
Abstract

For a more detailed description of the effects related to vehicle-track interaction,

which are relevant for the running behaviour, for noise and for wear, refined mod-

els of the wheelset, the track and the wheel-rail contact are developed. The models

for the wheelset and for the track take the structural dynamics of the wheelset and the

rails into account. For the wheel-rail contact, an iterative solution based on a Bound-

ary Element model is used. The investigation for the scenarios of undisturbed centred

running and of permanent hunting shows a distinct influence of the structural flexi-

bilities of the wheelsets and the track on the wheel-rail contact and on the running

behaviour.

Keywords: vehicle-track interaction, flexible wheelset, flexible track, non-elliptic

wheel-rail contact, structural dynamics, high-frequency behaviour, hunting.

1 Introduction and motivation

The interaction between vehicle and track is an important aspect in railway research:

The running behaviour including stability and curving and thereby also the operational

safety depend directly on the wheel-rail forces. Furthermore, irregularities of the run-

ning surfaces of wheel and rail excite structural vibrations. Such structural vibrations

are especially relevant for noise, but have also an influence on durability and fatigue

as well as on comfort. A third topic is the wear occurring in the wheel-rail contact,

which has a strong impact on the maintenance effort and thereby on the economics

of the entire vehicle-track system. The structural vibrations and the wear are not iso-

lated phenomena, but linked to each other: The wear depends on the creepages in

the contact, on which also structural vibrations can have an impact. In reverse, the

wear can generate irregularities of the running surfaces, which excite structural vibra-
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Figure 1: Kinematics for a particle of a flexible body.

tions. Therefore, an accurate modelling of the vehicle-track interaction including a

refined modelling of the key components, which are the wheelsets, the track and the

wheel-rail contact, is desirable.

2 Flexible wheelset

In a flexible multi-body system, the motions of a flexible body are usually described

by a relative formulation. In this formulation, the motions of the undeformed body,

which are also called rigid-body motions, and deformational motions are superposed.

The translational rigid-body motions are expressed by a vector indicating the current

position of a reference point R, e.g. the centre of gravity, while the rotational motions

are expressed by the current orientation of the body-fixed frame B. In the undeformed

state, the position of a particle relative to the reference point is denoted by the vector

x. If this vector is expressed in the body-fixed frame, its time-derivative vanishes, i.e.
dxB

dt
= 0. Due to the deformation, the particle is shifted from the reference position to

the current position indicated by the point P, which is expressed by the vector w(x, t).
An overview of the kinematics is given in Figure 1. The current position of the particle

can be expressed as:

rI
P

= rI
R
(t) + AIB(t)

[
xB + wB(xB, t)

]
(1)

The matrix AIB(t) is the transformation matrix expressing the rotation between the

inertial frame I and the body-fixed frame B. – Usually, the deformations wB(xB, t) of

the flexible body are described by a modal synthesis. Here, shape functions Wi(x
B)

are scaled by time-dependent modal coordinates qi(t) and superposed, so that the de-

formation is described by:

wB(xB, t) =
∑

i

Wi(x
B)qi(t) (2)

The shape functions can be obtained by a Finite Element (FE) analysis. In many cases,

eigenmodes of the flexible body are used as shape functions.

For the integration into a flexible multi-body system, the motions of the flexible

body at the connections to other elements, e.g. force elements, are required. Here,
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the main difficulty concerning the modelling of a wheelset as a flexible body arises:

Due to the rolling motion, the wheel-rail forces are circulating around the wheel, i.e.

the force-application point changes permanently. In the formulation (1) this means

that the vector xB is no longer constant, but depends on time. Therefore, the current

position of the particle, at which the wheel-rail forces act, is given by:

rI
P

= rI
R
(t) + AIB(t)

[

xB

WR(t) +
∑

i

Wi(x
B

WR(t))qi(t)

]

(3)

It has to be pointed out that the time-dependent vector xB
WR(t) does not describe any

relative motion, but a change of the observed particle. As already mentioned, the

shape functions are usually obtained by a FE analysis. The FE method is based on

a discretisation using certain points, while the deformation field is described by local

interpolation functions defined for each element. Thereby, the determination of the

now time-dependent shape functions Wi(x
B
WR(t)) requires a piecewise interpolation,

which makes the evaluation very difficult.

Since the wheelset or at least the wheel rim is a rotational symmetric structure, it is

obvious to use cylindrical coordinates, i.e. the radial coordinate r, the axial coordinate

y and the azimut φ. Thereby, the vector xB can be expressed by

xB =
[
r sinφ y r cosφ

]T
(4)

In the case of the rotating wheelset, the azimut φ depends on time. The axial coor-

dinate y and the radial coordinate r can be considered to be constant. The problem

of the lateral shift of the wheel-rail contact will be discussed later. – Since the points

xB(r, φ, y) and xB(r, φ + 2π, y) denote the same particle, it is obvious to express the

shape functions by a Fourier series:

xB =
[
r sinφ y r cosφ

]T
= xB(r, φ, y)

⇒ Wi(x
B) = Wi(r, φ, y) =

N∑

k=0

[Wi,kC(r, y) cos(kφ) + Wi,kS(r, y) sin(kφ)] (5)

By this step, the interpolation using the local functions of the original FE model is

avoided. The evaluation of a continuous function like the sine and the cosine function

is more convenient. – In many cases, a railway wheelset is a perfectly rotational

symmetric structure. The eigenmodes Wi of such a structure can be expressed in the

following form:





Ui(r, φ, y)
Vi(r, φ, y)
Wi(r, φ, y)





︸ ︷︷ ︸

Wi(r,φ,y)

=





cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ





︸ ︷︷ ︸

A2(φ)





Ti(r, φ, y)
Vi(r, φ, y)
Ri(r, φ, y)





︸ ︷︷ ︸

Ui(r,φ,y)

= A2(φ) [Ui,C(r, y) cos(kiφ) + Ui,S(r, y) sin(kiφ)] (6)
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Figure 2: Body-fixed frame B and axle-fixed frame A of the rotating wheelset.

Here, the matrix A2(φ) expresses the transformation between the deformations Ui, Vi

andWi in the directions of Cartesian coordinates on the one hand and the deformations

in the directions of the cylindrical coordinates on the other hand, i.e. the tangential de-

formation Ti, the radial deformation Ri and the axial deformation Vi. The eigenmode

Ui expressed in cylindrical coordinates has one and only one periodicity ki. Thereby,

the Fourier series (5) describing the shape function Wi(r, φ, y) contains only three

terms having the periodicities k = ki − 1, k = ki and k = ki + 1. It can be shown that

the expression

w =





cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ





︸ ︷︷ ︸

A2(φ)





T̂i(r, y) sin(kiφ+ αi)

V̂i(r, y) cos(kiφ+ αi)

R̂i(r, y) cos(kiφ+ αi)





︸ ︷︷ ︸

Ui(r,φ,y)

cos(ωit+ βi) (7)

is a solution of Navier’s equation, given e.g. in [1]. For a rotational symmetric struc-

ture, the density ρ, the shear modulus G and Poisson’s ratio ν are independent of the

azimut φ:

∆w +
1

1 − 2 ν(r, y)
grad div w −

ρ(r, y)

G(r, y)
ẅ = 0 (8)

A more convenient way of describing the rotating flexible wheelset can be achieved

by introducing an intermediate axle-fixed frame A, which performs all rigid body mo-

tions except the rolling motion χ, as displayed in Figure 2. In frame A the application

point of the wheel-rail forces ~FWR, which is indicated by the new azimut θ, is con-

stant, i.e. θ = φ(t) + χ(t) = const. Now, a further simplification can be achieved by

exploiting a further characteristic of the eigenmodes for a rotational symmetric struc-

ture: For ki 6= 0 double eigenmodes expressing different spatial orientations occur,

which can be formulated by:

Ui1(r, φ, y) = Ui,A(r, y) cos(kiφ) + Ui,B(r, y) sin(kiφ) (9)

Ui2(r, φ, y) = Ui,A(r, y) sin(kiφ) − Ui,B(r, y) cos(kiφ) (10)

By inserting the relation θ = φ+ χ between the azimuts, as displayed in Figure 2 and

introducing new modal coordinates Qi1(t) = qi1(t) cos (kiχ(t)) − qi2(t) sin (kiχ(t))
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andQi2(t) = qi1(t) sin (kiχ(t))+qi2(t) cos (kiχ(t)), the modal synthesis can be trans-

formed into a new formulation:

u(r, φ(t), y, t) =
∑

i

[Ui1(r, φ(t), y)qi1(t) + Ui2(r, φ(t), y)qi2(t)]

=
∑

i

[Ui1(r, θ, y)Qi1(t) + Ui2(r, θ, y)Qi2(t)] (11)

In this formulation, the shape functions Ui1(r, θ, y) and Ui2(r, θ, y) expressing the

deformations in tangential, axial and radial direction and thereby also the shape func-

tions WA
i1(r, θ, y) = A2(θ)Ui1(r, θ, y) and WA

i2(r, θ, y) = A2(θ)Ui2(r, θ, y) express-

ing the deformations in the directions of the Cartesian coordinates used in frame A
are constant. Further details to this transformation can be found in [2]. By using

this formulation all trigonometric functions cosχ, sinχ, cos(kiχ) and sin(kiχ) are

eliminated. This allows e.g. a linearisation, which can give a quick overview on the

system’s behaviour. As an example, the frequency response functions for a rotating

wheelset, which is integrated into the bogie of a passenger coach and excited by lateral

forces, are shown in Figure 3. The angular velocity of the overturning motion is set

to χ̇ = −v0/r0 using a nominal radius of r0 = 0.46 m. The peaks of the frequency

response functions can be related to structural eigenfrequencies of the wheelset. Fur-

thermore, a splitting of the peaks, which is a typical gyroscopic effect, occurs for the

modes of f0 = 147 Hz and ki = 1 and of f0 = 345 Hz and ki = 2. The peak related to

the umbrella mode of f = 304 Hz remains nearly unchanged, because it is a rotational

symmetric mode, i.e. ki = 0, which has no spatial orientation.

3 Flexible track

The choice of the track model depends strongly on the purpose of the model. For the

modelling of vehicle-track interaction, the motions of the railhead under each wheel

are of interest. Therefore, the main focus is in this case on the dynamical receptance

of the track, i.e. the motions of the rail head as a reaction to dynamic excitation forces.

A general problem is that the longitudinal dimension of the track is far larger than

the length of the vehicle. Especially for high running speeds, the vehicle covers very

long distances: At a running speed of v0 = 180 km/h = 50 m/s, a distance of ∆s =
500 m is covered within a time-interval of ∆t = 10 s. A track model of such a length

would require an enormous computational effort. This problem can be solved by

using a track model with a shorter length lT and setting the boundary conditions at

the rail’s ends equal. Thereby, the whole track model forms a “ring with neglected

curvature” so that the vehicle never reaches the end of the track. Such a model has

been developed by Ripke in [3]. This track model consists of two flexible rails, which

are supported by discrete rigid sleepers. The pads connecting the sleepers to the rails

and the underground supporting the sleepers are represented by linear visco-elastic

elements. The track model is completely linear so that a modal decomposition is

possible. Furthermore, the rail is modelled by a combination of beams and plates to
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Figure 3: Frequency response function of a passenger coach with rotating wheelsets.

6



Fy

Figure 4: Deformations of the rail’s cross section due to lateral contact forces.
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Figure 5: Track model consisting of flexible sleepers supported by discrete rigid sleep-

ers.

take deformations of the cross section into account. The foot of the rail is connected to

the sleepers by pads, the web of the rail is comparatively thin and lateral forces applied

on the rail head are acting at an eccentric position. Thereby, deformations of the cross

section as illustrated qualitatively in Figure 4 can be expected. Since the geometry of

the wheel-rail contact can be very sensitive to changes of the relative kinematics, this

effect should be taken into account.

An overview of the track model developed here is displayed in Figure 5. Compared

to the original model by Ripke it is enhanced in several aspects: In the new track

model, the inclination or cant of the rails is taken into account, and distributed springs

and dampers are used for the pads instead of the compact elements. While the original

rail model from [3] consists of beams and plates to model cross-sectional deforma-

tions of the rail, the enhanced track model uses a three-dimensional FE model for the

rail. This rail model uses a semi-analytic solution of Navier’s equation for a pris-

matic structure, where the density ρ, the shear modulus G and Poisson’s ratio ν are

independent on the longitudinal coordinate x:

∆w +
1

1 − 2 ν(y, z)
grad div w −

ρ(y, z)

G(y, z)
ẅ = 0 (12)

The semi-analytic solution is based on the separation of the longitudinal coordinate

x from the coordinates y and z. In the longitudinal direction, the deformation field

is described by trigonometric functions depending on x. It can be shown that the
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Figure 6: Frequency response functions for symmetric vertical excitation.

following expression is a solution of (12):

w =





Ui(y, z) sin(κix+ αi)
Vi(y, z) cos(κix+ αi)
Wi(y, z) cos(κix+ αi)



 cos(ωit+ βi), κi =
2π ki

lT
, ki ∈ Z (13)

Due to the semi-analytic solution, an FE discretisation is necessary only for the cross

section, which means a considerable reduction of the numerical effort without loss of

accuracy. Furthermore, the use of continuous functions depending on x avoids the

interpolation, which had already been mentioned in connection with the wheelset.

The question arises how long the track length lT has to be. As already mentioned,

the dynamic receptance behaviour of the track model at the rail head is of main in-

terest. Therefore, the frequency response function for a periodic excitation at the rail

head is calculated for different sleeper numbers of nSl = 16, nSl = 32, nSl = 64,

and nSl = 128. Using a sleeper spacing of ∆xSl = 0.6 m, these numbers refer to

track lengths of lT = 9.6 m, lT = 19.2 m, lT = 38.4 m, and lT = 76.8 m. In Figure 6,

the frequency response functions for a symmetric excitation by vertical forces are dis-

played. The left diagram shows the results for the excitation in the middle between

two sleepers, the right diagram those for the excitation above one sleeper. In the left

diagram, the peak resulting from the so-called pinned-pinned mode can be seen at

1100 Hz: For this mode, the nodes of the rails are located above the sleepers. Since

the pads connecting the rails and the sleepers contribute strongly to the damping of

the system, this mode is only weakly damped. In both diagrams, it can be seen, that

the curves for 32, 64 and 128 sleepers are nearly identical, while only the curve for

16 sleepers deviates slightly from the other curves. Apparently, a model consisting

of 32 sleepers already gives a very good approximation for a very long track. In Fig-
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Figure 7: Frequency response functions for lateral excitation.

ure 7, the frequency response functions for an antimetric excitation by lateral forces

are displayed. Again, peaks related to a pinned-pinned mode can be observed, in this

case at 510 Hz and at 1920 Hz. The convergence of the frequency response functions

depending on the sleeper number is slower compared to the case of vertical excita-

tion: For 16 sleepers, distinct peaks can be observed, especially in the range between

200 Hz and 1600 Hz. If the sleeper number is doubled, the peaks become smaller and

new peaks appear between the old ones, so that the curves become smoother with in-

creasing sleeper numbers. The peaks result from waves travelling through the “ring”

and return to the point of excitation. If the track model is longer, the damping of the

waves is higher. Furthermore, new eigenfrequencies causing new peaks occur if the

length of the structure is increased. – The question arises, why the convergence of the

frequency response functions is quite fast in the case of vertical excitation, while it is

slower for lateral excitation. The main contribution to the system’s damping results

from the pads, while the internal damping of the rails is much less. A vertical mo-

tion of the rail including the foot causes a compression or an expansion of the pads,

which has a damping effect on the whole system. In the case of lateral excitation, the

rail can perform a motion containing a lateral motion, a torsion and a deformation of

the cross section. Thereby, the motions of the rail foot are smaller leading to smaller

deformations of the pads, which contribute to the damping.

4 Wheel-rail contact

In the multi-body formalism, the wheel-rail contact is represented by a force element.

The inputs of such a force element are the relative kinematics of two points, each one

9



belonging to one of the two bodies, between which the element acts. The outputs are

the resulting forces and torques, which are applied to the bodies at the aforementioned

points.

In the wheel-rail contact, stresses occur, which are related to deformations in the

contact. However, the region, in which these stresses have a direct influence on de-

formations, is small compared to the main dimensions of the wheelset and the rail.

Therefore, deformations occurring in the contact region are considered as local defor-

mations in contrast to global deformations like e.g. bending of the wheelset or the rail

and are treated separately.

A very widely used theory for the calculation of contact forces is the Hertzian

theory, which assumes elliptical contact areas. By using coefficients stored in tables

this theory has a high computational efficiency. However, for several combinations of

wheel and rail profiles non-elliptic contact areas occur, which cannot be described by

the Hertzian theory. One possibility to treat this problem is to estimate the contact area

and the stress distribution by applying certain characteristics of the Hertzian theory to

the nonelliptic contact. Several methods of this kind are presented in the survey paper

by Piotrowski and Chollet [4]. Another possibility is the numerical solution of the

contact mechanics problem, which will be used for the contact model developed here.

The wheel-rail contact model uses a Boundary Element method for the formulation

of the contact equations. The fundamentals of this contact modelling are given by

Kalker in [5]. The basic assumptions for this model are:

• The wheel and the rail are modelled as half-spaces, i.e. the contact area is small

compared to the main dimensions of the wheel and the rail.

• The materials of wheel and rail are linear elastic.

• The shear modulus G and Poisson’s ratio are equal for the wheel and the rail.

The relation between the stress acting at the surface of the halfspace on the one hand

and the deformations at the surface on the other hand is given by the equations of

Boussinesq and Cerruti. If the material parameters G and ν are equal for both bodies,

the equations describing the normal stresses and deformations are decoupled from

the ones for the tangential stresses and deformations. For pressure described by the

distribution p(x, y) acting on the surfaces of the bodies in contact, the resulting normal

deformation w(X,Y ), i.e. the sum of the deformations of both bodies, is given by:

w(X,Y ) =
1 − ν

π G

∫

A

p(x, y)

R
dA , R =

√

(X − x)2 + (Y − y)2 (14)

For a tangential stress field described by τ1(x, y) and τ2(x, y), the tangential deforma-
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tions u1(X,Y ) and u2(X,Y ) at the surface are given by:

u1(X,Y ) =
1

π G

∫

A

[
1 − ν

R
+

(X − x)2ν

R3

]

τ1(x, y)dA

+
ν

π G

∫

A

(X − x)(Y − y)

R3
τ2(x, y)dA (15)

u2(X,Y ) =
ν

π G

∫

A

(X − x)(Y − y)

R3
τ1(x, y)dA

+
1

π G

∫

A

[
1 − ν

R
+

(Y − y)2ν

R3

]

τ2(x, y)dA (16)

For the discretisation of the problem, a grid is defined which uses equal spacing ∆a
in both directions. Thereby, the coordinates of the i-th grid point are given by:

xi = nx,i ∆a, yi = ny,i ∆a, nx,i, ny,i ∈ Z (17)

The distributions of the stresses τ1(x, y), τ2(x, y) and p(x, y) are discretised by super-

posing local bilinear functions fk(x, y), which are scaled by the values of the stresses

at the grid points, as shown in Figure 8. Thereby, the stress field is expressed by:





τ1(x, y)
τ2(x, y)
p(x, y)



 =
∑

k





τ1(xk, yk)
τ2(xk, yk)
p(xk, yk)



 fk(x, y) =
∑

k





τ1,k

τ2,k

pk



 fk(x, y), fk(xk, yk) = 1

(18)

By inserting the discretised stress distributions into the Boussinesq equations, the

deformations at the grid points, i.e. u1,i = u1(xi, yi), u2,i = u2(xi, yi) and wi =
w(xi, yi), can be calculated. This leads to two systems of linear equations:

H33 p = w (19)
[

H11 H12

H12 H22

] [
t1

t2

]

=

[
u1

u2

]

(20)

The vectors t1, t2 and p contain the stresses τ1,k, τ2,k and pk occuring at the grid

points, respectively. The deformations u1,i, ui,2 and wi are arranged in the vectors u1,

u2 and w.
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For the normal contact problem, the interpenetration δ(xi, yi) = δi between the un-

deformed surfaces of wheel and rail is determined at the grid points. If a point belongs

to the contact area, the pressure is positive and the deformation is compensating the

interpenetration. If a point lies out of the contact area, the deformation is larger than

the interpenetration, and the pressure vanishes:

inside the contact area : δ(xi, yi) − w(xi, yi) = 0 ∧ p(xi, yi) > 0 (21)

outside the contact area : δ(xi, yi) − w(xi, yi) < 0 ∧ p(xi, yi) = 0 (22)

Because of the second condition (22) the order of the problem is not known at the

beginning of the calculation. Therefore, the application of the standard solution for

a system of linear equations using a decomposition of the matrix into a lower and an

upper triangular matrix is not very efficient in this case. A more efficient method to

solve this problem is the application of the Gauss-Seidel method, which had already

been presented by Vollebregt in [6] for solving contact problems. By transforming the

i-th equation of the system of linear equations, an iteration scheme is obtained:

n∑

j=1

H
(33)
ij pj = δi ⇒ p

(k+1)
i =

1

H
(33)
ii

[

δi −
i−1∑

j=1

H
(33)
ij p

(k+1)
j −

n∑

j=i+1

H
(33)
ij p

(k)
j

]

(23)

Here, p
(k)
i is the k-th approximation for the pressure pi. Using this iteration, the con-

dition (22) can be taken into account very easily: If the iteration scheme (23) yields a

negative value p
(k+1)
i < 0, the value is set to p

(k+1)
i = 0.

To solve the tangential contact problem, the relative velocities in the contact have

to be considered. The actual velocities v1(x, y) and v2(x, y) in the contact are ob-

tained by superposing the velocities v0,1(x, y) and v0,2(x, y) of the entire bodies and

the velocities vd,1(x, y) and vd,2(x, y) resulting from the deformations:

vI(x, y) = v0,I(x, y) + vd,I(x, y), I = 1, 2 (24)

The velocities v0,1(x, y) and v0,2(x, y) only depend on the input kinematics of the

wheel-rail contact element, therefore they are considered as given. The deforma-

tional velocities can be approximated by using the wanted deformations u1(x, y) =
u1(x, y, t = t0) and u2(x, y, t = t0) at the current time t = t0 and the deformations

u∗1(x, y) = u1(x, y, t = t0 − ∆t) and u∗2(x, y) = u2(x, y, t = t0 − ∆t) at an earlier

time t = t0 − ∆t.

vI(x, y) ≈ v0,I(x, y) +
uI(x, y) − u∗I(x, y)

∆t
, I = 1, 2 (25)

Here, the deformations u∗1(x, y) and u∗2(x, y) are also considered being given. If adhe-

sion is assumed at the i-th point, the velocities v1(xi, yi) and v2(xi, yi) vanish, which

leads to the following conditions:

uI,i = uI(xi, yi) = u∗I(xi, yi) + ∆t · v0,I(xi, yi), I = 1, 2 (26)
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By transforming the equations (20) into a scheme analogous to (23) and inserting the

condition (26), an iteration for τ
(k)
1,i and τ

(k)
2,i is obtained. However, the stresses τ1,i and

τ2,i are limited by the transmittable stress, which can be expressed by the following

condition: √

τ1(x, y)
2 + τ2(x, y)

2 = |τ(x, y)| ≤ µ p(x, y) (27)

If the resulting stress obtained from the iteration doesn’t exceed the transmittable

stress, i.e.

∣
∣
∣τ

(k+1)
i

∣
∣
∣ ≤ µ pi, the assumption of adhesion is true, otherwise sliding

actually occurs. In this case, the tangential stress are acting in the opposite direction

of the relative velocity and the resulting stress is equal to the transmittable stress:

τ1(x, y) = −C v1(x, y), τ2(x, y) = −C v2(x, y), C > 0

⇒ τ1(x, y) v2(x, y) − τ2(x, y) v1(x, y) = 0 ∧

√

τ1(x, y)
2 + τ2(x, y)

2 = µ p(x, y)

(28)

Also here, the Gauss-Seidel method provides an efficient way to take this nonlinear

condition into account, as presented by Vollebregt in [6]. – In the presented wheel-

rail contact model, stationary rolling is assumed. The particles are moving through

the contact area in the negative x-direction. By choosing the time interval ∆t =
∆a/v0, the earlier deformation states u∗1(x, y) and u∗2(x, y) are equal to the current

deformation states u1(x− ∆a, y) and u2(x− ∆a, y), respectively:

u∗1(x, y) = u1(x− ∆a, y), u∗2(x, y) = u2(x− ∆a, y) (29)

From the calculated stresses, the resulting forces and torques with respect to two cer-

tain points, the one on the wheel rim, the other one on the rail head, are determined.

By the torques, lateral shifts of the contact area are taken into account.

5 Vehicle-track system

The refined components, i.e. the model of the flexible rotating wheelsets, the flexible

track model and the wheel-rail contact model, are integrated into an entire vehicle-

track system. An overview of the system is given in Figure 9. The vehicle-track system

describes a passenger coach, which is running on a straight track. The passenger coach

has two bogies, each one equipped with two wheelsets. The carbody, the bogie frames

and the bolsters are modelled as rigid bodies, while all four wheelsets are described

as flexible bodies. Each bogie frame and each wheelset can perform all six rigid-

body motions. The car body can perform all three rotations, i.e. the roll motion, the

pitch motion and the yaw motion, and the lateral and the vertical translation, while

for the longitudinal translation a constant running speed v0 is set. The bolsters can

only perform yaw motions relative to the car body. Each bogie frame is connected

to the wheelset and the bolster by linear springs and dampers. Between the car body

and each bolster, a dry friction element, which provides the yaw damping, acts. The
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Figure 9: Bodies of the vehicle-track system; dark bodies are modelled as flexible

bodies.
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Figure 10: Simple track model.

parameters are taken from the works of Diepen [7] and Kim [8]. As mentioned in

chapter 3, the track includes two flexible rails, which are supported by 128 sleepers.

For the rails, the profile UIC60 is chosen. The rail inclination or cant is set to 1/40.

The whole vehicle-track model contains eight wheel-rail contacts. Here, the profiles

S1002 for the wheel and UIC60 for the rail are used. For the calculations presented in

this paper, a friction coefficient of µ = 0.3 is set. For the discretisation of the contact

problem, a spacing of ∆a = 0.75 mm is used.

With this model, two scenarios are studied: The centred running and the “unstable”

hunting of the vehicle. In both cases, no disturbances, i.e. track irregularities, devia-

tions of the profiles or unbalances in the wheelsets, are taken into account. Although

the considered scenarios are idealised, they give an insight into the system’s behaviour

and can be used as a plausibility check of the model. To study the influences of the

flexibilities of the wheelset and of the track, four different variants of the model are

used, in which the flexibilities are either taken into account or neglected. The wheelset

may be modelled as a rigid body, a completely rigid track would however be unreal-

istic. Therefore, simple track elements as displayed in Figure 10, each one supporting

one wheelset, are used for the comparison. The track element consists of a rigid body,

which can perform a lateral motion y, a vertical motion z and a roll motion ϕ. The

rigid body is connected to the environment by linear springs and dampers. Model

configurations using these track elements will be called “rigid rails”. Altogether, four

different variants of the vehicle-track model are possible:
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• Model RR: Rigid wheelsets, rigid rails

• Model FR: Flexible wheelset, rigid rails

• Model RF: Rigid wheelsets, flexible rails

• Model FF: Flexible wheelsets, flexible rails

All results, which will be presented in the following, refer to the leading wheelset of

the leading bogie. For the investigation of the wheel-rail contact, the right contact of

this wheelset is considered.

5.1 Centred running

In the case of the centred running, the lateral displacement y as well as the roll angle ϕ
and the yaw angle ψ of the wheelsets, the bogie frames and the carbody are zero. The

running speed is set to v0 = 200 km/h. In the case of the model RR, a stationary state

is calculated. For the model FF, a weak oscillation due to the sleeper passing occurs.

Therefore, the amplitude of the vertical force Q fluctuates between Q = 59 kN and

Q = 60.8 kN, which is very weak.

The geometry of the wheel-rail contact and the profile of the pressure distribution

is displayed in Figure 11. The influence of the deformations of wheelset and rail on

the contact geometry itself are hardly visible. However, the slight change of the con-

tact geometry causes a considerable change of the pressure distribution, which is also

illustrated in Figure 12. For the model RR, two maxima of the pressure distribution

occur. For the model FF, the left maximum shrinks drastically and nearly vanishes,

while the right maximum slightly increases. An explanation for this effect may be

derived from Figure 15. The vertical forces, i.e. the wheel-rail forces acting at the

wheel rims and the forces transmitted between the bearings and the journals, cause

a bending of the wheelset, especially of the wheelset’s axle. This leads to a positive

camber angle of the wheels. For the model RR, the relative angle α between the wheel

rim and the rail head is α = 25 mrad, resulting from the rail cant of 1/40. Due to the

bending, the angle is changed to α ≈ 26 mrad. Thereby, the left part of the contact

area is unloaded, while the loading increases in the right part.

The wheelset performs a large rolling motion around its axis of symmetry. Because

of the small inclination of the contact area relative to the axis of symmetry, a small

spin occurs in the contact. This explains the concentric distribution of the tangential

stresses shown in Figure 13. The sliding occurs at the trailing edge of the contact

patch, the few single points indicating sliding at the leading edge are results of dis-

cretisation errors. The distribution of the friction power density PF/A resulting from

the sliding is displayed in Figure 14. Also here, a considerable impact of the defor-

mations can be seen: The distribution obtained for the model RR shows two maxima,

a larger one of PF/A = 13 W/mm2 in the left part of the contact patch and a smaller

one of PF/A = 7 W/mm2 in the right part. For the model FF the left maximum is
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Figure 11: Contact geometry; left: model RR, right: model FF.

Figure 12: Distribution of the normal pressure; left: model RR, right: model FF.
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Figure 13: Distribution of the tangential stresses; left: model RR, right: model FF.

Figure 14: Distribution of the frictional power density; left: model RR, right: model

FF.
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FWR FWR

FB FB

Figure 15: Bending of the wheelset (qualitative scheme) due to the vertical wheel-rail

forces FWR and the vertical forces FB transmitted by the bearings to the journals.

considerably reduced to PF/A = 4 W/mm2, while the right maximum is slightly di-

minished to PF/A = 5 W/mm2. As observed in Figure 12, the pressure p in the left

part of the contact patch is drastically reduced for the model FF. The reduced pressure

also leads to a reduction of the transmittable tangential stress τmax = µ p.

5.2 Hunting

Below a certain running speed, the so-called critical speed v0,crit, lateral motions of

the vehicle die out and the vehicle centres itself within the track. If the vehicle runs

faster than the critical speed, motions excited by disturbances may not die out, but

a permanent combined lateral and yaw motion, the so-called hunting motion occurs.

Although this motion is stable in the mathematical sense, it is often called “unstable”

hunting. Since this motion can lead to high lateral wheel-rail forces, which can dam-

age the track and increase the risk of derailment, this scenario should be avoided in

regular operation. Therefore railway vehicle are usually designed in such a way that

the critical speed is distinctly higher than the maximum operational speed.

Although the scenario of “unstable” hunting is not desired in regular operation, it

can be used for studying the behaviour and checking the plausibility of the model. In

Figure 16 the phase portraits for the lateral motion yWS1 for the centre of the leading

wheelset in the leading bogie are displayed. The calculations were carried out for all

four model variants RR, RF, FR and FF.

The comparison of the diagrams shows that the amplitudes of the lateral displace-

ments become larger, if the flexibilities of the wheelsets and the track are taken into

account. In particular the flexibility of the wheelsets causes a distinct increase of the

amplitudes. This can be explained in the following way: If the wheel flange hits the

rail head, large lateral forces occur, which shift the wheel rim towards the wheelset’s

centre. Thereby, a larger lateral displacement of the centre occurs.

Furthermore, the diagram obtained for the model RR shows sharp bends of the

curves at yWS ≈ 6 mm and yWS ≈ –6 mm. This effect is caused by the wheel flange:

If the wheel flange hits the rail head, large lateral forces occur, which decelerate the

wheelset’s lateral motion. If the flexibility of the wheelset is taken into account, the

wheelset as a complete structure is softer than the comparatively stiff wheel-rail con-

tact. Thereby, the impact of the flange is cushioned, which leads to smoother curves.
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Figure 16: Phase portraits for the lateral motion yWS of the wheelset’s centre.
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The cushioning effect of the flexible track is even more distinct: While a very weak

influence of the contact between wheel lange and rail head can be seen for the model

FR at v0 = 420 km/h, the curves obtained with the model RF are very smooth and the

sharp bends vanish completely. If the track elements displayed in Figure 10 are used,

the entire rigid body of the element has to be accelerated, if the flange hits the rail

head. In the case of the flexible track model, the sleepers are connected to the rails by

the pads allowing relative motions. Thereby, the lateral forces don’t have to accelerate

such a high mass.

For the models FR and RF the curves for v0 = 330 km/h and v0 = 340 km/h are

not available, because for these models no permanent hunting occurs at these running

speeds. For the same reason, the curves for v0 = 330 km/h up to v0 = 380 km/h are

missing for the model RR. This indicates that the flexibilities have an impact on the

critical speed v0,crit. Apparently, the deformations have an influence on the creepages

in the contact and thereby on the contact forces so that the “unstable” hunting starts at

lower running speeds.

In Figure 17 the wheel-rail contact geometry and the pressure distribution in the

contact depending on the lateral displacement yWS is displayed for the models RR

and FF, obtained for a running speed of v0 = 420 km/h. It can be seen that also

in the case of hunting the flexibilities of the wheelsets and the track have a distinct

impact on the stress distribution occurring in the wheel-rail contact. Furthermore, if

the displacement is increased from yWS = 9 mm up to yWS = 11 mm, the contact

geometry and the pressure distribution are hardly changed. This indicates that the

increase of the amplitude is in fact mainly caused by structural deformations of the

wheelset and the track.

6 Conclusion

The wheelsets, the rails and the wheel-rail contact are the key components for the

vehicle-track interaction. Therefore, refined models of these components are devel-

oped. The main problem related to the modelling of a rotating wheelset as a flexible

body are the wheel-rail forces circulating around the wheel. The shape functions de-

scribing the deformation of the wheelset are expressed by trigonometric functions pro-

viding a simpler evaluation than a piecewise interpolation. If the wheelset is assumed

to be a rotational symmetric structure, several characteristics of the eigenmodes of

such a structure can be exploited to simplify the calculation without loss of accuracy.

For the modelling of the track, the large dimension of the track is the main difficulty.

Since for vehicle-track simulations the receptance behaviour of the track, i.e. the mo-

tions of the rail head as a reaction to the excitation by wheel-rail forces, are of main

interest, the numerical effort can be drastically reduced by using a ring-shaped track

model and neglecting its curvature. However, the influence of the length of the track

model on the receptance behaviour has to be investigated carefully to obtain a suffi-

cient approximation for the dynamic behaviour of a very long track. The wheel-rail

contact model is based on an iterative solution of the contact equations obtained from
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Figure 17: Contact geometry and pressure distribution depending on the lateral motion

yWS of the wheelset’s centre.

20



a Boundary Element model. The refined components are integrated into the model of

a passenger coach running on a straight track. The influences of the flexibilities of the

wheelsets and the track are investigated in two idealised scenarios.

Already in the “unspectacular” case of undisturbed centred running, a distinct im-

pact of the structural deformations of the wheelsets and the track on the wheel-rail

contact can be seen: Although the change of the relative kinematics of the wheel rim

and the rail head caused by the structural deformations is small, the distributions of the

stresses and the friction power density, which is relevant for the wear, are noticeably

changed. As an example for a highly dynamic interaction of vehicle and track, the

scenario of “unstable” hunting is investigated. It turns out that the flexibilities of the

wheelsets as well as of the track have a distinct impact on the running behaviour. This

underlines the necessity of a consistent modelling, i.e. all components should have a

similar grade of detailing. The increased numerical effort for a detailed contact model

only makes sense, if the input for the contact model is taken from refined models

of the wheelset and the track. Altogether, the enhanced components and the refined

vehicle-track model including these components enable a detailed, but also efficient

modelling. This provides a suitable base for investigations of phenomena like noise

and wear.
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