Integration of Remotely Piloted Aircraft into Civil Airspace
Concept Validation through Simulation

Dirk-Roger Schmitt & Henk van Dijk

AT-One EEIG
RPA usage

Need for Remotely Piloted Aircraft (RPA) to operate in non-segregated airspace

There is an enormous variety in RPA type

The range of applications for RPA is expected to grow
This presentation will provide an overview of the state-of-play on the integration of RPA into airspace

This presentation will identify the challenges that ATM faces in the near future regarding the integration of RPA into airspace
RPA flights in non-segregated airspace require exemptions from local authorities (platform < 150 kilo) or EASA (> 150 kilo).

Most RPA flights occur in segregated airspace.

Many initiatives in Europe, all working on different aspects of RPA integration:

- Road maps, gap analysis
- Technology development and demonstrations
- Certification and standardization
Satellites enabling the Integration of UAS in non-segregated airspace in Europe
Integration concept SINUE

- VHF COM
- SSR transponder
- Strobe lights
- TCAS II
- Sense & Avoid
- Relay C³ link
- Relay Other aircraft
- Direct C³ link
- Avionics system (NAV / FMS / AFCS / FTS)
- C-UAS
- UAS Control Station
- Telephone
- Air Traffic Control

Comm delay

Integration concept SINUE
Within the simulation architecture, a satellite model is included.

In the underlying scenarios, several satellite issues are covered:

- Temporary comm failure because of satellite constellation
- Total comm failure
- C2 failure
- Time delay
- Bandwidth for real-time surveillance mission
- Cost-benefit study
Simulation facilities SINUE

Emergency procedures

ATC Interface

Separation
Simulation set-up SINUE

- Telephone communication between controller and UAS pilot, if requested
- Radio telephony for controller / pseudo pilot voice communication
- Specially designed intercomm device over wirelink
- Communication delay for satellite link
Evaluation of the UAS integration concept:

- Normal operations
 - Avoidance of severe weather

- Emergency operations
 - Standard emergency procedures:
 - Comm loss
 - Thrust loss

- Loss of separation
General results SINUE

- No special problems with UAS in airspace
- Integration concept allows treatment of UAS like normal aircraft
- Telephone comm between ATCo and UAS pilot could be a benefit compared to manned aircraft
- Sense & Avoid is still an issue to be solved with highest priority

Missions are feasible in near future
The E4U study was focused into assessing the European state of the art in UAS technologies main technical topics, further subdivided into several subtopics.

The assessment procedure involved the identification, rating and ranking of technological challenges to be addressed for each of the subtopics assigned.
The prioritization of challenges has led to identify the following high priority-ones:

1. ATM interfaces
2. Safe recovery systems, decision making and autonomous behaviour
3. Taxi, automatic take-off and landing
4. Sense and avoid
5. Weather detection and protection
6. Safe automated monitoring and decision architecture
7. LOS/BLOS infrastructures (+ GMES)
8. Dependable emergency recovery
9. Ground station - HMI
MUAGCS: Mature Unmanned Aircraft Ground Control Station for research activities within AT-One

Key indicators of a MUAGCS are:

- Easy to use
- Generic and flexible (test) environment
- Linkable to other research facilities, such as ATC Radar
We provided a brief overview of the state-of-play on the integration of RPA into airspace, with SINUE as typical example.

We identified challenges that ATM faces in the near future regarding the integration of RPA into airspace, with Sense & Avoid still an issue to be solved with highest priority.

AT-One offers stakeholders support in validating system concepts by means of a unique Remote Pilot Station simulation facility, coupled to ATC Radar.