUE 2.0 — Chausée Lest Jact A.1 (Jact 02/00)

Based on the most stringent requirements of the following specifications

- JET A-1: 2002-06 (JACT)
- DFG STAN 91-01/96 (DFG STAN 91-01/96)

II. Certificate of analysis

<table>
<thead>
<tr>
<th>Method / Methodes</th>
<th>Property / Propriété</th>
<th>Characteristic / Caractéristique</th>
<th>Result / Résultat</th>
<th>Limit / Limit</th>
<th>Limit / Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity / Viscosité</td>
<td>Appearance / Aspect</td>
<td>ASTM D131</td>
<td>Coloured (1)</td>
<td>Coloured (1)</td>
<td>30</td>
</tr>
<tr>
<td>D3492</td>
<td>Total Acidity</td>
<td>Acidic taste</td>
<td>mg KOH/l</td>
<td>0.001</td>
<td>0.010 max.</td>
</tr>
<tr>
<td>D319</td>
<td>Aromatic (4)</td>
<td>Aromatic (4)</td>
<td>% vol.</td>
<td>15.6</td>
<td>35.0 max.</td>
</tr>
<tr>
<td>D4240 or D4241</td>
<td>Sulfur Tolu</td>
<td>Sulfur Tolu</td>
<td>mg/l</td>
<td>3.0</td>
<td>7.0 max.</td>
</tr>
<tr>
<td>D3277</td>
<td>Sulfur Hexacres</td>
<td>Sulfur Hexacres</td>
<td>% max.</td>
<td>0.009 max.</td>
<td>Negative</td>
</tr>
<tr>
<td>D4582</td>
<td>Oil Content Test (5)</td>
<td>Oil Content Test (5)</td>
<td>Negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D452</td>
<td>Total Acid</td>
<td>Total Acid</td>
<td>mg/l</td>
<td>0.4</td>
<td>1.0 max.</td>
</tr>
</tbody>
</table>

Vapor Pressure

<table>
<thead>
<tr>
<th>Method / Methodes</th>
<th>Property / Propriété</th>
<th>Characteristic / Caractéristique</th>
<th>Result / Résultat</th>
<th>Limit / Limit</th>
<th>Limit / Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>D64</td>
<td>Distillation Initial Boiling Point (9)</td>
<td>Point initial (°C)</td>
<td>°C</td>
<td>139.6</td>
<td>Report</td>
</tr>
<tr>
<td>D66</td>
<td>10 % vol.</td>
<td>10 % vol.</td>
<td>°C</td>
<td>163.2</td>
<td>105.0 max.</td>
</tr>
<tr>
<td>D68</td>
<td>30 % vol.</td>
<td>30 % vol.</td>
<td>°C</td>
<td>177.2</td>
<td>Report</td>
</tr>
<tr>
<td>D69</td>
<td>90 % vol.</td>
<td>90 % vol.</td>
<td>°C</td>
<td>215.7</td>
<td>Report</td>
</tr>
<tr>
<td>D68</td>
<td>Max. Point</td>
<td>Point Max.</td>
<td>°C</td>
<td>252.5</td>
<td>300.0 max.</td>
</tr>
<tr>
<td>D66</td>
<td>Residue</td>
<td>Residue</td>
<td>%</td>
<td>0.1</td>
<td>1.5 max.</td>
</tr>
<tr>
<td>D66</td>
<td>Loss</td>
<td>Loss</td>
<td>%</td>
<td>0.0</td>
<td>1.5 max.</td>
</tr>
<tr>
<td>D4280</td>
<td>Flash Point (9)</td>
<td>Point Flott. (°C)</td>
<td>°C</td>
<td>41.5</td>
<td>28.0 min.</td>
</tr>
<tr>
<td>D4552</td>
<td>Density at 15°C</td>
<td>Masse volumique à 15°C</td>
<td>kg/m³</td>
<td>788.1</td>
<td>775.0 — 845.0</td>
</tr>
</tbody>
</table>

Flash Point

<table>
<thead>
<tr>
<th>Method / Methodes</th>
<th>Property / Propriété</th>
<th>Characteristic / Caractéristique</th>
<th>Result / Résultat</th>
<th>Limit / Limit</th>
<th>Limit / Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>D228 or D222 or D215</td>
<td>Flash Point (9)</td>
<td>Point de dégazage de classe (9)</td>
<td>°C</td>
<td>56.6</td>
<td>47.0 max.</td>
</tr>
<tr>
<td>D110</td>
<td>Viscosity at 30°C</td>
<td>Viscosité à 30°C</td>
<td>mm²/s (25)</td>
<td>2.87</td>
<td>2.000 mm²/s</td>
</tr>
</tbody>
</table>

CONTRIBUTION

<table>
<thead>
<tr>
<th>Method / Methodes</th>
<th>Property / Propriété</th>
<th>Characteristic / Caractéristique</th>
<th>Result / Résultat</th>
<th>Limit / Limit</th>
<th>Limit / Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>D224</td>
<td>Specific Gravity (11)</td>
<td>Puissance spécifique (11)</td>
<td>Density, kg/m³</td>
<td>43.356</td>
<td>43.80 min.</td>
</tr>
<tr>
<td>E132</td>
<td>Smoke Point</td>
<td>Point de fumée</td>
<td>mm</td>
<td>24.9</td>
<td>22.0 min.</td>
</tr>
<tr>
<td>D1213</td>
<td>CBR Compress. Point</td>
<td>CBR Compress. Point</td>
<td>mm</td>
<td>24.9</td>
<td>17.0 min.</td>
</tr>
<tr>
<td>D440</td>
<td>API Gravity</td>
<td>API Gravity</td>
<td>%</td>
<td>0.30</td>
<td>5.00 max.</td>
</tr>
</tbody>
</table>

STABILITY

<table>
<thead>
<tr>
<th>Method / Methodes</th>
<th>Property / Propriété</th>
<th>Characteristic / Caractéristique</th>
<th>Result / Résultat</th>
<th>Limit / Limit</th>
<th>Limit / Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>D121</td>
<td>Corrosion Coll. (100°C)</td>
<td>Corrosion Coll. (100°C)</td>
<td>Class 1</td>
<td>1</td>
<td>Class 1</td>
</tr>
</tbody>
</table>

THERMAL STABILITY

<table>
<thead>
<tr>
<th>Method / Methodes</th>
<th>Property / Propriété</th>
<th>Characteristic / Caractéristique</th>
<th>Result / Résultat</th>
<th>Limit / Limit</th>
<th>Limit / Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>D224</td>
<td>Fire Point</td>
<td>Point de combustion</td>
<td>°C</td>
<td>260</td>
<td>240°C min.</td>
</tr>
<tr>
<td>D334</td>
<td>Flammable Limit</td>
<td>Limite inflammable</td>
<td>%</td>
<td>0</td>
<td>55.0 max.</td>
</tr>
<tr>
<td>D2241</td>
<td>Tube Deposition Rating (12)</td>
<td>Tube Deposition Rating (12)</td>
<td>Class</td>
<td>1</td>
<td>Class 1</td>
</tr>
<tr>
<td>D3348</td>
<td>Oxygen Index (100°C)</td>
<td>Oxigène Index (100°C)</td>
<td>Class</td>
<td>0</td>
<td>35.0 min.</td>
</tr>
<tr>
<td>D3342</td>
<td>Combustion</td>
<td>Combustion</td>
<td>Fuel</td>
<td>95</td>
<td>15 min.</td>
</tr>
</tbody>
</table>

CONSUMPTION

<table>
<thead>
<tr>
<th>Method / Methodes</th>
<th>Property / Propriété</th>
<th>Characteristic / Caractéristique</th>
<th>Result / Résultat</th>
<th>Limit / Limit</th>
<th>Limit / Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>D224</td>
<td>Specific Gravity (11)</td>
<td>Puissance spécifique (11)</td>
<td>Density, kg/m³</td>
<td>0</td>
<td>7.0 max.</td>
</tr>
<tr>
<td>D224</td>
<td>Microlead (MEPB)</td>
<td>Microlead (MEPB)</td>
<td>%</td>
<td>95</td>
<td>90 min.</td>
</tr>
<tr>
<td>D3346</td>
<td>Lead Private Diman</td>
<td>Lead Private Diman</td>
<td>%</td>
<td>12</td>
<td>15 min.</td>
</tr>
<tr>
<td>D224</td>
<td>Combustion</td>
<td>Combustion</td>
<td>Fuel</td>
<td>95</td>
<td>15 min.</td>
</tr>
</tbody>
</table>

Stability

<table>
<thead>
<tr>
<th>Method / Methodes</th>
<th>Property / Propriété</th>
<th>Characteristic / Caractéristique</th>
<th>Result / Résultat</th>
<th>Limit / Limit</th>
<th>Limit / Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>D304</td>
<td>Product Additive</td>
<td>Product Additive</td>
<td>%</td>
<td>15.0</td>
<td>5.0 max. to 7.0 max.</td>
</tr>
<tr>
<td>D334</td>
<td>Antioxidants</td>
<td>Antioxidants</td>
<td>%</td>
<td>78.0 to 74.0</td>
<td></td>
</tr>
<tr>
<td>D334</td>
<td>Antioxidants</td>
<td>Antioxidants</td>
<td>%</td>
<td>78.0 to 74.0</td>
<td></td>
</tr>
<tr>
<td>D334</td>
<td>Antioxidants</td>
<td>Antioxidants</td>
<td>%</td>
<td>78.0 to 74.0</td>
<td></td>
</tr>
<tr>
<td>D334</td>
<td>Antioxidants</td>
<td>Antioxidants</td>
<td>%</td>
<td>78.0 to 74.0</td>
<td></td>
</tr>
</tbody>
</table>

The Chief Chemist certifies that the product complies with the specifications detailed above.

Date: 21/10/2009
III. Datenblatt Kerosin Jet A-1

Sicherheitsdatenblatt

Produktsicherheitsbemerkung: JET A-1
SDS-Nr.: 30141-49
Version: 2.00

Überarbeitet/Erstellt: am 2009-06-30
Erstellt die Version vom: 2008-02-29

Produktetikett

Kennzeichnung (EO): Kernezeichnungspflichtig

Gefahrensymbol(e):
- Xn: Gesundheits- und Nahrungsmittelschäden
- H308: Kontakt mit Augen

Enthalt:
- Kerosin (Erdoil)
- Kerosin (Erdoil), hydrosulfuriertes
- Kerosin (Erdoil), geölt

R-Sätze:
- R10 Ertrinken
- R36/37/38 Reizt die Haut und die Augen
- R65 Gesundheitsgefährlich. Kann beim Verschlucken Lungenschäden verursachen.
- R51/53 Giftigkeit für Wasserorganismen, kann in Gewässern langfristig schädliche Wirkungen haben.

S-Sätze:
- S-23 Dank nicht einatmen
- S-24 Vermeidung der einatmung
- S-37 geeignete Schutzhandschuhe tragen
- S-61 Freisetzung an der Umwelt vermeiden. Besondere Anweisungen einholen. Sicherheitsdatenblatt zu Rate ziehen.

Kennzeichnung zum Transport: Gefahrz, siehe Kapitel 14

1. Stoff-/Zubereitungs- und Firmenbezeichnung

Produktbezeichnung: JET A-1
Verwendung: Kraftstoff für Düsenflugzeuge
Lieferant: TOTAL Deutschland GmbH
Schützenstraße 25
D-10117 BERLIN
DEUTSCHLAND
Tel.: ++49 (0) 30 2027-60
Fax: ++49 (0) 30 2027-940

Kontaktperson: HSE, Tel.: ++49 (0) 30 2027-9429, e-mail: media@total.de
Notrufnummer: Oähnotruf Berlin Tel.: ++49 (0) 30 19 240 (24 Stunden erreichbar)

2. Mögliche Gefahren

Gefahren für die Gesundheit: Reizt die Haut. Beim Verschlucken kann das Produkt aufgrund seiner niedrigen Viskosität in die Lungen gelangen und innerhalb kurzer Zeit zur Einreizung erster Lungenschäden führen. (der Patient ist für 8 bis 12 Stunden respiratorisch zu überwachen).
Sicherheitsdatenblatt

Produktbezeichnung: JET A-1
SDS-Nr.: 30141-49
Version: 2.00
Seite: 29
Überarbeitet/Erstellt am: 2009-06-30
Ersatzteilkennung vom: 2008-05-29

Gefahren für die Umwelt: Giftig für Wasseroorganismen, kann in Gewässern längerfristig schädliche Wirkungen haben.

3. ZUSAMMENSETZUNG / ANGABEN ZU BESTANDTEILEN

ZUBEREITUNG
Chemische Charakterisierung: Keroin (Erdölg), komplexe Kombination von Kohlenwasserstoffen, die man aus einem Erdöl-Destillat durch ein Verfahren, das den Extraktion von mineralischen Wirkstoffen oder durch Entfernen von flüchtigen Verbindungen, oder aus einem Erdölgrundstoff durch Behandeln mit Wasserstoff, organischen Schmelzen in flüssiger oder festem Zustand nachflüssigen Kohlenwasserstoffen aus Kohlenstoffverbindungen in einem Bereich von etwa 150°C bis 280°C, die sich aus Kohlenwasserstoffen mit Kohlenstoffatomen vornehmlich aus dem Bereich von C9 bis C16 bestehen und an Desmin im Bereich von etwa 150°C bis 280°C. Kann auch unvergängliche Luftfeuchtigkeit enthalten.

Gefährliche Inhaltsstoffe

<table>
<thead>
<tr>
<th>Inhaltsstoff</th>
<th>EG-Nr.</th>
<th>CAS-Nr.</th>
<th>Inhalt</th>
<th>Symbol(e)</th>
<th>R-Sätze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keroin (Erdölg), hydrodampfisiertes</td>
<td>265-184-9</td>
<td>64742-81-0</td>
<td><100%</td>
<td>Xn.N</td>
<td>R10, 65, 38, 51/53</td>
</tr>
<tr>
<td>Keroin (Erdölg), entfettet</td>
<td>294-799-5</td>
<td>91770-15-9</td>
<td><100%</td>
<td>Xn.N</td>
<td>R10, 65, 38, 51/53</td>
</tr>
<tr>
<td>Keroin (Erdölg)</td>
<td>232-366-4</td>
<td>9008-20-6</td>
<td><100%</td>
<td>Xn.N</td>
<td>R10, 65, 38, 51/53</td>
</tr>
</tbody>
</table>

Die R-Sätze im vollständigen Wortlaut sind in Kapitel 16 zu finden.

Atemberaubende Zusatzbezeichnung: Die CAS-Nummer des Produkts kann in Abhängigkeit von Herstellungsprozess in der jeweiligen Kategorisierung variieren.

4. ERSTE-HILFE-MASSNAHMEN

BEI UNWÖHLICHEN EINEM ARZT AUFRUFEN UND DIE SICHERHEITSDATENBLATT VORLEGEN.

nach Einatmen:

nach Verschlucken:
Sofort Arzt rufen, Nicht zum Erbrechen bringen, um eine Aspiration in der Atemwege vorzubeugen. Betroffene ruhig legen. Übelkeit, Erbrechen, Unwohlsein unterbrechen.

nach Hautkontakt:

nach Augenkontakt:

nach Aspiration:
Falls der Verdacht besteht, dass das Produkt durch Aspiration in die Lunge gelangt ist (z.B. durch Verschlucken mit anschließendem Erbrechen), muss die betroffene Person sofort ärztlicher Betreuung zugeführt werden.
Sicherheitsdatenblatt

Produktheizung : JET A-1

5. MASSNAHMEN ZUR BRANDBEKÄMPFUNG

Flammenpunkt:
Siehe Kapitel 9: "Physikalische und chemische Eigenschaften"

Löschmittel:
- geeignet:
 - Schaum, CO2, Pulver und eventuell Wasserstrahl, möglichst mit Zusatz von einem
 Benzolgemisch
- ungeeignet:
 - Wasserdampfstrahl VERBOTEN. Flammen könnten dadurch verbreitet werden.

Besondere Methoden zur Brandbekämpfung:
Behälter kühlend und die Oberflächen, die dem Feuer ausgesetzt sind, mit reichlich Wasser
besprühen.
Den Gefahrenbereich absperren. Produkt gegebenenfalls kontrolliert verbrennen lassen
oder geeignete Löschmittel einsetzen.

Besondere Gefährdungen:
Bei unvollständiger Verbrennung und chemischer Zersetzung entstehen unter anderem
giftige Gase wie Kohlenmonoxid (CO), Kohlendioxid (CO2), veränderte
carboxische Verbindungen, Aldehyde. Verbrennungsgase organischer Substanzen sind
grundsätzlich als Atemgifte einzustufen.
Es besteht Reizungsfahigkeit.
Bei Temperaturen in der Nähe des Flammpunktes besteht ein hoher Dampfdruck, der
sich über dem Produkt eine explosive Atmosphäre bilden kann.

Besondere Schutzausrüstung bei der Brandbekämpfung:
Wasservorhänge zum Schutz des Personals einsetzen.
Bei starker Rauch- oder Dampfestsetzung müssen in geschlossenen Räumen
nicht durch die Raumauslässen Atemschutzgeräte getragen werden.

6. MASSNAHMEN BEI UNBEABSICHTIGTER FREISETZUNG

Personenbezogene Vorsichtsmaßnahmen:
In Abhängigkeit vom Expositionsniveau Schutzhandschuhe, Schutzhüte,
Schutzbrillen, ein wasserdichtes Atemschutzgerät (bei Gefahr einer Einstauung
von Dämpfen) und kohlensäurefreiführendes Schutzkittel trägen (siehe auch
Kapitel 8).

Maßnahmen nach Verschütten/Auslaufen:
Nicht in Oberflächengewässer, Kanalisation oder Grundwasser gelangen lassen.
Bei Auslaufen größerer Mengen umgeben die zuständigen Behörden informieren.

Verfahren zur Reinigung:
Bei kleineren Mengen: Unfallquelle mit Wasser und Reinigungsmittel säubern, keine
Lösungsmittel verwenden.
Mit Hilfe physikalischer Verfahren (Abpumpen, Skummen, absorbierende Materialien).
Keine Dispersionsmittel verwenden.
Verquetschtes Material zutrauerm und mit Sand oder einem geeigneten
Adsorptionsmittel aufnehmen.
Den Abfall in dichten, geschlossenen Behältern aufbewahren.

Verhinderung weiterer Gefährdungen:
- Alle Standorte freischalten.
- Elektrischen Strom abschalten, wenn dabei in dem Bereich, wo sich Produkt stärkere
 befinden, keine Funken erwischen werden können.

7. HANDHABUNG UND LAGERUNG

HANDHABUNG:

Anhang
Sicherheitsdatenblatt

Produktebezeichnung: JET A-1

Hinweise zum sicheren Umgang:
- Dampf, Nebel oder Aerosolbildung vermeiden.
- Produkt nur in gut belüfteten Räumen behandeln.
- Produkt nicht zusammen mit Lebensmitteln lagern.
- Kontrolle, Reinigung und Wartung von Lagerstätten dürfen nur nach festgelegten Verfahren und von qualifiziertem Personal durchgeführt werden.
- Nicht rauchen.
- Entnahme der Dämpfe vermeiden.
- Kontakt mit Haut und den Schleimhäuten vermeiden.
- Sicherheitshandschuhe und Schutzbekleidung tragen. Elektrostatische Aufladungen vermeiden.

Hinweise zum Brand- und Explosionsschutz:
- Explosionsgeschützte Ausrüstung verwenden.
- Anlagen vorsehen, um eine Ausbreitung von brennendem Material zu verhindern (Schachtablagen, Kühlschränke, Systemschutzsysteme).
- Von Zündquellen (offenen Flammen und Funken) sowie Wärmespeichern (heißen Rohren oder Oberflächen) fernhalten.
- Beim Umgang mit dem Produkt derartig behandelt, dass Dämpfe verschiedensten Verstärkungen verhindert werden.
- NUR AN KALTEN, ENTÖSTEN UND ENTLÜFTETEN TANKS ARBEITEN (EXPLOSIONSgefährLICHE ATMOSPHäre).
- Erkaltete Behälter können entflammbare oder explosive Dämpfe enthalten.

Weitere Angaben:
- Länge und wiedereinholen des Produkts mit der Haut kann zu Hautproblemen führen, die durch keine Verletzungen oder Belastungen von verschmutzter Kleidung verursacht werden. Eine entsprechende oder beigesetzte Kleidung sofort ausziehen.
- Nach Hautkontakt sofort mit reichlich Wasser und Seife waschen. Dämpfe, Rauch oder Nebel nicht einatmen.
- Bei der Arbeit nicht essen, trinken oder rauchen.
- Kontakt mit starken Oxidationsmitteln vermeiden.
- Nur kohlenwasserstoffbeständige Behälter, Dichtungen, Leitungen u.Ä. verwenden.

LAGERUNG:
- Explosionsgeschützte Ausrüstung müssen den geltenden Vorschriften entsprechen.
- Lagerbedingungen:
- Empfohlene Bedingungen:
- Lagerplätze müssen gründlich gereinigt werden, um eine Reinigung und Verwendung zu verhindern.
- Technische Regeln für Gefahrstoffe (TRGS) und örtliche Flughafenvorschriften beachten.

Unverträgliche Stoffe:
- Gefährliche Reaktionen bei Kontakt mit starken Oxidationsmitteln.

Vergleichbarkeit:
- Nur kohlenwasserstoffbeständige Behälter, Dichtungen, Leitungen u.Ä. verwenden.

Brandklasse:
- B

Lagerklasse VCI:
- 3
Sicherheitsdatenblatt

Produkbezeichnung: JET A-1
SDB-Nr.: 30141-49
Version: 2.00

6. EXPOSITIONSBEGRENZUNG UND PERSONLICHE SCHUTZAUSRÜSTUNG

Technische Maßnahmen:
Dieses Produkt nur in gut belüfteten Räumen mit explosionsgeschützter Ausrüstung verwenden.
Beim Arbeiten in abgeschlossenen Räumen (Tanks, Container uuv.) vorher sicherstellen, dass eine zum Atem geeignete Atmosphäre vorhanden ist und empfohlene Ausrüstung tragen.

Expositionsgrzenwerte:
Das Produkt enthält keine relevanten Mengen an Bestandteilen mit arbeitsplatzbezogenen zu überwachenden Expositionsgrzenwerten gemäß TRO 900/181.

Atemschutz:
Beim Arbeiten in geschlossenen Räumen (Tanks, Behälter ...), muss eine ausreichende Versorgung mit Luft sichergestellt sein - die empfohlene Schutzmaßnahme tragen.

Handschutz:
Kohlenwasserstoffbeständige Handschuhe tragen.
Empfohlene Materialien: PVA, Nitril, Fluorkautschuk

Augenschutz:
Bei Spritzgefahr Schutzbrille tragen.

Haut- und Korperenschutz (zusätzlich zum Handsschutz):
Kohlenwasserstoffbeständige Kleidung und Sicherheitsschuhe tragen, wenn erforderlich Ganzschutz.

Arbeitshygienerichsachen:
Hautkontakt vermeiden.
Nach Hautkontakt die betroffenen Stellen sofort mit Wasser und Seife gründlich waschen.
Bei Kontakt mit den Augen diese sofortreichlich mit Wasser ausspülen, dabei die Augenlider öffnen, und nach Ausspülen einen Augenarzt konsultieren.

9. PHYSIKALISCHE UND CHEMISCHE EIGENSCHAFTEN

Physikalischer Zustand: Flüssig
Farbe: Farblos bis hellgelb
Geschmack: Charakteristisch
Dichte: 785 - 840 kg/m³
Temperatur (°C) 15
Flammpunkt: > -30 °C

Exergerung zum Flammpunkt: -41°C (ASTM D 3221)

Selbsterhitzungstemperatur: > 230 °C (ASTM E 659)

Exergerung zur Selbsterhitzungstemperatur:
Dieser Wert kann unter bestimmten Bedingungen deutlich niedriger liegen (z.B. im fein verteilten Zustand).

untere Explosionsgrenze (%): 1,6
obere Explosionsgrenze (%): 8,8

Exergerung zur Explosionsgrenze:
Mit Luft können explosive Mischungen entstehen.

Zustandsänderung:
Siedebereich: -130 - 300 °C
Gefrierpunkt: <= -47 °C (ASTM D 2209)

Dampfdichte:
> 1 (Air=1)

Dampfdruck:
< 8 mbar
Temperatur (°C) 20
Sicherheitsdatenblatt

Produkteinheit: JET A-1

SDB-Nr.: 30141-49
Version: 2.00

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Beschreibung</th>
</tr>
</thead>
</table>
| Löschlichkeit | - in Wasser
 | praktisch unlöslich, abhängig von der Art und Konzentration der Lösungskapazität und Lösungsmittel. |
| Viskosität | < 7 mm²/s
 | Temperatur (°C) 40 |
| Weitere Angaben | pH-Wert nicht erweisbar
 | Log P ow = 3,3 - 6, für die Kohlenwasserstoffbestandteile der Kerone. |

10. STABILITÄT UND REAKTIVITÄT

Stabilität: Beständig unter den üblichen Lagerungs-, Handhabungs- und Bewirtschaftungstemperaturen.

Zu vermindernde Bedingungen: Wärmepositionen (erhöht über dem Flammzündpunkt), Feuer, Flammengrenze, starke Oxidationsmittel.

Zu vermindernde Stoffe: Bei unvollständiger Verbrennung und Thermolyse können u. a. giftige Gase entstehen, wie z. B. Kohlendioxid (CO2), Kohlenmonoxid (CO) sowie Schadstoffe, Aldehyde und RuO.

11. ANGABEN ZUR TOXIKOLOGIE

Akute Toxizität / lokaler Effekt:

Einsatze, Anmerkungen: Das Einatmen von Dämpfen oder Aerosolen kann zu Reizungen der Atemwege und der Schleimhäute führen. Das Einatmen von hoch konzentrierten Dämpfen wirkt zentralnervös auf das Zentralnervensystem und verschärft bei leichten Wirkungskopfschmerzen, Schwindel und Müdigkeit, bei schwerer Wirkung Bewusstlosigkeit, in diesem Fall ist sofortige Hilfe nötig.

Hautkontakt, Anmerkungen: Reizend

Augenkontakt, Anmerkungen: Nicht als reizend eingestuft, kann aber ein brennendes Gefühl und eine kurzzeitige Rötung hervorrufen.

Verschlucken, Anmerkungen: Gesundheitsgefährlich. Das Produkt kann beim Verschlucken auf Grund seiner niedrigen Viskosität in die Lunge gelangen und dort zur schnellen Entzündung von schweren Lungenschäden führen. (Der Patient muss daher mindestens 48 Stunden medizinisch überwacht werden.)

Subakute / chronische Toxizität:

Einsatze: Dampf und Aerosol können die Atemwege und Schleimhaut reizen.

Sensibilisierende Wirkung: Nicht als sensibilisierend eingestuft.

12. ANGABEN ZUR ÖKOLOGIE

Ökotoxizität:

Akute Giftigkeit: LC50 96 Stunden Fisch 7,3 (WAF) - 45 (OWD) mg/l

Akute Giftigkeit: EC50 48 Stunden C. rufus 0,1 - 0,1 mg/l

Akute Giftigkeit: IC50 72 Stunden R. padi 0,7 - 0,3 mg/l

Amerkungen zur Ökotoxizität: Günstig für Wässer, kein vertretbarer Schädigungswirkung hat (CONCAWE Empfehlung).
Sicherheitsdatenblatt

Produktdesignation: JET A-1
SDN-Nr.: 304141-49
Version: 2.00

Mobilität:
- Luft:
 Kohlenwasserstoffe mit kleinem Molekulargewicht verdampfen in der Luft und verteilen sich bis zu einem bestimmten Grad in Abhängigkeit von den lokalen Bedingungen.
- Boden:
- Wasser:
 Die Produkte schwimmen auf dem Wasser. Ein geringer Teil kann sich dabei im Wasser lösen.

Bioakkumulationspotential:
Biokonkretionsfaktor (BCF): 61-159
Potentiell bioakkumulierbar.

Persistenz und Abbaubarkeit:

13. HINWEISE ZUR ENTSORGUNG
Abfallentsorgung:
Recycling oder Verbrennen in einer zugelassenen Anlage wird empfohlen.
Abfallgeschäft:
Verantwortlich für die Zuordnung des Abfallgeschäftes ist der Abfallerzeuger. Der Abfallgeschäft ist in Absprache mit dem zuständigen Entsorger festgelegt werden.

Entsorgung der vorbereiteten Verpackung: Endverbraucher können entzündliche oder explosive Dämpfe enthalten. Durch eine zugelassene Entsorgungsstätte entfernen lassen.

Örtliche Entsorgungsvorschriften:
Abfälle aus der Reinigung von Transport- und Lagetanks und Fässern
16:07:08 abhängige Abfälle
Inhalte von öl-wasservermischt
13:05:07 dicke Wasser aus öl-wasservermischt
13:05:02 Schlamm aus öl-wasservermischt

14. ANGABEN ZUM TRANSPORT
UN-Nummer:
1863
*Bezeichnung des Gutes (nach):
DÜEERKRAFTSTOFF
Bezeichnung des Gutes (ind):
Fuel, Aviation, Turbine Engine
Transport kennzeichnung:

Landwirtschaft Straße (ADR) / Eisenbah (RID):
Klasse:
3
Klassifizierungsguppe:
Fl
Gefahrzettel:
3
Gefahr-Nr.:
30
Verpackungsguppe:
III
Sicherheitsdatenblatt

Produktbezeichnung: JET A-1
SDR-Nr.: 30141-49
Version: 2.00
Seite: 3.9
Überarbeitet/Erstellt am: 2009-06-30
Ersetzt die Version vom: 2006-02-29

<table>
<thead>
<tr>
<th>Element</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klasse</td>
<td>3</td>
</tr>
<tr>
<td>Klassifizierungscode</td>
<td>Fl</td>
</tr>
<tr>
<td>Gefahrzettel</td>
<td>3</td>
</tr>
<tr>
<td>Verpackungsgruppe</td>
<td>III</td>
</tr>
<tr>
<td>Seeschiffstransport (IMO/IMDG)</td>
<td></td>
</tr>
<tr>
<td>Klasse</td>
<td>3</td>
</tr>
<tr>
<td>Gefahrzettel</td>
<td>3</td>
</tr>
<tr>
<td>Gruppenaufstellungstabelle (EmS)</td>
<td>F-E, S-E</td>
</tr>
<tr>
<td>Meeresschadstoff</td>
<td>Ja</td>
</tr>
<tr>
<td>Verpackungsgruppe</td>
<td>III</td>
</tr>
<tr>
<td>Lufttransport (ICAO/IATA)</td>
<td></td>
</tr>
<tr>
<td>Klasse</td>
<td>3</td>
</tr>
<tr>
<td>Gefahrzettel</td>
<td>3</td>
</tr>
<tr>
<td>Verpackungsgruppe</td>
<td>III</td>
</tr>
<tr>
<td>Arm erkennungen</td>
<td>Tunnelbeschriftungscode: D/E</td>
</tr>
<tr>
<td>Sondervorschriften</td>
<td>ADR / RID / ADNR 640C</td>
</tr>
</tbody>
</table>

15. VORSCHRIFTEN

Das Produkt ist nach EU-Konfektionsstoff V kennzeichnungspflichtig.

Gefahrensymbole:

![Gefahrensymbole](image)

Gefahrensymbol: Xn: Gebräuchlich N Umweltgefährlich.

Enthalten:
- Kerosin (Erdöl)
- Kerosin (Erdöl), hydrodeffiniertes
- Kerosin (Erdöl), gemischt

R-Sätze:
- R10 Entzündlich
- R38 Belastung der Haut
- R65 Gesundheitsschäden: Kann beim Verkaufen Lungenbeschädigen verursachen
- R31/33 Giftig für Wasserorganismen, kann in Gewässern längerfristig schädliche Wirkungen haben
Sicherheitsdatenblatt

Produktbezeichnung: JET A-1
SDN-Nr.: 30141-49
Version: 2.00
Seite: 99
Überarbeitet/Erstellt am: 2009-06-30
Ersetzte die Version vom: 2006-03-29

*Sätze:

- S-21 Dampf nicht einatmen
- S-24 Berührung mit der Haut vermeiden
- S-37 Gepaste Schutzhandschuhe tragen
- S-62 Bei V erfolgen beim Erbrechen herbeiführen. Sofort ärztlichen Rat einholen und Verpackung oder diese Eikart vonweise
- S-61 Freisetzung in die Umwelt vermeiden. Besondere Anweisungen erlbten Sicherheitsdatenblatt zu Rate ziehen

EO-Richtlinien:
Stoffrichtlinie 67/548/EG geändert durch die Richtlinie 94/46/EG (21. ATP)

NATIONALE VORSCHRIFTEN:
REACH -Verordnung 1907/2006/EG

Kennzeichnung:

Hinweise zur Beschäftigungsbeschränkung: Beschäftigungssbeschränkungen für Jugendliche nach dem Jugendarbeitsschutzgesetz beachten. Beschäftigungssbeschränkungen für werdende und stillende Mütter nach der Mutterarbeitsschutzverordnung beachten.

Störungen: Das Produkt unterliegt der Störflächenverordnung, die dort angegebenen Mengenschwellen sind zu beachten.

Wassergefährdungsklasse (WOK):
WOK 2 - wassergefährdend (Vorläufig vom 17.2.1999, Anhang 2)

Angaben zur VOC-Richtlinie (1999/13/EG): Das Produkt enthält flüchtige organische Verbindungen.

16. SONSTIGE ANGABEN

Sicherheitsdatenblatt gemäß Artikel 31 der REACH-Verordnung 1907/2006/EG

Vollständige Version der R-Sätze aus Kapitel 2

- R-10 Entzündlich
- R-65 Gesundheitsschädlich. Kann beim V erfolgen Lungenödeme verursachen
- R-38 Reizt die Haut
- R-51/53 Ohne für Wasserorganismen, kann in Gewässern langfristig schädliche Wirkungen haben
- R-65 Gesundheitsschädlich. Kann beim V erfolgen Lungenödeme verursachen

EMPhOHeNE Einschränkungen der Anwendung:
Dieses Produkt ist ausschließlich als Kraftstoff für Flugzeug-Dieselmotoren zu verwenden.

Überarbeitungsdatum: 2009-06-30
Ersetzte Sicherheitsdatenblatt, das damit ungültig wird: 2006-03-29

Änderungen gegenüber der vorherigen Version sind gekennzeichnet mit *:

SDN-Nr.: 30141

Anhang

IV. Datenblatt Decalin

SICHERHEITSDATENBLATT

1. Stoff- / Zubereitungs- und Firmenbezeichnung

Angaben zum Produkt

Artikelnummer: P23269
Ident Nr.: 2606500

Artikelbezeichnung: Decahydronaphthalene (Dekalin)

Verwendung des Stoffes/der Zubereitung: Chemischereagenz

Angaben zum Hersteller / Lieferanten

Firma: VWR International GmbH* Graumanngasse 7* A - 1150 Wien* Österreich
Tel: +43 1 97 002-0 Fax: +43 1 97 002 600
E-mail: product.support@uk.vwr.com

Notrufnummer: +43 (0)1 406 43 43

2. Mögliche Gefahren

3. Zusammensetzung / Angaben zu Bestandteilen

Chemische Charakterisierung

Hydrocarbon-Lösungsmittel

Artikelbezeichnung: Deesahydronaphthalin (Gemisch der cis- und trans-Isomeren)
Synonyme: Decalin

CAS-Nummer: 91-17-8
Molekulargewicht: C_{10}H_{12} = 138.25 g/mol

EWG-Nummer: 202-046-9

4. Erste Hilfe Maßnahmen

AUGENKONTAKT: Spülen Sie gründlich mit Wasser und für mindestens 10 Minuten. HOLEN SIE ARZTLICHE HILFE.

INHALATION: Entfernen Sie sich aus dem Gefahrenbereich; rasten Sie, und halten Sie sich warm. HOLEN SIE ARZTLICHE HILFE.

HAUTKONTAKT: Spülen Sie die betroffenen Hautstellen gründlich mit Wasser ab. Entfernen Sie die Kleidung, und waschen Sie sie vor neuerlichem Gebrauch. HOLEN SIE ARZTLICHE HILFE, außer das Opfer war dem Stoff nur kurz ausgesetzt.

EINNÄHME: Wachen Sie den Mund gründlich mit Wasser aus, und verabreichen Sie reichlich Wasser. HOLEN SIE ARZTLICHE HILFE.
5. Maßnahmen zur Brandbekämpfung

Besondere Gefahren:
Feuergefährlich.
Explosives Dampf-Luft-Gemisch. (Bei starker Erhitzung.)

geeignete Löschmittel:
Schaum, trockenes Pulver, Kohlendioxid oder verdampfende Flüssigkeiten
Nicht zu verwenden. W

6. Maßnahmen bei unbeabsichtiger Freisetzung

Alle eventuellen Entzündungsursachen abschalten. Entsprechende Schutzbekleidung tragen.
Absorbiert man alles mit einem neutralen Absorptionsmittel, transferieren es in einen Behälter und organisieren den
Abtransport durch eine Entsorgungs firma. Waschen Sie die Stelle gründlich mit Wasser und Reinigungsmittel.
Wenn möglich, sollte die Flüssigkeiten mit Sand oder Erde gebunden werden, sowohl die Flüssigkeiten als auch
die Feststoffe sollten dann in Aufnahmebehälter transferiert werden. Eventuelle Rückstände sollten so wie kleine verschüttete
Mengen behandelt werden.

7. Handhabung und Lagerung

Handhabung:
Kontaminierte Kleidung sofort wechseln. Nicht in die Kanalisation gelangen lassen.

Lagerung:
direkter Sonneneinstrahlung und Feuchtigkeit schützen.

8. Expositionsengrenzen und persönliche Schutzausrüstungen

Deutsche Aussetzungs begrenzungen:

Nicht zugeordnet

Persönliche Schutzausrüstungen:

Technische Maßnahmen zur Kontrolle bzw. Verhinderung weiterer Kontakte sind vorgesehen. Die Maßnahmen könnten eine
Verkleidung der Verarbeitungsbereiche oder eine mechanische Lüftung umfassen
Je nach der verarbeiteten Menge:
Lüftung: Sicherheitsschrank, brandbeständig
Atemgerät: Unabhängiges Atemgerät
Handschuhe: Polyvinylalkohol, Vton™ oder PE/EVAL (Silver Shield). Schutzhandschuhe regelmäßig wechseln. Anegrippene
oder durchlässige Handschuhe müssen entfernt und umgehend ersetzt werden.
Augenschutz: Brille oder Gesichtsmaske
Andere Vorsichtsmaßnahmen: Plastikschränke, -armel, -stiefel - bei Verarbeitung großer Mengen

9. Physikalische und chemische Eigenschaften

Allgemeine Hinweise:
Form: flüssig
Farbe: farblos
Geschmack: charakteristisch

Gesundheit, Sicherheit und Umwelt Hinweise:

Schmelztemperatur: -40°C
Siedetemperatur: 189-191°C
Dichte (g/ml): 0.88
Dampfdruck: 190 kPa (60°C)
Relative Dampfdichte: 4.2 (Luft = 1)
Löschlichkeit in Wasser: 6 mg/l (20°C)
Flammpunkt: 57°C
Explosionsgrenzen: untere: 0.7 % v/v
 obere: 4.9 % v/v
Zündtemperatur: 255°C
Viskosität: dynamisch (20°C): 3 mPa*s
Log P(0/1): 4.57 (g)
Zusätzliche Angabe: Brechungsindex: 1.4742 (20°C, 589nm)

10. **Stabilität und Reaktivität**

Zu vermeidende Bedingungen: Hitze (Peroxidbildung möglich)
Zu vermeidende Stoffe: starke Oxidationsmittel, Sauerstoff. Die Möglichkeit einer Reaktion mit anderen Substanzen kann nicht ausgeschlossen werden

11. **Angaben zur Toxikologie**

Nach Verschlucken: Schleimhautirritationen im Mund, Rachen, Speiseröhre und Magen-Darmtrakt.
- Nach Hautkontakt: Verätzungen, Gefahr der Hautresorption.
- Nach Augenkontakt: Verätzungen

Schädigung von Leber, Nieren

Weitere gefährliche Eigenschaften können nicht ausgeschlossen werden. Das Produkt ist mit der bei Chemikalien üblichen Vorsicht zu handhaben.

Weitere Angaben

LD50 (oral, Ratte): 4170 mg/kg
LD50 (darm, Kaninchen): 9000 mg/kg
LD50 (Inhalation, Ratte): 0 mg/l/4h
Test auf Hautreizung (Kaninchen): Verätzungen
Sensibilisierungstest (Mäusen und Kängurus)/Meerschweinchen): negativ
Ams-Test: negativ

Weitere toxikologische Angaben: Hat bei Versuchstieren im Labor Krebs ausgelöst.

12. **Angaben zur Ökologie**

Anhang

Weitere Angaben zur Ökologie:

Henry-Konstante 10740 Pa m³/mol
Fischtoxizität: LC50 (L. ida) 4.3 mg/l/48h
Dauertoxizität: EC50 (Daphnia pulex) 2.5 mg/l/48h
Algen toxizität: IC50 (Desmodesmus subspicatus) >2.2 mg/l/72h
Bakterientoxizität: RC (P. putida) >1500 mg/l/5h
ThOD: 3.362 g/g
BOD (10% of ThOD) / 5 d
COD (5% of ThOD)

Bemerkungen:
Eine Umweltgefährdung kann bei unachtsamer Handhabung und Entsorgung nicht ausgeschlossen werden.

13. Hinweise zur Entsorgung
Chemische Rückstände werden im allgemeinen als Sondermüll klassifiziert und fallen als solcher unter Bestimmungen, die den örtlichen Behörden unterliegen. Setzen Sie sich mit der örtlichen Entsorgungsbehörde zwecks Beratung in Verbindung.

Verpackung: Die reduzierte Verpackung ist nach Maßgabe der Verpackungsverordnung zu entsorgen.

14. Angaben zum Transport
UN-Nummer: 1147 Klasse: 3 Verpackungsgruppe: III
Richtiger technischer Name: DiCAHYDRONAPHTHALEIN

15. Vorschriften
Kennzeichnung nach EG-Richtlinien
Symbol: C N Ätzend. Umweltgefährlich.
R-Sätze: R20-34/51/53
S-Sätze: S26-36/37/39-45/61
EWG-Nummer: 202-045-9

16. Sonstige Angaben

Im UK muss der Einsatz dieser Substanz gem. der "Verordnung zur Kontrolle gesundheitsgefährdender Stoffe" (Control of Substances Hazardous to Health) bewertet werden.
Überarbeitung.
Ersetzt Ausgabe vom: 11/03/02
Änderung im Kapitel: 12, 15

| Stand vom: | 16/08/02 |
| Ausgabedatum: | 22/10/07 |
Anhang

V. CD mit den Ergebnissen der Versuche

und dem Auswertungsprogramm in VBA-Excel