Volcanic, Weather and Climate Effects on Air Transport

Ulrich Schumann

German Aerospace Center
Institute of Atmospheric Physics
Oberpfaffenhofen, Germany

Content:
- Volcanic ash hazard avoidance by improved ash detection methods, e.g. the Eyjafjallajökull eruption in Iceland, 2010
- Improved traffic guidance around weather hazards based on nowcasting
- Mitigation of climate effects by route optimization using new prediction tools
0100 UTC 14 April 2010: Eyjafjallajökull volcano eruption

No 3

Noon 15 April: ash plume reaches Europe

MODIS on NASA Terra Satellite at 11.39 GMT
Thursday April 15, 2010
16-21 April 2010: 75 % of mid-European airspace closed

-19 April 2010, 13:00 UTC
-19 April 2010, 13:00 UTC

- April: 75 % of movements in 23 European countries suspended
- April: 75 % of movements in 23 European countries suspended

- http://www.radarvirtuel.com/
- http://www.radarvirtuel.com/

- May: further 8000 flights cancelled
- May: further 8000 flights cancelled

- About 4 × 10^9 € economic loss
- About 4 × 10^9 € economic loss

The closure of the airspace in 2010 was the logical consequence of ICAO’s “zero-tolerance” rule

Thomas J. Grindle (NASA Dryden Flight Research Center), Frank W. Burcham Jr., AS&G/NC IFL ICAO Journal, nr. 2 2002

Even minor volcanic ash encounters can cause major damage to aircraft
19 April–18 May: research flights with DLR „Falcon” aircraft

- aerosol & trace gas instruments
 - total & non-vol. aerosol, 3-λ Bap, particle comp. & shape (4 nm - 2.5 µm)
 - CO (UV fluoresc.), O3 (UV photom.), SO2 (fluoresc.), H2O (r-point, Ly-α)

- meteorological measurements
 - PCASP-100X (dry accumulation mode concentration)
 - FSSP-300 & 2-DC (0.3 - 800 µm)

- DLR Falcon 20-E5
 - max. altitude: 42,000 ft
 - max. endurance: 4 h

- GPaC (particle collector)
 - DLR & LaMP
 - 2-µm-Wind-Lidar (heterodyne)
 - meteorological measurements

No 7
Ash layer (4-5 days old) just visible over Leipzig, 19 April 2010

(Schumann et al., 2011)
To avoid further massive disruption of air traffic:

The Safe to Fly – Chart: 17th May 2010

- Ash mass concentration limit of 2 mg/m³
- Helpful for orientation and for formalizing decision processes, but not generally approved
- Ash mass concentration is difficult to predict and to measure in the atmosphere.

For ICAO’s position see Andrew Tupper’s talk.
Current avoidance guidance: “Visible volcanic ash” is to be avoided
- What is visible ash?

- Increasing distance from the volcano

- “ash cloud”
- “ash layer”
- “thin filaments”

Visibility depends on particle properties, which we derived from our measurements

- Size spectrum
- Wavelength dependent aerosol refractive index
- Particle shapes
- Data from flights in Sahara Dust and tropical biomass burning plumes (SAMUM1/2, 2006, 2008) and in the Eyjafjalla ash clouds
Simulation setup

Visibility simulation with 3d radiation transfer code

Method: MYSTIC:
Monte Carlo code for the physically correct tracing of photons in cloudy atmospheres

prepared by Daniel Sauer, see Weinzierl et al. (2012)
What is the lowest detectable concentration?

Can one distinguish volcanic ash from desert dust or biomass burning aerosol? No!
What if there are clouds?

Aircraft at 1 km altitude, below the ash and clouds, ash hardly visible discernible

What if there are clouds?

Aircraft at 5.5 km altitude, above ash and clouds
Visibility study results

- Ash layers visible for mass concentrations > 0.2-0.5 mg m\(^{-3}\) and > 500 m thickness
- Ash cannot be visually discriminated from desert dust or biomass aerosol
- Visual appearance does not allow to discriminate low from potentially dangerous mass concentrations
- Visibility is restricted to daylight and non-cloudy conditions
- Further methods required to detect visible or discernible ash

Visibility in Satellite Infrared data - METEOSAT SEVIRI
Example: initial Eyjafjallajökull period 14-17 April 2010

prepared by K. Graf, DLR, an improved EUMETSAT dust product, using brightness temperature difference of channels 12 \(\mu\)m, 10.8 \(\mu\)m, and 8 \(\mu\)m (following Prata and Grant, 2001; Prata 2008)
Validation test case Eyjafjallajökull of 17 May 2010

18 UTC 17 May 2010

Falcon flight path

VAAC

Meteosat-VA Product of DLR

Falcon with 2-µm Lidar, detects ash layer over the North Sea

18 UTC 17 May 2010

Volcanic ash layer: between 4 and 6 km altitude, more than 100 km wide

Falcon flight path at 8.4 km altitude

backscatter signal -range-corrected @ 2 µm
In-situ measurements (DLR Falcon and UK FAAM): ash mass concentration up to 0.5 mg/m³

Difficult to predict because of strong sensitivity to meteorology (wind etc.) and eruption plume data details

Comparison VAAC-NAME-Model with observations

-> about factor 3-30 uncertainty

Webster et al. (JGR, 2012)
Possibly repeating event.
Eruption of Grimsvötn, Iceland 21 May 2011

Source: dpa Picture-Alliance GmbH, Trickl et al., ACPD 2012

VAAC-NAME-model prediction of >4 mg/m³ (red zone)
(as of 18UTC 24 May for 12 UTC 25 May 2011)
-> Northern Germany airspace gets closed

Source: Met Office
METEOSAT shows ash moving from Scotland to Norway on 24 May 2011. No indication for transport towards Germany.

Future development

- Safe aviation requires reliable tools to predict and detect regions with ash loads exceeding certain thresholds.
- For efficient aviation, one also needs reliable tools to predict and identify regions free of dangerous ash loads.
- IR satellite data from geostationary satellites such as Meteosat (in the future also GOES R) provide observations which can be used – with further development - to identify the presence or the non-presence of ash clouds, their column density and altitude.
- ATM procedures have to be developed that make optimal use of such data.
Weather hazards (Thunderstorms, winter weather, aircraft icing, volcano ash clouds, etc.,)

- Chaotic nature limits deterministic predictability from 10 min to a few h
- Nowcasting required (extrapolation of observed movements)
- Requires online data transfer from ground to cockpit
- Crucial for ATM efficiency and safety (see AF 447 case)

Remarkable progress in medium range weather prediction, e.g., at the European Center ECMWF: to be used for ATM
Small-scale and unstable weather processes are far more difficult to predict. -> nowcasting methods required

<table>
<thead>
<tr>
<th>Year</th>
<th>Length of skillful forecast (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>2</td>
</tr>
<tr>
<td>1991</td>
<td>3</td>
</tr>
<tr>
<td>2001</td>
<td>8</td>
</tr>
<tr>
<td>2011</td>
<td>9</td>
</tr>
</tbody>
</table>

- Medium range
- Probability forecast (ensemble)
- Forecast of 24-hour accumulated precipitation

Weather hazards, e.g. thunderstorms, in METEOSAT

- **Yellow**: new development
- **Orange**: quick growth
- **Red**: intensive convection
Climate optimized air transport

- Aviation impacts climate by carbon dioxide emissions, nitrogen oxides, contrails and cloud changes
- Presently a relatively small effect (5 %, possibly 2-14 %)
- Importance grows with time, traffic, progress in other sectors, and approach of climate thresholds (2 K limit)
- Contrails have larger climate impact than CO₂ from past aviation
- Contrails offer mitigation options

Contrails spread in humid air masses, they warm or cool
Contrails warm or cool depending on day time and underground.

Radiative forcing by Aviation: state of the art (Lee et al., 2009)
Radiative forcing by Aviation/Contrail Cirrus

(Burkhardt & Kärcher, 2011; Schumann & Graf, 2012)

Contrail cirrus global mean

Longwave Shortwave net effect

Contrail cirrus cover and RF from observations and models

Air traffic density in km / (km² h), 25.04.2004, 00:00 UTC

MeCiDA cirrus classification, 25.04.2004, 00:00 UTC

Graf, Schumann et al. (GRL; 2012); Schumann and Graf (JGR, 2012, submitted)
Contrail cirrus cover and RF from observations and models

Graf, Schumann et al. (GRL; 2012); Schumann and Graf (JGR, 2012, submitted)

Route optimisation: avoid contrails

(Mannstein, Meilinger-Lufthansa, 2001)
Better: avoid warming contrails but enforce cooling contrails

Contrail Cirrus Simulation and Prediction Model (CoCiP)

- **Input:**
 - Aircraft (BADA)
 - Movements (FAA 2006)
 - Meteorology (ECMWF)

- **Output:**
 - Contrail, life cycle, cover, radiation
 - Cirrus, Simulation (in situ, Lidar, MSG, Modis)
 - Sensitivity studies, Prediction & Mitigation

- Contrail Cirrus Prediction Tool

 - From regional to global
 - Comparable to observations

(Mannstein, Meilinger-Lufthansa, 2001)

(Schumann, 2012)
Contrails are predictable

- Top: cirrus (black) observations
- Bottom prediction over IR BT observations
- Input used:
 - 3-days weather forecast data (ECMWF)
 - and (historic) air traffic data (FAA ACCRI)

Conclusions

- Volcanic, weather and climate effects have common impact on aviation
- Safety, efficiency and climate sustainability have in common that they require an efficient air transport system
- In particular they require an intelligent air traffic management (ATM) in close connection with weather/hazard/climate prediction to minimize the impact of disruptive events and find cost and climate optimal routing
- New results on ash visibility and contrail predictability
- Satellite methods required for identification of not only critical regions but also regions that are free of hazards
Acknowledgements

- Many colleagues of DLR and LMU Munich contributed results to this presentation
- Cooperation with DWD, BMVBWS, UK Met Office, EUMETSAT, ECMWF, ACCRI, FAA, ICAO, et al. is gratefully acknowledged
- I thank the ICAS committee for invitation