Multi-Mission Support with WARP

Dr. Armin Hauke and Erica Barkasz

German Space Operation Center (GSOC)
German Aerospace Center - DLR
WARP – The Antenna M&C at Ground Station Weilheim
WARP – The Antenna M&C at Ground Station Weilheim

Tests in L-, S- and X-Band
WARP – The Antenna M&C at Ground Station Weilheim

S-Band Multi Mission

Tests in L-, S- and X-Band
WARP – The Antenna M&C at Ground Station Weilheim

Ku-Band Multi-Mission
S-Band Multi-Mission

Tests in L-, S- and X-Band
WARP – The Antenna M&C at Ground Station Weilheim

Ku-Band Multi-Mission
S-Band Multi Mission
Ka-Band Multi-Mission

Tests in L-, S- and X-Band
WARP – The Antenna M&C at Ground Station Weilheim

Ku-Band Multi-Mission
S-Band Multi Mission
Ka-Band Multi-Mission

Tests in L-, S- and X-Band

Dedicated GEO-Support
WARP – The Antenna M&C at Ground Station Weilheim

- Different antenna hardware
 - transparent to OPS
 - transparent I/F to GSOC

- Need to configure the station
 - reliably
 - quickly \textit{typical slot of 20 minutes for configuration and internal tests}
 - frequently

- Hardware maintenance is done routinely between two passes
WARP – The Antenna M&C at Ground Station Weilheim

- Different antenna hardware
 - transparent to OPS
 - transparent I/F to GSOC

- Need to configure the station
 - reliably
 - quickly *typical slot of 20 minutes for configuration and internal tests*
 - frequently

- Hardware maintenance is done routinely between two passes

Generalization

Ku-Band Multi-Mission
S-Band Multi-Mission
Ka-Band Multi-Mission
Tests in L-, S- and X-Band

Dedicated GEO-Support
The WARP Software
Requirements for a Generic M&C-System

- Access to all hardware capabilities, especially all commands
- Hierarchical structure in monitoring and command
- Manually or automated

- Platform independent
- Scalable, distributed
- Fast and reliable
A Generic M&C-System - Design Principle (1)

Consumers use/display information

Parameter Channels

MON

CMD

Generators provide information

Generators provide information

Consumers use/display information
A Generic M&C-System - Design Principle (2)
A Generic M&C-System - Design Principle (2)

Generators are necessary adapters to external devices
A Generic M&C-System - Design Principle (2)

GUI clients are specialized interfaces for human operations.
A Generic M&C-System - Design Principle (2)

Processors provide hierarchical structure of monitoring and internal logic.
A Generic M&C-System - Design Principle (2)

Logging serves as basis for reporting and analysis
Script engine (workflows) allows for high level commanding including verification of action.
WARP - Example: High Level Commanding

Parallel steps

Messages, command logging and monitoring checks

WF overloaded for particular mission

Skipped steps
WARP - Toolkit

- Resource Manager (RMG)
 - Declares devices as
 - present
 - maintained
 - faulty
 - Informs WFs to ignore devices

- Configuration Observation Processor (COP)
 - State machine
 - Allows/Forbids WFs and/or WF steps
 - Reports deviations from desired settings

- Reporting
 - Fills a template (LaTex) based on parameter logging
 - Automatically generated
Configuration Observation Processor - State Machine

- Keeps track on actions and provide antenna state
 - globally
 - setup
 - pass
 - ...
 - functionally
 - UL/DL
 - ...

- Prevents action if necessary preconditions are not fulfilled

- Allows to initiate error-correction if needed/execution failed

- Continuously checks configuration
Configuration Observation Processor - State Machine (2)

Antenna state: configuration okay?

Device state: hardware okay?
Antenna state: configuration okay?

Device state: hardware okay?
Multi-Mission Support with WARP
WARP - An Object Oriented Design for Operations

- Mission Definition
 - Abstract parameters like
 - Frequencies
 - Bitrates
- Antenna Definition
 - Applicable devices
 - Do's and dont's
 - Calibrations
 - Parameter ranges
- Operations Concept
 - Unified procedures for
 - Various antennas
 - Various missions
- QA
 - Few inputs
 - Checkable against settings
WARP - An Object Oriented Design for Operations

- Mission Definition
 - Abstract parameters like
 - Frequencies
 - Bitrates
- Antenna Definition
 - Applicable devices
 - Do's and dont's
 - Calibrations
 - Parameter ranges
- Operations Concept
 - Unified procedures for
 - Various antennas
 - Various missions
- QA
 - Few inputs
 - Checkable against settings
WARP - An Object Oriented Design for Operations

- Mission Definition
 - Abstract parameters like
 - Frequencies
 - Bitrates

- Antenna Definition
 - Applicable devices
 - Do's and dont's
 - Calibrations
 - Parameter ranges

- Operations Concept
 - Unified procedures for
 - Various antennas
 - Various missions

- QA
 - Few inputs
 - Checkable against settings
Functional Dependencies - Antenna Parameters

- Different HPA have different working points
- Different signal paths have different losses
- Dynamic assignment UC/HPA must be possible

- Desired: 16 dB
- Desired: 7 dB
- Passive coupler: 3 dB
- Attenuation to be set?
Functional Dependencies - Antenna Parameters

- Different HPA have different working points
- Different signal paths have different losses
- Dynamic assignment UC/HPA must be possible

Passive coupler: 3 dB

Desired: 16 dB
Desired: 7 dB

function
UC_Attenuation(a_hpa, a_uc)

Attenuation to be set?
Function $\text{DL-Frequency}(2268.0)$

\[
\begin{align*}
\text{Set DC: Frequency} &= 2268.0 \\
\text{Set TRK: Phase} &= \text{Calib}(2268.0) \\
\text{Set TRK: GainX} &= \text{Calib}(2268.0) \\
\text{Set TRK: GainY} &= \text{Calib}(2268.0)
\end{align*}
\]
Operation-Procedure within WARP
Statistical Analysis of Procedures - Completeness

- Relates existing command parameters (1189) to the ones actually used
 - Untouched parameters give room for potential misconfiguration
 - Total number corrected for static parameters like TCP/IP configuration

- Some (trigger-)commands not used on purpose

- Same hardware in test assures compatible results
Statistical Analysis of Procedures - Effectiveness

- Compares commanded values to the ones sent with the last command on the same parameter
 - Keeping the antenna in well defined states should avoid commanding identical values multiple times
 - Requirements are met, not established

- Some (trigger-)commands have no meaningful value at all

- Same hardware in test assures compatible results
Statistical Analysis of Procedures - Cunningness

- Relates number of send commands to the number of changed parameters for several configurations
 - Reach the desired state with the least possible commands
 - Prefer switch A→C over sequence A→B→C

- Temporary states may be needed (A→B→A)

- Starting with a global "reset" contradicts the idea of cunningness

Considered states:

1. **Setup**
 Antenna is configured to support a given mission or perform end-to-end testing

2. **Prepass**
 Antenna points to the ascending point of the spacecraft, data recordings are activated, uplink is ready to be set

3. **Uplink**
 Antenna is "green for command", spacecraft receivers are locked to idling (PLOP-2)

4. **Stop**
 Support is completed, antenna is secured (HPA off, ACU park etc.)
Statistical Analysis of Procedures - Cunningness

- Relates number of send commands to the number of changed parameters for several configurations
 - Reach the desired state with the least possible commands
 - Prefer switch A→C over sequence A→B→C

- Temporary states may be needed (A→B→A)

- Starting with a global "reset" contradicts the idea of cunningness
Multiple Antennas
Connecting WARP Instances - The Grand Picture
Connecting WARP Instances - The Grand Picture
Connecting WARP Instances - The Grand Picture

- Supported mission
- Antenna state
- Baseband assignment
Beyond Antenna-Control
"Trans-WARP"
Process Monitoring and Control - "Trans-WARP"
Conclusions
Conclusions - Our Goals for WARP

- Detection of errors before they become relevant
 - Commands are immediately verified within workflows
 - Discrepancies from desired state are detected and reported

- Errors are real errors
 - Break if verification fails
 - The system communicates with the operator
 - Clear definition how to proceed

- No implicit assumptions
 - All possible command parameters are set to a default first

- Clearly and uniquely defined conditions of all antennas
 - Shifting switches at well defined points

- Commanding antenna hardware and M&C-software redundancies with the same tools
Conclusions - Our Goals for Operation with WARP

- Standardizing Procedures
 - Actions do look alike on different hardware
 - Mission specifics are handled in generic or overloaded workflows

- Apply changes at single points only
 - Separation between
 - Antenna description
 - Abstract mission definition
 - Define actual values by functions of all relevant variables

- Sources of trouble shall be located easily
 - Failure indications can be traced down to device level
 - Distinction between hardware state and configuration helps to identify reason of failure

- New missions can be included with minimal effort
Conclusions - Outlook

- WARP is well prepared for automation
 - Slowly change the role of Weilheim's operations personal

- WARP enables summarized monitoring of
 - Several antennas
 - Antenna hardware, M&C software and IT-hardware
 - Ground station and control center (end-to-end service)

- Promising features maybe need to be applied more consequently
 - Improvements in mission parameter definition
 - Standardization of mission description
Helm, Maximum Warp! Engage!