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ABSTRACT

A solution of difficult tasks in remotely sensed data informa-

tion extraction can be reached by the development of more

complex models. The most important step is in the selection

of a relevant and universal methodology for data interpreta-

tion, classification, fusion, object detection, etc. Probabilistic

graphical models [1] become a more and more popular way

for image data annotation and classification [2, 3]. Factor

graphs possess important properties such as probabilistic na-

ture, explicit factorization properties, approximate inference,

plausible inference of non-full data, easy augmenting, etc.,

and become relevant for the use in data interpretation systems.

In this paper we present several applications of factor

graphs for single/multisensory data fusion, classification, and

an extension of the graph structure to extract landcover from

unseen data. The application of factor graphs allow to obtain

an improvement in data fusion/classification accuracy.

Index Terms— Fusion, classification, factor graphs,

WorldView-2

1. INTRODUCTION

Factor graph is a more general graphical model than Bayesian

network or Markov random field. A factor graph (FG) pos-

sesses properties of Bayesian network and Markov random

field and allows to describe more complex relationships

among parts of a modeled system. A factor graph is a bi-

partite graph containing two types of nodes: variable nodes

(xi, i = 1..n) and factor nodes (fj(x1, x2, . . . , xn), j =
1..m), where a variable node xi takes value on a finite do-

main [4]. Figure 1 presents an example of a factor graph with

three variables x1, x2, x3 and two factor nodes f1 and f2 with
the factorization: g(x1, x2, x3) = f1(x1, x2) ∗ f2(x2, x3).

Explicit factorization properties of factor graphs allow to

develop complex models to perform a desired interpretation
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Fig. 1. An example of a simple factor graph with three vari-

ables x1, x2, x3 and two factors f1(x1, x2) and f2(x2, x3)

of single/multisensory input data. Configuration (learning) of

the model on training data and further inference by approxi-

mate inference methods allow to reach plausible decisions.

2. MULTISENSORY DATA FUSION

The fusion framework consists of three main steps: 1. Infor-

mation fission: feature extraction from input data (to provide

the quasi-full description of the scene [5]). 2. Feature rep-

resentation on the alphabet (to represent a feature on a finite

predefined domain). This transformation makes another level

of feature abstraction, generalized by similarity in the fea-

ture space, simultaneously performing data reduction. This

representation is made using unsupervised clustering (e.g. k-
means). 3. Fusion and classification of the represented fea-

tures is performed using a factor graph [4, 6]. Configuration

(learning) of the FG is calculated according to supervised se-

lected training samples. Configured FG is used for fusion of

input data (inference on evidence). Representation of multi-

sensory data and extracted features using an alphabet (a pre-

defined domain with finite states) allows to deal with incom-

mensurable features and data of different nature, statistical

properties, and distributions. The joint probability mass func-

tion for the fusion and classification can be defined as:

p(x|c) =

K∏

k=1

1

p(ck)

N∏

i=1

1

p(xi)
p(xi|ck), (1)



where x is the input feature vector (xi is the i-th input fea-

ture variable); ck is the k-th class variable); 1
p(ck)

and 1
p(xi)

are normalizing functions. The factorization of the function

(factor graph in Figure 2) is as follows:

g(x, c) =

K∏

k=1

N∏

n=1

zi(xi)fi(xi, ck)zc(ck), (2)

wherex is the input evidence (input feature vector); fi(xi, ck)
is the i-th factor of i-th input feature and class variable;

zi(xi) =
1

p(xi)
and zc(ck) =

1
p(ck)

are normalizing factors.

Fig. 2. Factor graph model (plate notation) for multisensory

data fusion (boxes are representing replicates)

A combination of WorldView-2 multispectral data and a

digital surface model is used (London city) for an experi-

ment. Acquisition geometry of the employed WorldView-2

data is 6.3◦ off-nadir view angle. WorldView-2 multispec-

tral data are pan-sharpened by the General Fusion Frame-

work method [7]. The optical data are orthorectified. Gabor

features are calculated on Red color channel (630-690 nm)

from WorldView-2 data. A bank of Gabor wavelets consists

of 18 filters (6 orientations (0, π/6, π/3, π/2, 23π,
5
6π), 3 dif-

ferent periods of filter’s sine component (π/3, 23π, π), and 1

sigma value (σ = 4)). A subscene (2880 × 2815 pixels) is

used for the fusion and classification experiments. k-means

clustering is employed for feature representation on the al-

phabet. The number of clusters is selected empirically and

set to 10 for Gabor features (calculated on optical data), 10

for the DSM, and 50 for the WV-2 multispectral data. Al-

together, 14 classes are defined: 1-Water, 2-Forest/Trees, 3-

Grass/Low vegetation, 4-Bare soil, 5-Football field, 6-Rail

road, 7-Parking/car, 8-Asphalt road, 9-Shadow, 10-High-rise

building, 11-Low-rise building, 12-Medium-rise building, 13-

Tennis field, 14-Dock. Selection of training and test regions

is made manually on a color composite of WorldView-2 and

Bing maps. The training and test samples are spatially un-

correlated. Configuration is performed using gradient ascent

method by expectation-maximization (EM).

Table 1 presents results (OVerall Accuracy and Cohen’s

Kappa) for fusion and classification of multisensory and sin-

gle sensor data. Results of two other methods: Maximum

Likelihood (ML) (not following consensus theory) and Neu-

ral Network (NN) are also given for comparison (the ML and

NN were run in ENVI). Neural network (multilayer percep-

tron) is chosen since it is shown to be an efficient solution for

multisensory data fusion and provides high accuracy of clas-

sification [8, 9]. Neural Network employs 2 hidden layers, 20

neurons in each layer. TheML and NN use original data with-

out representation on the alphabet. Learning time of the FG

is faster than NN, the FG inference is slower. A classification

map produced by the FG fusion using WV-2+Texture+DSM

is presented in Fig. 3. The FG allows better accuracy of the

fusion and classification of the multisensory data.

Table 1. Classification accuracy using different methods to-

gether with the FG approach
Method Employed features OVA, % Kappa

ML WV-2 (8) 57.46 0.5150

ML WV-2+Texture+DSM (27) 67.41 0.6268

NN WV-2 (8) 50.55 0.4275

NN WV-2+Texture+DSM (27) 66.10 0.6093

FG WV-2 (8) 53.08 0.4644

FG WV-2+Texture+DSM (27) 70.05 0.6602

3. LANDCOVER EXTRACTION FROMNOT

ANNOTATED DATA

Classification of a new image normally requires selection of

training samples (being time-consuming). To automatize this

step a defined and configured model on a database of previ-

ously annotated images can be used. A knowledge on the

distribution of features in a landcover class together with a

distribution of classes in an image should be employed. The

joint probability mass function for the landcover extraction

model can be defined as:

p(x|c,d) =

M∏

m=1

1

p(dm)

N∏

i=1

1

p(xi)
p(xi|ck)

K∏

k=1

1

p(ck)
p(ck|dm),

(3)

where x is the input feature vector (xi is the i-th feature vari-
able); ck is the k-th class variable in the image dm; dm is the

m-th image in image database; 1
p(dm) ,

1
p(xi)

, and 1
p(ck)

are

normalizing functions. p(xi|ck) is the probability of the xi

feature contributing to the ck class, p(ck|dm) is the probabil-
ity of the ck class in the dm image. The factorization of the

function (factor graph in Figure 4) is as follows:

g(x, c,d) =
M∏

m=1

zd(dm)
N∏

i=1

zi(xi)fi(xi, ck)

K∏

k=1

fdm
(ck, dm),

(4)

wherex is the input evidence (input feature vector); fi(xi, ck)
is the i-th factor of the i-th input feature and class variable
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Fig. 3. Example of data fusion and classification (WV-2+Texture+DSM): (a) visible range multispectral image (bands 5,3,2),

(b) FG fusion

ck (the ck in the m-th image); fdm
(ck, dm) is the factor of

the k-th class (ck) in the m-th image; zd(dm) = 1
p(dm) and

zi(xi) =
1

p(xi)
are normalizing factors; ck, dm are latent vari-

ables, observed during inference. The term
∏N

i=1 p(xi|ck)

(factors
∏N

i=1 zi(xi)fi(xi, ck)) is specific for a separate im-

age in the database while the term
∏K

k=1 p(ck|dm) (fac-

tor
∏K

k=1 fdm
(ck, dm)) is expected to be common for all

the images. Configuration is performed using EM. Factors∏N

i=1 zi(xi)fi(xi, ck) are configured for an annotated im-

age in the database separately, factors
∏K

k=1 fdm
(ck, dm)

are configured using all the images. Inference is performed

using Mean Field method [10], which could be interpreted as

a way of minimizing Kullback-Leibler divergence between

the measured empirical distribution and the distribution given

an unseen image (factors zi(xi)fi(xi, ck) are updated; the

fdm
(ck, dm) are fixed).

Fig. 4. Factor graph model (plate notation) for landcover ex-

traction from not annotated image

Experimental analysis of the model and preliminary re-

sults were obtained for WorldView-2 multispectral images.

The images in the database (see Table 2) were manually an-

notated and configurations of the factor graph are learned

for the following landcover classes: 1-Water, 2-Forest/Trees,

3-Grass, 4-Bare soil, 5-Road (asphalt), 6-Man-made struc-

tures/Building. The classes are expected to be characterized

by spectral properties and the images were atmospherically

corrected (ATCOR vers. 3, msrura mode) and represented

on the alphabet (k-means clustering, 200 clusters). The an-

notated images 1-4 are employed for the configuration of

the graph, the image acquired for Rio-de-Janeiro area is

not employed for configuration/training and used for test.

Figure 5 illustrates the result of the classification of a new

image. The landcover classes are properly labeled (OVA:

Water-84%, Forest-85%, Low vegetation-99%, Bare soil-

38%, Road-66%, Man-made structure-30%) with several

expected misclassifications due to the use of only multispec-

tral data: bitumen roofs of buildings are labeled as asphalt

road, concrete pavement is confused with man-made object,

shadows and runway (partly) are labeled as unclassified (a de-

cision is difficult to make since low probabilities are reached

for all the classes).

Table 2. Acquisition parameters for the images in database
No. Location Acq. date and time Off-nadir angle

1 London, UK 22.10.2011, 11:34:15 6.3◦

2 Munich, Germany 12.07.2010, 10:30:17 5.2◦

3 Rome, Italy 10.12.2009, 10:30:20 26.1◦

4 San Francisco, US 09.10.2011, 19:36:31 19.6◦

(test image) Rio de Janeiro, Brazil 19.01.2010, 13:10:46 7.5◦

4. CONCLUSION

Explicit factorization properties of factor graphs allow easy

creation of different models for interpretation of remote sens-
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Fig. 5. Example of landcover class extraction from not annotated data (Rio de Janeiro): (a) visible range multispectral image

(bands 5,3,2), (b) FG landcover class extraction

ing data. Definition of data abstraction levels (e.g. sig-

nal/feature, class, decision, etc.) in a model is easy to make

using factor graphs where the interpretation of information

is performed in a required way. This methodology allows

successful solution of several important topics: multisensory

data fusion/classification, landcover extraction from unseen

data. The probabilistic nature of factor graphs allows easier

interpretation of the learned graph configuration. Augment-

ing properties exhibit an easy way to extend graph structure

and to include additional information on the processed data,

features, decisions, etc. Employment of an approximate infer-

ence (Mean field) allows to obtain plausible decisions with a

low calculation time. Future work will be on the employment

of semantic input in landcover extraction model.
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