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The significance of the Hansen Ideal space frame
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Known and unknown properties of Hansen Ideal coordinates are summarized. It is shown that the ideal space frame is
a general and necessary component of basic celestial mechanics and astrodynamics, as well as of any theory of motion.
A typical consequence is the intimate correlation of the Hansen frame with the Lagrange constraint within the method
of the variation of the parameters. The use of observations in the ideal frame may allow conclusions on the intergalactic
fundamental coordinate system.
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1 Table of symbols

A
(ν)
k Parameters of a curve presented in polar

equation (k = 1, 2, 3. . . – number of pa-
rameter, (ν) – kind of curve). In unper-
turbed case: A(ν)

k = const.
bR, bT, bN Accelerations in radial, transversal, nor-

mal direction [km/s
2
]

Dp System proper motion vector of pi-
system: Dpi = Di

ppi

Dq(L) System proper motion vector of the
Leibniz-system

Dq(I) System proper motion vector of the q
(I)
j -

system (Hansen system): Dq(I) =Dj
qq

(I)
j

G Equal area parameter [km2/s]
d0, f0, c0 Basic vectors of the apsidal system
k1, k2, c0 Basic vectors of the nodal system
i Inclination [deg]
pi Basis vectors of the inertial system (New-

ton frame) (i = 1, 2, 3)
pij Components of ṗi-vectors: ṗi = pj

ipj

q
(I)
j Basis vectors of the ideal system (Hansen

frame) (j = 1, 2, 3)
qij Components of q̇

(I)
j -vectors: q̇

(I)
j =

qk
j q

(I)
k

r, ṙ State vector: direction vector, absolute ve-
locity vector

ṙq Relative velocity vector with respect to the
q

(I)
j -system: ṙq = ẏjq

(I)
j
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r0, q0, c0 Basis vectors of co-moving orbit sys-
tem (Leibniz frame), r0 in radial, q0

in transversal (“transradial”), c0 in nor-
mal direction

r, rP Radius, radius of pericentre distance
[km]

t, tP Time, time of pericentre passage [s]
u Argument of latitude [rad]
V Velocity [km/s]
υ True anomaly [rad]
xi, ẋi Cartesian coordinates in the pi-system
yj, ẏj Cartesian coordinates in the q

(I)
j -

system
δij Kronecker tensor
ζ Orbit angle (first Hansen angle) [rad]
ζ̇ Absolute variation of orbit angle [rad/s]

as measured from proper motion of ra-
dial direction vector (ζ̇ = G/r2 =
|ṙ0|)

ζ̇B Variation of orbit angle with respect to
a basic system as computed from orbit
determination [rad/s]

ζ̇P Variation of orbit angle due to variation
of basic system with respect to inertial
fundamental system [rad/s]

η Spatial rotation angle (second Hansen
angle) [rad]

μ Centric gravitational constant [km3/s2]
σ Longitude in orbit of ascending node

[rad] (related to departure point of the
Hansensystem)

ψ General orbit angle [rad] for any oscu-
lating orbit related system

Ω Right ascension (or ecliptical longi-
tude) of ascending node [rad]

ω Argument of pericenter (perihel,
perigee) [rad] (ω = ζ − σ)
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2 Introduction

Peter Andreas Hansen (Tondern in Slesvig 1795 – Gotha
1874) introduced the term “ideal coordinates“ into celestial
mechanics. He stated (Hansen 1857, p.66): “I call Ideal Co-
ordinates of a planet, of a comet or of a satellite, all those co-
ordinates of these objects, when they have the property that
not only these coordinates but also their derivatives with re-
spect to time have the same form in the perturbed and in the
unperturbed case.” By this definition, not only “ideal coordi-
nates” but also any other property is introduced as being an
“ideal” parameter if it is of identical form in a “perturbed”
and “unperturbed” case. Use of this behaviour was made
by Hansen himself in developing his perturbation theory for
minor planets as well as for his renowned investigation of
lunar motion (cf. Hansen 1864). This theory uses a sepa-
ration into the investigation of a fictitious body moving on
an unperturbed conic section (in planetary theory always an
ellipse) and the deviation of a true body moving under any
acceleration from this unperturbed motion. Among others
(like G. W. Hill in 1881), Brown (1896) has extended the
Hansen theory to his investigation of lunar motion. Exten-
sions of Hansen’s developments will be found in the work
by H. Gylden and his pupil M. Brendel (as cited in Tis-
serand 1896, Tome IV, p.376 ff), but without insight into the
general behaviour of this detection. Tisserand has prepared
an intensive and general introduction to Hansen’s perturba-
tion theory. A similar presentation will be found in Stumpff
(1974, Volume III, pp. 163-229).

Musen (1959) and Herget (1959) (see also Brouwer
1959b) adopted the method for initial investigations into the
motion of artificial Earth satellites, introducing the inclusion
of accelerations due to any gravitational term. The basic
idea of “ideal coordinates” was not affected by all these ap-
plications of Hansen’s ideas. In some papers, Deprit (1975,
1976) investigated the use of ideal coordinates with respect
to special selections of “ideal frames” and the use of “ideal
elements”. Applications of the Hansen ideal coordinates for
satellite orbit computations will be found in many papers
since launch of the first satellite (see, e.g., Musen 1958;
Herget & Musen 1958; Musen 1959, 1961; Yarov-Yarovoi
1961; Musen 1963, 1968; Phelan 1962; Fisher 1963; Vinh
1969; Palacios & Calvo 1996; Palacios 2000; etc.). In an im-
plicit manner, Van der Ha (1985) developed orbit variational
equations using a kind of orbit angle similar to Hansen’s or-
bit angle, however with no reference to the Hansen theory.

The advantage of the Hansen Ideal systems as found by
Hansen himself is the clear separation of in-plane and out
of plane perturbations, as well as the use of the orbit an-
gle related to the departure point of the Hansen system. In
the previous papers an improvement in the numerical inte-
gration of the satellite equations of motion by use of Ideal
Coordinates is attempted. However, the theoretical basis of
the Hansen Ideal systems is accepted as known before. No
attempt will be found in these papers in order to achieve
a deeper and wider theoretical understanding of these sys-
tems.

1. How did Hansen detect ideal coordinates?
2. Did he accidentally detect ideal coordinates while ap-

plying the method of Eulerian variation of the constants
or was the detection a necessary conclusion which was
lost during the application of the ideal coordinates in his
perturbation theory?

3. Do ideal coordinates play the only role in the context
of the special perturbation theory within the family of
Hansen perturbation theories or do they have their place
in the core of any general theory of motion?
“Ideal coordinates” are known in literature under dif-

ferent names. Brumberg (1995), for example, uses the term
“Hansen coordinates”. In the present paper, we use the term
“Hansen Idealcoordinates”. In future, a meaningful termi-
nology should include the name Hansen in order to respect
the central role of these coordinates: Hansen coordinates, or
Hansen system, or Hansen frame.

3 General properties of the Hansen Ideal
coordinate systems

In this section some general properties of Hansen Ideal co-
ordinates will be collected in the frame of classical orbital
mechanics. All investigations will be treated in an Euclidean
space frame. Let pi be the orthonormal basis of a fixed space
frame (pi · pj = δij )1, then the radius and the velocity vec-
tor of a celestial body with Cartesian coordinates xi (i as
index, i = 1, 2, 3) are represented by
r = xipi , ṙ = ẋipi + xiṗi . (1)

The velocity vector ṙ includes all motions of the basic sys-
tem. It will be called the absolute velocity vector. Corre-
spondingly, the relative velocity vector with respect to the
pi-system will be defined by

ṙp := ẋi pi . (2)

The vectors ṗi describe the proper motion of the basic sys-
tem which might be represented in the variational equations
ṗ1 = p12 p2 + p13 p3 ,
ṗ2 = −p12 p1 + p23 p3 ,
ṗ3 = −p13 p1 − p23 p2 .

(3)

These equations might be called general Frenet equations
according to the Frenet equations in the curvature theory in
differential geometry. Correspondingly, a general Darboux
vector of the pi-system can be defined by

Dp := Di
p pi , ṗi = Dp × pi , (4)

so the relations hold
Dp1 = p23 = −p32 ,
Dp2 = p31 = −p13 ,
Dp3 = p12 = −p21 .

(5)

This generalized Darboux vector might be called the
“absolute system proper motion vector”. It describes the

1 The dot indicates a scalar product, δij the Kronecker symbol; the Ein-
stein summation terminology is used in this paper.
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proper motion of the system with respect to the cosmic in-
ertial frame. If the basic system does not show any proper
motion besides that of a uniform rectilinear motion, it will
be called “inertial”. In this case

ṗi ≡ 0 , Dp ≡ 0 , (6)

and the absolute and the relative velocity vector will coin-
cide.

Assuming a qj-space frame in the osculating orbital
plane, defined by the orbit normal vector

r × ṙ =: c , (7)

the radius and velocity vector with Cartesian coordinates yj

(j = 1, 2, 3) are defined by

r = yj qj , ṙ = ẏj qj + yj q̇j . (8)

This system is related to the motion of the celestial body.
Therefore, in general, if “orbital perturbations” have to be
included, not all q̇j will necessarily vanish. In the sense
of Hansen, this system is called an “ideal system” if the
presentation of the velocity is the same in the unperturbed
(q̇j ≡ 0) as in the perturbed ( q̇j �= 0) motion case. This
leads to
Theorem 1 (Hansen 1857): A coordinate system is Hansen
Ideal if, and only if, for the velocity vector the condition

yj q̇j = 0 (9)

holds.
This sentence does not include any answer on the existence
of such an ideal system.
Remark: At this point it cannot be concluded why Hansen
came to the idea of an ideal system. In his paper of 1857, no
hint is to be found to this question.

Because of the close relationship of the qj-coordinate
system to the motion of a celestial body, Hansen proposes
to set y3 ≡ 0. The basic plane of a Hansen Ideal frame
is assumed to be the (osculating) orbital plane of the mov-
ing body. This is not necessary to understand ideal systems.
However, it facilitates the investigation and, therefore, we
follow this proposal. The definition of the relative velocity
vector gives, as a necessary consequence of Theorem 1:
Theorem 2 (Hansen 1857): A coordinate system is Hansen
Ideal if, and only if, the absolute velocity vector is always
identical to the relative velocity vector

ṙ = ṙq = ẏi qj . (10)

A first application of Hansen Ideal systems follows for
any system proper motion vector. Let be Dg := Di

g gi the
system proper motion vector with respect to any orthonor-
mal basis gi. Its variation is

Ḋg = Ḋi
g gi +Di

gġi . (11)

Using formula (4), valid for the gi-system, it follows

Di
gġi = Di

g Dg × gi = Dg ×Dg = 0 ,

Ḋg = Ḋi
g gi .

(12)

Therefore, Theorem 2 is fulfilled. The variation of a system
proper motion vector is invariant with respect to any proper

motion of the basic system. In terms of Hansen‘s definition:
Theorem 3: The absolute system proper motion vector of
any coordinate system forms with its basis a Hansen Ideal
coordinate system.
This theorem also answers the search for Hansen Ideal sys-
tems: It demonstrates at least the existence of Hansen Ideal
systems. In the sequel we use the notation q

(I)
j -system for

the Hansen Ideal frame.
A general property of Hansen Ideal coordinate systems

with interesting applications is described in
Theorem 4 (Stumpff 1974, p.173): If a position vector r =

yj q
(I)
j forms a Hansen Ideal coordinate system with its

basis q
(I)
j , then the coordinates of any scalar field f (r) are

Hansen Ideal coordinates.
Proof: If
ṙ = ẏj q

(I)
j , yj q̇

(I)
j = 0 , (13)

it follows

ḟ =
df(r)

dt
=
∂f

∂r
· ṙ = ∇f · ṙ =

= ẋi pi ·
∂f

∂xj
pj = ẋi ∂f

∂xi
(q.e.d.). (14)

A fascinating behaviour of Hansen Ideal coordinate sys-
tems was found by Hansen himself: From yj q̇

(I)
j = 0 and

the system proper motion vector Dq(I) of a Hansen Ideal
q

(I)
j -system with q̇

(I)
j = Dq(I) × q

(I)
j it follows

0 = yj q̇
(I)
j = Dq(I) × r . (15)

That means
Dq(I) × r = 0 ⇔ System is Hansen Ideal. (16)
Theorem 5 (Hansen 1857): Any vector in a three-
dimensional linear vector space forms with its basis a
Hansen Ideal coordinate system, if and only if its system
proper motion vector always coincides with the direction of
the vector.

The original formulation of Hansen (1857): “In each
ideal coordinate system which is related to moving axes,
the instantaneous rotational axis always coincides with the
radius vector of the planet or comet or satellite.”

A combination of Hansen Ideal coordinate systems and
the proper motion of these systems is given by the following
Theorem 6 (Stumpff 1974): A position vector r = yj qj

forms with its basis a Hansen Ideal system, if and only if the
components of the variational vectors of this system obey
the condition

yj q
(k)
j = 0 (for k = 1, 2, 3) . (17)

Proof: A Hansen Ideal system requires (see Theorem 1)
yj q̇j = 0. The variation vector of the basic system is given
by (cf. Eq. 4) q̇j = qk

j qk. Hence yj qk
j qk = 0. Here the qk

form a basis of the vector space, therefore they are linearly
independent and consequently yj q

(k)
j = 0 (q.e.d.).

Theorem 6 allows a statement on the number of possible
Hansen Ideal coordinate systems. From Eq. (17) it follows
q23 y2 − q31 y1 = 0 ,
q31 y3 − q12 y2 = 0 ,
q12 y1 − q23 y3 = 0 .

(18)
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This means, the condition of Hansen Ideal frames only al-
lows the selection of two parameters whereas the third will
be a free parameter. As a conclusion it follows
Theorem 7 (Stumpff 1974): For each motion of a moving
body there may be constructed an infinite number of possi-
ble Hansen Ideal coordinate systems.

It is clear that Theorem 5 is identical with Theorem 7.
From Eq. (18) it follows
q23
y1

=
q31
y2

=: A , (19)

therefore
Dq = A r (20)
in the case of Hansen Ideal coordinate systems, which is the
same as Eq. (16).

Further conclusions are
Theorem 8: The core property of a vector of a moving body,
enabling it to form a Hansen Ideal system with the basis
of its coordinate system, is only its direction and not its
value. Only the coordinates of its direction vector, and not
the physical parameters of a vector, may be called Hansen
Ideal coordinates with respect to the coordinate basis.
Theorem 9: The property of a vector to form a Hansen Ideal
system with the basis of its coordinate system is restricted
to the position vector, and therefore to the movement of the
associated position. If a Hansen Ideal system can be con-
structed, this is only possible in connection with the motion
of the related body.

4 Necessity of Hansen Ideal coordinate
systems

In the following section, in extending the ideas of the origi-
nal paper from Hansen, we would like to add some general
but fundamental (and new) behaviour of Hansen Ideal coor-
dinate systems. Based on Eq. (1) the value of the variation
of the radial direction vector shall be defined by ζ̇ . Then

r = r r0 , ṙ = ṙ r0 + r ṙ0 = ṙ r0 + r ζ̇ q0 , ζ̇ := |ṙ0| .(21)
Using these relations we derive the fundamental

Theorem 10: The Hansen Ideal coordinate system gets
fixed unambiguously by assuming that the variation of the
radial direction vector of a moving body is the derivative of
an angle:

ṙ0 = ζ̇ q0 , ζ̇ = |ṙ0| ,
(
q2

0 = 1
)

⇔ q
(I)
j −system isHansen Ideal.

(22)

Proof: 1. If

ζ = ζA +

∫
ζ̇ dt (23)

is understood as the angle coordinate within an orbital plane
related qj-coordinate system and ζA should be an initial
value, then the radial and the transversal direction vector
can be written as
r0 = q1 cos ζ + q2 sin ζ ,
q0 = −q1 sin ζ + q2 cos ζ

(24)

and vice versa
q1 = r0 cos ζ − q0 sin ζ ,
q2 = r0 sin ζ + q0 cos ζ .

(25)

The variation will be
q̇1 = ṙ0 cos ζ − q̇0 sin ζ − ζ̇ (r0 sin ζ + q0 cos ζ) ,

q̇2 = ṙ0 sin ζ + q̇0 cos ζ + ζ̇ (r0 cos ζ − q0 sin ζ) .
(26)

Using the coordinates
y1 = r cos ζ , y2 = r sin ζ , y3 = 0 , (27)
and with definition (21) we have
1

r
yj q̇j = ṙ0 − q0 ζ̇ = 0 , (28)

i.e. the basic condition (9) of a Hansen system is fulfilled.
Consequently, a coordinate system which is defined by the
condition ζ̇ = |ṙ0| will necessarily be a Hansen Ideal coor-
dinate system. Therefore in this case qj = q

(I)
j .

2. Vice versa for a given Hansen Ideal q
(I)
j -coordinate sys-

tem, based on the coordinate definition (27) it follows

yj q̇
(I)
j = r

(
q̇

(I)
1 cos ζ + q̇

(I)
2 sin ζ

)
= 0 (29)

and necessarily

q̇
(I)
1 cos ζ + q̇

(I)
2 sin ζ = 0 . (30)

Therefore, from definition (24)

ṙ0 = ζ̇
(
− q

(I)
1 sin ζ + q

(I)
2 cos ζ

)
+

+ q̇
(I)
1 cos ζ + q̇

(I)
2 sin ζ = ζ̇q0 ,

(31)

i.e. the condition (22) is fulfilled (q.e.d.).
An additional consequence from the previous theorem

can we have from relations (21):
r × ṙ = c = G c0r

2 r0 × ṙ0 =

= r2ζ̇ r0 × q0 = r2ζ̇ c0 . (32)
The relation r2ζ̇ = G is the well known scalar form of the
equal area law. Based on Theorem 10 we get2
Theorem 11: The polar angle in the equal area law is only
and only related to a Hansen system.

Usually, for each motion a radial and a transversal di-
rection may be found. Therefore, another important conse-
quence of Theorem 10 will be
Theorem 12: Hansen Ideal coordinate systems can be con-
structed for any motion.

Applying this result to orbital mechanics, a further the-
orem illuminates the central importance of the ideal coor-
dinates systems detected by P. Hansen for the complete do-
main of astrodynamics. As a refinement of Theorem 11 with
respect to reference systems in astrometry we get
Theorem 13: On the assumption that the basic reference
system is inertial, the variation of the orbit angle occurring
in the scalar form of Kepler’s second law will necessarily
lead to a Hansen Ideal coordinate system.

2 This issue might be seen to be contained in Palacios & Calvo (1996, p.
69) however only in an implicit manner in the context of an improvement of
numerical computation and not in the totally generalised and fundamental
version as derived in the present paper.
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Fig. 1 (online colour at: www.an-journal.org) On the definition
of the Hansen Ideal coordinate system. p1, p2, p3 – inertial fun-
damental system, q

(I)
1 , q

(I)
2 , q

(I)
3 – Hansen system, k1, k2, c0 –

node related coordinate system, d0, f 0, c0 – apsides-related coor-
dinate system, r0, q0, c0 – co-moving system (Leibniz-system),
V – vernal equinox, O – departure point of the Hansen system, Ω

- ascending node, P – pericentre (Perihelion, perigee, pericentre),
Ω – right ascension (or longitude) of ascending node, i – orbital
inclination, σ – longitude in orbit of ascending node, ζ – orbit an-
gle, ω - argument of pericentre, υ – true anomaly, u – argument of
latitude.

Proof: According to Fig. 1 the orbital plane defined by
the qj-system (which is not necessarily assumed to be
a Hansen) shall be related to the pi-fundamental system
which is assumed to be inertial: ṗi ≡ 0.Ω is the right ascen-
sion of the ascending node (or the longitude in an ecliptic
system), rotation around the node vector k1 with inclina-
tion i leads to the orbital plane. Here the celestial body has
the position direction vector r0.

The orbit normal vector is given by c0 = r0 × q0 =
q1 × q2. According to Fig. 1, with respect to the pi-system
and using the argument of latitude u as orbit angle, we get
the well known defining vectors of the co-moving Leibniz-
system (in contrast to any other co-moving system we call
this system after G. W. Leibniz (Aiton 1960) in the radial,
transversal and normal direction:
r0 = p1 (− cos i sinu sin Ω + cosu cosΩ) +

+ p2 (cos i sinu cosΩ + cosu sinΩ) +
+ p3 sin i sinu ,

q0 = p1 (− cos i cosu sinΩ − sinu cosΩ) +
+ p2 (cos i cosu cosΩ − sinu sin Ω) +
+ p3 sin i cosu ,

c0 = p1 sin i sin Ω −
−p2 sin i cos Ω +
+ p3 cos i .

(33)

The variation of the radial direction vector will be
ṙ0 =

(
u̇ + Ω̇ cos i

)
q0 +

+
[
(i)

.
sinu − Ω̇ cosu sin i

]
c0 ,

ṗi ≡ 0 .

(34)

The area law gives

r × ṙ = c = G c0 = r2
(
u̇+ Ω̇ cos i

)
c0 +

+ r2
[
(i). sinu− Ω̇ cosu sin i

]
r0 × c0 ,

(35)

so that

(i)
.
sinu = Ω̇ cosu sin i , ṗi ≡ 0 , (36)

and finally

G = r2
(
u̇ + Ω̇ cos i

)
, ṗi ≡ 0 . (37)

Using, as usual in orbital mechanics, the argument of lati-
tude in the form u =: υ + ω , where υ is the true anomaly
and ω the argument of the pericentre, we have

G = r2
(
υ̇ + ω̇ + Ω̇ cos i

)
. (38)

Defining

ζ̇ := u̇ + Ω̇ cos i , ṗi ≡ 0 , (39)

the condition ṙ0 = ζ̇q0 is always fulfilled. Therefore, The-
orem 10 can be applied in this general case of the motion of
a celestial body. The orbit angle defined by Eq. (39) leads
necessarily to a Hansen Ideal coordinate system, assuming
that the basic reference system, to which the orbit parame-
ters i, Ω, ω are related, is inertial (q.e.d.).

Based on this theorem, it could be assumed that Hansen
came upon the idea of an “ideal” frame as the result of his
investigations on perturbation theory. However, no hint of
this is to be found in his original paper. Therefore, it can be
assumed that Hansen extended his discovery to any parame-
ter, so that his original discovery was effaced, especially by
using the obscure, non-vector style.

Hansen himself calls the orbit angle ζ together with the
radius r, “ideal” parameters. However, this issue is of no
mathematical relevance except perhaps meaning that the or-
bit angle ζ might be used as an independent variable instead
of time (as consequence, we could also call this angle the
“first Hansen angle”).

The ascending node has an angular distance from the
departure point O, the longitude in orbit σ, which will be
introduced by the differential equation

σ̇ := Ω̇ cos i , (40)

so that the orbit angle can be represented by

ζ = υ + ω + σ . (41)

In this context, there are two special cases to be added:

1. If the argument of pericentre ω and the right ascen-
sion of the ascending node Ω do not show any variation
(ω̇ = Ω̇ ≡ 0), the orbit angle will be reduced to the true
anomaly. In this case the motion related orbital system is
reduced to the d0, f0, (c0)-apsidal system. In this con-
text (and only in this context) the apsidal system might
be assumed to be an “ideal” system. This means that the
general property of the Hansen Ideal coordinate system
includes the “unperturbed” case if no accelerations in-
fluence the orientation of the orbital plane in space.
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2. In a similar manner, the nodal system might be called a
Hansen Ideal coordinate system if, and only if, the posi-
tion of the node is inertially fixed ( Ω̇ ≡ 0).

In most investigations a proper motion of the pi-basic
system will not be included. However, in the context of
Hansen Ideal coordinate systems an interesting feature
could be detected. Based on the representation of the radial
direction vector in fundamental coordinates in Eq. (33) the
variation will be
ṙ0 = ṗ1 (− cos i sinu sinΩ + cosu cosΩ) +

+ ṗ2 ( cos i sinu cosΩ + cosu sinΩ) +
+ ṗ3 sin i sinu +
+ p1 [(i). sin i sinu sin Ω +
+ u̇ (− cos i cosu sin Ω − sinu cosΩ) +

+ Ω̇ (− cos i sinu cosΩ − cosu sin Ω)
]

+

+ p2 [− (i). sin i sinu cosΩ +
+ u̇ ( cos i cosu cosΩ − sinu sin Ω) +

+ Ω̇ (− cos i sinu sin Ω + cosu cosΩ)
]

+

+ p3 [(i)
.

cos i sinu + u̇ sin i cosu] .

(42)

With the proper motion of the pi-system given by Eq. (4)
and introducing the definition

ζ̇B := υ̇ + ω̇ + Ω̇ cos i , (43)

(the index B refers to the non-inertial basic system), the
variation of the radial direction vector will be

ṙ0 = ζ̇B q0 + c0

[
(i). sinu− Ω̇ cosu sin Ω

]
+

+ q0 (p12 cos i+ p23 sin i sinΩ +
+ p13 sin i cosΩ) +
+ c0 [−p12 sin i cosu+
+ p13 (cos i cosu cosΩ− sinu sinΩ) +
+ p23 (cos i cosu sin Ω + sinu cosΩ)] .

(44)

Using the absolute proper motion vector of the (general, i.e.
not necessarily inertial) pi-system

Dp = Di
p pi = p23 p1 + p31 p2 + p12 p3 , (45)

the variation of the radial direction vector becomes

ṙ0 = q0

(
ζ̇B + Dp · c0

)
+

+ c0

{[
(i). sinu− Ω̇ cosu sin i

]
−Dp · q0

}
.

(46)

Because ṙ0 · c0 = 0, the condition

ṙ0 = q0

(
ζ̇B + Dp · c0

)
= ζ̇ q0 (47)

remains with the additional condition

(i). sinu − Ω̇ cosu sin i = Dp · q0 . (48)

In this more general case, the variation of the orbit angle
will be presented by

ζ̇ = |ṙ0| = ζ̇B + Dp · c0 =: ζ̇B + ζ̇P (49)

in relation to a Hansen Ideal coordinate system, however,
now including the proper motion of the basic reference sys-
tem. The result will be summarized in
Theorem 14: If the motion of a celestial body is related to
a basic system which is not an inertial system, the proper

motion of this system will be reflected in the orbit angle by
its relation to its Hansen Ideal coordinate system.

The consequence of this theorem could be remarkable:
if it were possible to measure independently the variation
of the orbit angle (e.g. of an artificial Earth satellite) from
the variation of the radial direction vector (ζ̇ = |ṙ0| ) and
the variation of the angle related to the basic system (from
ζ̇B := υ̇ + ω̇ + Ω̇ cos i), then as a consequence it might be
expected to be able to measure the absolute system proper
motion vector Dp of the basic system by means of the dif-
ference of the variation of the orbit angles ζ̇P = ζ̇ − ζ̇B =
Dp ·c0. In this way, a confirmation of an inertial fundamen-
tal system would be possible. In order to compute ζ̇ = |ṙ0|
from Eq. (35) the scalar form of the equal area relation will
be

ζ̇ =
G

r2
, (50)

which is independent of the proper motion of the pi-basic
reference system (“inertial fundamental system”). In order
to calculate ζ̇B := υ̇ + ω̇ + Ω̇ cos i, the instantaneous val-
ues for u̇ = υ̇ + ω̇ and Ω̇ may be computed using the usual
Gaussian or Lagrangean variational equations of orbital me-
chanics.

Note: The previous considerations are restricted to basic
mathematical insights only. However, there is not at all any
statement in principle concerning the physical or even tech-
nical realisation of such an independent measurement of the
variation of the transversal vector of motion.

5 Proper motion of the Leibniz system

The orbital system which is moving with the celestial body
is defined by the radial, the transversal, and the normal di-
rection vector. (This system is sometimes referred to as an
HCL-system, where L = longtrack is perpendicular to the ra-
dial direction and not coinciding with the velocity vector).
The acceleration which is responsible for the motion of a ce-
lestial body is represented in the co-moving orbital system
by

r̈ = bR r0 + bT q0 + bN c0 , (51)

where bR is the radial, bT the transversal, and bN the normal
part of the acceleration. With respect to the Hansen Ideal
qj-coordinate system, Eq. (21) leads to

r̈ = r̈ r0 + 2 ṙ ζ̇ q0 + r ζ̈ q0 + r ζ̇ q̇0 . (52)

Because q0 · q̇0 = 0, the assessment

q̇0 = ξ̇ r0 + η̇ c0 (53)

with certain parameters ξ̇ , η̇ is allowed. Then

r̈ =
(
r̈ + r ζ̇ ξ̇

)
r0 +

(
2 ṙ ζ̇ + r ζ̈

)
q0 + r ζ̇ η̇ c0 . (54)

The transversal direction vector in Eq. (24) has the variation

q̇0 = −ζ̇
(
q

(I)
1 cos ζ + q

(I)
2 sin ζ

)
−

− q̇
(I)
1 sin ζ + q̇

(I)
2 cos ζ

(55)
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Because of the Hansen Ideal behaviour of the q
(I)
j -system

with Eq. (30), the system variational vectors q̇
(I)
1 and q̇

(I)
2

are collinear with the orbit normal vector c0. Using r0 from
Eq. (24), it follows

q̇0 = −ζ̇ r0 −
(∣∣∣q̇(I)

1

∣∣∣ sin ζ − ∣∣∣q̇(I)
2

∣∣∣ cos ζ
)

c0 . (56)

Comparison with Eq. (53) gives

ξ̇ = −ζ̇ , η̇ c0 = −q̇
(I)
1 sin ζ + q̇

(I)
2 cos ζ . (57)

With this expression, a comparison of Eqs. (51) and (56)
leads to the condition of the radial acceleration,

bR = r̈ − r ζ̇2 = r̈ −
G2

r3
, (58)

which is a relation known as (general) Leibniz equation (cf.
Aiton 1960). Leibniz used the Keplerian acceleration bR =
−G2/

(
p r2

)
. The transversal acceleration reads

bT = 2 ṙ ζ̇ + r ζ̈ . (59)
By using G = r2 ζ̇ from Eq. (50), it follows
Ġ = r bT . (60)
Because ζ is a geometrical parameter, it might be assumed
that also η would be a geometrical parameter. This question
will be answered in the next section. In any case, η seems
to be a parameter in intimate contact with the Hansen Ideal
coordinate system. From Eqs. (51) and (56) we denote the
influence of the normal acceleration by

bN = r ζ̇ η̇ =
G

r
η̇ . (61)

Because r0, q0, c0 is the orthonormal basis of an associ-
ated, moving, orbital system, the variational equation for the
variation ċ0 of the normal direction vector can be completed
according to the variational Eqs. (3). Therefore,
Theorem 15: With respect to a Hansen Ideal, orbit related
coordinate system, the Leibniz system (as a co-moving or-
bital system) has the Frenet equations

ṙ0 = ζ̇ q0 ,

q̇0 = −ζ̇ r0 + η̇ c0 ,
ċ0 = −η̇ q0 .

(62)

Thus we find, in analogy to curvature theory, a kind of
Frenet trihedron in orbital mechanics, describing the mo-
tion of a celestial body. This orbital system related trihe-
dron is intimately connected with the Hansen Ideal coordi-
nate system. It will not exist without relation to a Hansen
system. (This trihedron could be called the “astrodynamics
accompanying trihedron”). The absolute system proper mo-
tion vector (Darboux vector) of the Leibniz system can be
derived in a corresponding manner:
Theorem 16: With respect to a Hansen Ideal orbit related
coordinate system, a Leibniz system has the proper motion
vector

Dq(L) := η̇ r0 + ζ̇ c0 . (63)
Consequently, the following variational equations read
ṙ0 = Dq(L) × r0 ,
q̇0 = Dq(L) × q0 ,
ċ0 = Dq(L) × c0 .

(64)

Because ṙ = ṙ r0 + r ṙ0, where in general r ṙ0 �= 0, the
conclusion is
Theorem 17: The r0, q0, c0-Leibniz system is not a
Hansen Ideal system.
Note: Theorems 15 and 16 show the (surprisingly) close re-
lationship between the Leibniz and Hansen systems.

6 Proper motion of the Hansen Ideal
coordinate system

The second of Eqs. (57) together with condition (30) results
in

q̇
(I)
1 = −c0 η̇ sin ζ , q̇

(I)
2 = c0 η̇ cos ζ . (65)

Using the variational Eqs. (3), the previous system will be
completed by the corresponding variational equation for the
third direction vector q3 = c0 = q1 × q2. Then
Theorem 18: The Hansen Ideal orbit related coordinate
system has the variational equations

q̇
(I)
1 = − η̇ q

(I)
3 sin ζ ,

q̇
(I)
2 = η̇ q

(I)
3 cos ζ ,

q̇
(I)
3 = η̇

(
q

(I)
1 sin ζ − q

(I)
2 cos ζ

)
.

(66)

Similarly,
Theorem 19 (extension of Hansen 1857): A coordinate sys-
tem is a Hansen Ideal system, if, and only if, its system
proper motion vector has the form

Dq(I) = η̇ r0 . (67)

Proof: Eq. (67) results from Eq. (66), so

q̇
(I)
j = Dq(I) × q

(I)
j . (68)

Vice versa, if Dq(I) = η̇ r0, Eq. (62) follow via condition
(68). Then, with y1 = r cos ζ, y2 = r sin ζ, y3 = 0,

yj q̇
(I)
j = r cos ζ

(
−η̇ q

(I)
3 sin ζ

)
+

+ r sin ζ
(
η̇ q

(I)
3 cos ζ

)
= 0 .

(69)

The condition of Theorem 1 is fulfilled (q.e.d.).
Equation (67) specifies relation (20) in detail. Obviously

η̇ = Ar, so that

q12 = Dq3 =
η̇

r
y3,

q23 = Dq1 =
η̇

r
y1

q31 = Dq2 =
η̇

r
y2 . (70)

The last two theorems lead to
Theorem 20: A Hansen Ideal system has a proper motion
only if a normal acceleration influences the motion of the
related body. Otherwise it will be inertially fixed.
Conclusions: (1) If no variations in a Hansen Ideal system
can be observed, i.e. if there is no variation η̇ of the hidden
rotational angle η, this system will be inertially fixed.
(2) The acceleration causing a Hansen Ideal system to be
non-inertial is only perpendicularly influencing the orbital

c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org



Astron. Nachr. / AN (2012) 781

�

�
8

�
8

�
8O

8

8

c
0

q
0

r
0

�
8

8

Fig. 2 (online colour at: www.an-journal.org) Geometrical inter-
pretation of the second angle coordinate of a Hansen Ideal coordi-
nate system.

plane of a moving celestial body (or an artificial Earth satel-
lite).
(3) In the case of a Hansen system, usually the third Carte-
sian coordinate is assumed to vanish: y3 ≡ 0. Then it fol-
lows from Eq. (70) q12 = Dq3 = 0, and we have3

Theorem 21: The third component of the absolute proper
motion vector of a Hansen system vanishes identically.
This is a necessary and sufficient condition, as easily will be
seen by an indirect proof.

Now Hansen’s Theorem 5 in Eq. (16) can be made more
precise: A Hansen Ideal coordinate system rotates only
around the radius vector r. Equation (67) shows this rota-
tion has the angular velocity η̇. This leads to the geometri-
cal interpretation of this parameter as a hidden angle, which
can be observed by its variation only (cf. Fig. 2). By means
of the variational Eqs. (62), this parameter is closely related
to the Hansen Ideal system and therefore could be called
the second angle coordinate of a Hansen Ideal coordinate
system. However, this second angle is not an independent
parameter but a function of the orbit angle ζ.

In order to derive a relation between η̇ and the variation
of the orbit orientation angles i, Ω, σ, (see Fig. 1), the direc-
tion vectors of the node oriented orbital plane system will
be used:
k1 = p1 cosΩ + p2 sin Ω = q1 cosσ + q2 sinσ ,
k2 = −p1 cos i sin Ω + p2 cos i cosΩ + p3 sin i

= −q1 sinσ + q2 cosσ .
(71)

The orbit normal vector c from Eq. (33) and the third of the
variational equations in Eqs. (62) give

ċ0 = −η̇ q0 = ṗ1 sin i sin Ω−
− ṗ2 sin i cosΩ + ṗ3 cos i+
+ (i). [p1 cos i sin Ω −
− p2 cos i cosΩ − p3 sin i] +

+ Ω̇ [p1 cosΩ + p2 sin Ω] .

(72)

The transversal direction vector with respect to the pi-
fundamental system (33), the variational Eqs. (3) of the ba-

3 See also Deprit (1976).

sic system, the general Darboux vector Dp in Eq. (4) to-
gether with the relationships (6), yield

(i). = η̇ cosu − DP · k1 ,

Ω̇ sin i = η̇ sinu − DP · k2 ,
(73)

and
(i). sinu − Ω̇ cosu sin i = Dp · q0 . (74)

The angle η is found e.g. in Stumpff (1974, p. 200) as the
angle between two instantaneous orbital planes. The differ-
ential relations between the rotational angle η and the orien-
tation angles i and Ω, including the interpretation of the an-
gle η, are firstly found in known literature in Struble (1961,
p. 89), however, without reference to the proper motion of
the basic system. The variational Eqs. (73) and (74) will be
completed by the condition for the longitude of the node in
the orbital plane which is based on the variation of the nodal
vector (71) in both systems; finally, using the normal vector
(33), the relation
σ̇ = Ω̇ cos i + Dp · c0 (75)
will be obtained. The relative transformation of the veloc-
ity vector from the Hansen Ideal q

(I)
j -system to a pi-basic

system,
ṙp = ṙq − Dp × r , (76)
reflects the proper motion of this basic system, thus proving
Theorem 14 of the Hansen theory.
Note: The basic pi-system may not necessarily be assumed
to be inertial. ,
Remark: The vector ṙqp := ṙq − ṙp = Dp × r will be
called the “relative system proper motion vector” of the
q

(I)
j -system with respect to the pi-system. In this context,

the Euler angles Ω, i, σ represent the relative transforma-
tion of the q

(I)
j -Hansen system into the basic pi-system.

7 The Hansen system and the method of
variation of parameters

Let any orbital curve be defined by the polar equation

r = r(A
(ν)
k ; ζ) . (77)

Here the parametersA(ν)
k define the form of the curve under

consideration and ζ is the (first Hansen) orbit angle. Then
the radial velocity reads

ṙ =
dr

dζ
ζ̇ =

(
∂r

∂ζ
+

K∑
k=1

∂r

∂A
(ν)
k

dA
(ν)
k

dζ

)
ζ̇ . (78)

The Hansen Ideal condition, that perturbed motion should
be represented in the same form as unperturbed motion,
leads to the requirement
dr

dζ
=
∂r

∂ζ
. (79)

Therefore,
K∑

k=1

∂r

∂A
(ν)
k

dA
(ν)
k

dζ
= 0 . (80)
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This is the osculation condition (Lagrange constraint)4 as
used in the method of the variation of the parameters. As a
consequence, we have
Theorem 22: The Lagrange constraint fulfils necessarily
the Hansen Ideal condition.
In order to extent this theorem, we would like to introduce
an arbitrary orbit related rectangular coordinate system us-
ing the orthonormal basic vectors q

(B)
j , whose first two ba-

sic vectors are correlated to the instantaneous orbital plane.
ψ should be the angular distance of the departure point of
this system with respect to the radius vector. Therefore the
relation to the Leibniz system holds:

r0 = q
(B)
1 cosψ + q

(B)
2 sinψ ,

q0 = −q
(B)
1 sinψ + q

(B)
2 cosψ ,

c0 = q
(B)
3 = q

(B)
1 × q

(B)
2 ,

q
(B)
1 = r0 cosψ − q0 sinψ ,

q
(B)
2 = r0 sinψ + q0 cosψ ,

q
(B)
3 = c0 = r0 × q0 .

(81)

By means of the Frenet formulae (24) we have

q̇
(B)
1 =

(
ζ̇ − ψ̇

)
q̇

(B)
2 + η̇ q

(B)
3 sinψ ,

q̇
(B)
2 = −

(
ζ̇ − ψ̇

)
q

(B)
1 + η̇ q

(B)
3 cosψ ,

q̇
(B)
3 = η̇

(
q

(B)
1 sin ψ − q

(B)
2 cosψ

)
.

(82)

Such a system is not necessarily a Hansen system, so that in
general ψ �= ζ and ψ̇ �= ζ̇ has to be taken into account. The
system proper motion vector of this system,

Dq(B) =: Dj

q(B) q
(B)
j , (83)

has evidently the components

Dq(B)1 = η̇ cosψ ,
Dq(B)2 = η̇ sinψ ,

Dq(B)3 = ζ̇ − ψ̇ .
(84)

Therefore, with the first of the relations (81) we have

Dq(B) = η̇
(
q

(B)
1 cosψ + q

(B)
2 sinψ

)
+

+
(
ζ̇ − ψ̇

)
q

(B)
3 = η̇ r0 +

(
ζ̇ − ψ̇

)
c0 .

(85)

The latter relation forms another very simple proof to The-
orem 19. A consequence will be
Theorem 23: The Hansen system is the only system related
to the osculating plane of an orbital motion, which is abso-
lutely fixed within this plane.
Proof: If the system is a Hansen system, then ψ̇ = ζ̇ and
the relations (82) show no variation of the first two basic
vectors within the orbital plane. Indirectly vice versa: As-
suming the q

(B)
j -system not being a Hansen system, then

ψ̇ �= ζ̇ and the q
(B)
j -system has a proper motion relatively

to the orbital plane with the angular velocity ζ̇ − ψ̇ �= 0 .
Consequently, such a system cannot be fixed with respect to
the orbital plane (q.e.d.).

4 See, e.g., in Efroimsky (2005).

Remark: In Theorem 7 we have seen that each motion of
a moving body in infinite number of possible Hansen Ideal
coordinate systems could be constructed. Based on Theo-
rem 23 we may assess that besides for an arbitrary integra-
tional constant ζA (see the integral 23) there is in principle
only one Hansen system connected to any motion.

As a consequence of Theorem 23 we would like to in-
vestigate its relation to the Lagrange constraint. The posi-
tion vector of a moving object within a q

(B)
j -system might

be represented by

r = r r0 = yj q
(B)
j = r

(
q

(B)
1 cosψ + q

(B)
2 sinψ

)
. (86)

Its absolute variation with respect to the orbital angle ψ is
dr

dψ
=

dr

dψ
r0 +

+ r

(
dq

(B)
1

dψ
cosψ +

dq
(B)
2

dψ
sinψ

)
+ r q0 , (87)

its relative variation using partial differentiation
∂r

∂ψ
=
∂r

∂ψ
r0 +

+ r

(
∂q

(B)
1

∂ψ
cosψ +

∂q
(B)
2

∂ψ
sinψ

)
+ r q0 . (88)

The orbit angle ψ is related to the q
(B)
j -system. Therefore

∂q
(B)
1

∂ψ
=
∂q

(B)
2

∂ψ
= 0 . (89)

The difference between the absolute and partial variation of
the position vector is
dr

dψ
−
∂r

∂ψ
=

(
dr

dψ
−
∂r

∂ψ

)
r0 +

+ r

(
dq

(B)
1

dψ
cosψ +

dq
(B)
2

dψ
sinψ

)
. (90)

The orbital curve on which the object is moving is related
to the q

(B)
j -system using the orbit angle ψ. Hence its orbital

radius reads

r = r (Aν ;ψ) . (91)

The variation of the orbital radius will be
dr

dψ
=
∂r

∂ψ
+

∑
ν

∂r

∂Aν

dAν

dψ
. (92)

Therefore, relation (90) leads to

dr

dψ
−
∂r

∂ψ
=

(∑
ν

∂r

∂Aν

dAν

dψ

)
r0 +

r

(
dq

(B)
1

dψ
cosψ +

dq
(B)
2

dψ
sinψ

)
. (93)

We now assume the orbit system under consideration to be
a Hansen-system with orbit angle

ψ
∧

= ζ =

∫ (
G/r2

)
dt =

∫
|ṙ0| dt . (94)
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In this case, and only in this, because of the Hansen condi-
tion (30), the relation

dq
(I)
1

dζ
cos ζ +

dq
(I)
2

dζ
sin ζ =

=

(
dq

(I)
1

dt
cos ζ +

dq
(I)
2

dt
sin ζ

)
dζ

dt
= 0 (95)

tends to zero in any case. There remains

dr

dζ
−
∂r

∂ζ
=

(∑
ν

∂r

∂Aν

dAν

dζ

)
r0 . (96)

This behaviour approves Theorem 22: The Lagrange con-
straint∑

ν

∂r

∂Aν

dAν

dζ
= 0 (97)

is necessarily related to a Hansen system using the orbit an-
gle ζ. We conclude: the osculation condition (Lagrange con-
straint) cannot meaningfully be established without relation
to a Hansen system. In this case and only in this case we
have
dr

dζ
=
∂r

∂ζ
. (98)

This is a vectorial generalisation of relation (79).
Note: If the Lagrange constraint is not fulfilled, no relation
to a Hansen system exists. In this case (and only in this case)
the general orbit angle ψ will deviate from the Hansen orbit
angle ζ.

8 Conclusion

This paper shows that the ideal coordinate system detected
by P. Hansen is of central relevance to orbital mechanics.
A special insight explains why the method of the variation
of parameters works: because any motion is intimately con-
nected with a Hansen system and therefore the variation of
parameters will be treated in such a Hansen system.

Although the term “Hansen Ideal” is used in the present
paper to refer to Hansen’s ideas, it is proposed to use in
future only the term “Hansen coordinate system” or simply
“Hansen system”, as proposed in Brumberg (1995).

Remark: The present paper is devoted to the basic theory
only. A series of papers will follow affiliating applications
and conclusions.
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Kleinen Planeten, erste Abhandlung, Abhandlungen der
mathematisch-physischen Classe der königlich sächsischen
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