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Abstract—Super-resolution imaging via compressed sensing
(CS)-based spectral estimators has been recently introduced to
synthetic aperture radar (SAR) tomography. In the case of par-
tial scatterers, the mainstream has so far been twofold, in that
the tomographic reconstruction is conducted by either directly
working with multiple looks and/or polarimetric channels or by
exploiting the corresponding single-channel second-order statis-
tics. In this letter, we unify these two methodologies in the context
of covariance fitting. In essence, we exploit the fact that both ver-
tical structures and the unknown polarimetric signatures can be
approximated in a low-dimensional subspace. For this purpose, we
make use of a wavelet basis in order to sparsely represent vertical
structures. Additionally, we synthesize a data-adaptive orthonor-
mal basis that spans the space of polarimetric signatures. Finally,
we validate this approach by using fully polarimetric L-band data
acquired by the E-SAR sensor of the German Aerospace Center
(DLR).

Index Terms—Distributed compressed sensing (DCS),
Kronecker basis, polarimetry, synthetic aperture radar (SAR)
tomography, wavelets.

I. INTRODUCTION

MULTIBASELINE polarimetric measurements allow us
to resolve a vertical structure via well-established syn-

thetic aperture radar (SAR) imaging principles. Also, they pro-
vide an additional dimension to further describe the response of
illuminated objects, which, in the case of partial scatterers, is
commonly captured in the form of a polarimetric covariance
matrix. However, the achievable resolution of conventional
estimators is highly dependent on the extension of the elevation
aperture (see Fig. 1). Moreover, the sampling rate dictated
by the well-known Nyquist frequency imposes an additional
requirement, namely, dense regular sampling [1].

Recently, alternative sparsity-driven nonlinear reconstruc-
tion algorithms have been put forward in order to attain low
sidelobe and ambiguity levels with a reduced number of ir-
regular passes. In particular, the authors in [2] extended the
work in [3] and [4] and proposed a compressed sensing (CS)-
based joint reconstruction technique that takes advantage of
possible intersignal structural correlations between neighboring
azimuth–range pixels, as well as between polarimetric chan-
nels. Also, a single-channel covariance fitting methodology was
introduced in [5], which employs sparse representations of the
vertical backscattered power in the wavelet domain. In this
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Fig. 1. Tomographic sensing operation using parallel passes (not to scale).
The range resolution is indicated by ρr , whereas the extension of the elevation
aperture by Δb.

letter, we combine all these lines of research and extend them
so as to take advantage of the fact that polarimetric signatures,
as characterized by the so-called coherency/covariance matrix
(from now on referred to as polarimetric covariance matrix) [6],
can be approximated in a low-dimensional subspace [7]. For
this purpose, we form a data-adaptive orthonormal basis that
spans the space of polarimetric signatures.

The remainder of the letter is organized as follows. In
Section II, we formulate the inverse problem from a multibase-
line polarimetric covariance matrix perspective in such a way
that we are able to decouple the structures of scattering mecha-
nisms (SMs) from their polarimetric signatures. Subsequently,
Section III revisits the concept of joint sparse reconstruction.
Section IV casts the covariance fitting problem as an instance
thereof and reformulates it so as to be able to restrict the
polarimetric signatures to lie in a low-dimensional subspace. In
Section V, we present results obtained using fully polarimetric
L-band data acquired by one of the airborne sensors of the
German Aerospace Center (DLR), namely, E-SAR. Finally,
Section VI concludes this letter.

II. PROBLEM FORMULATION

Let Ki,j ∈ C
m×m be the multibaseline covariance matrix

resulting from m parallel passes [1], [8] and two polarimetric
channels i and j at a specific azimuth–range position, with
1 ≤ i, j ≤ 3. For example, i and j could denote the hh and
hv channels, respectively. Then, we can construct D ∈ C

m2×9

as follows:

D = [ vec(K1,1) vec(K2,1) · · · vec(K3,3) ] (1)
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where vec(·) is the matrix-to-vector operator. Additionally,
under suitable assumptions [5], [7], [9], D can be written out
as a sum of contributions of S SMs, i.e.,

D = Φ

S∑
s=1

θsC
T
s = ΦZ (2)

where Φ ∈ C
m2×n is a partial Fourier matrix, θs ∈ R

n
≥0 ac-

counts for the vertical power distribution of the sth SM (i.e.,
its vertical structure is described by n pixels), Cs ∈ C

9 refers
to the polarimetric signature of the sth SM (which can be re-
arranged into a three-by-three polarimetric covariance matrix),
and hence Z ∈ C

n×9. Accordingly, we will focus on recon-
structing Z, albeit always driven by the structure conveyed by
θs and Cs.

Finally, we point out that, by construction, the number of in-
dependent measurements provided by the entries of D amounts,
at most, to 3m(3m+ 1)/2 (rather than 9m2) and can be
optimized by means of a minimum redundancy acquisition
geometry [5], [10]. Note also that, although (2) clearly ne-
glects any source of decorrelation, this aspect can be explicitly
incorporated as a part of the tomographic reconstruction (see
Section IV).

III. MULTISIGNAL CS

Multisignal CS enables the joint recovery of signal ensem-
bles by exploiting intersignal structural correlations. It gen-
eralizes the concept of a signal being sparse to the concept
of an ensemble of signals being jointly sparse [11], [12]. In
particular, it proposes taking linear measurements of the form
B = AX + Y , where X ∈ C

n×L indicates L sparse signals of
interest that exhibit common support, A ∈ C

m×n is a sensing
matrix with m usually much smaller than n, and Y ∈ C

m×L

is an unknown perturbation term. The theory asserts that, under
suitable conditions [2], [11], [13], X can be recovered by mixed
norm minimization, i.e.,

min
X̃

‖X̃‖2,1 subject to ‖AX̃ −B‖F ≤ ε (3)

where ε is an upper bound on the perturbation level, ‖ · ‖F
is the Frobenius matrix norm, and ‖ · ‖2,1 is a mixed norm
(sum of the L2 norms of the rows of a matrix) that basically
promotes sparsity along columns while minimizing the energy
along rows. As a consequence, joint reconstruction guarantees
recovery, even when m < n, by promoting row sparsity.

IV. COVARIANCE FITTING VIA MULTISIGNAL CS

In this section, we formulate the reconstruction of Z as
defined in (2) from a multisignal CS perspective. To that end,
we first observe that forested areas are generally dominated by
few effective SMs. Specifically, the assumption of simply two
SMs has recently proven to be a valid approximation [7], [9],
[14]. In addition, the power distribution θs of these different
SMs is quite regular [7], [8], [14], [15], thereby giving rise
to sparse representations in the wavelet domain and allowing
for a CS viewpoint [5]. Consequently, if we let W ∈ R

n×n be
a sparsifying basis for θs, with s ≤ 2, it follows that Z can

be represented by a row-sparse matrix α ∈ C
n×9, such that

Z = WTα. Incidentally, the condition s ≤ 2 can be readily
satisfied by replacing D with its best rank-2 approximation,
which will be denoted by D2. As thoroughly discussed in [7],
this can be efficiently obtained by means of a singular-value
decomposition (SVD).

A. Naive Approach

As a stepping-stone toward a robust formulation, we can
simply take (2) and (3), and let B = D2, A = ΦWT , and
X = α. Then, we could recover α by carrying out the following
optimization:

min
α̃

‖α̃‖2,1 subject to ‖ΦWT α̃−D2‖F ≤ ε (4)

where ε is an upper bound on the model mismatch that poten-
tially captures any source of decorrelation and insufficient level
of multilooking [5]. In turn, we would compute Z̃ = WT α̃.
Although intuitive and simple, this approach falls short of ideal,
in that it ignores the inherent properties and low dimensionality
of the subspace of polarimetric signatures, which is the subject
of Section IV-B.

B. Data-Adaptive Approach

As previously mentioned, the SVD of D provides an efficient
way of computing its best rank-2 approximation. Nonethe-
less, of equal importance is the fact that the adjoint of the
corresponding right singular vectors defines a data-adaptive
orthonormal basis for the unknown polarimetric signatures [7]
(see also [16] and [17]). As a result, if we consider only two
SMs, i.e., D2, it follows that every row of Z will be bound
to lie in a 2-D subspace. Thus, once two orthonormal vectors,
i.e., v1 and v2 ∈ C

9, that span the polarimetric space have been
obtained and a matrix V ∈ C

2×9, i.e.,

V =

[
vT1
vT2

]
(5)

has been formed, we can formulate a data-adaptive reconstruc-
tion as

min
β̃

‖β̃‖2,1 subject to ‖ΦWT β̃V −D2‖F ≤ ε (6)

where β ∈ R
n×2. Just as in Section IV-A, ε is an upper bound

on the model mismatch. Then, we have Z̃ = WT β̃V . In order
to ensure physical validity, proper constraints must be set so that
every row of Z̃ (when rearranged in a three-by-three matrix)
results in a positive-semidefinite matrix. To this end, let Vi ∈
C

3×3 and Z̃j ∈ C
3×3 be the result of rearranging vi and z̃j ∈

C
9 (a vector corresponding to the jth row of Z̃) into three-by-

three matrices, respectively. Since it is possible to find a matrix
G that jointly diagonalizes V1 and V2 (see, for example, [7]),
it follows that G∗Z̃jG is certain to be diagonal. Furthermore,
the corresponding main diagonal entries can be alternatively
computed by Mz̃j , where M ∈ C

3×9 is formed from G∗ and
G. Then, the required positive semidefiniteness can be enforced
by adding a constraint of the form M(WT β̃V )T � 0.
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Fig. 2. Histogram of the baseline distribution corresponding to ten irregular
parallel passes.

Interestingly, this approach can be understood from a slightly
different, yet instructive, viewpoint. Specifically, rather than
considering Z to be composed of nine 1-D signals (column
vectors), we can think of it as one 2-D signal. As a result, Z
can be represented in a 2-D basis, readily formed by computing
the outer product of all 1-D wavelet basis vectors and all
1-D polarimetric signature basis vectors, i.e., a Kronecker basis.
Thus, just as the former allows for sparse expansions of the ver-
tical backscattered power, the latter provides a sparse expansion
of the polarimetric signature. However, since we only consider
two SMs, the support of the polarimetric signature transform
coefficients is known a priori. Consequently, if we let � � n
be the size of the union of the supports of the two vertical
power distributions (in the wavelet domain), then the number
of nonzero (real-valued) transform coefficients reduces to 2�.
We emphasize that this dimensionality holds for dual-polarized
and fully polarimetric acquisitions since, in both cases, the
polarimetric signatures are bound to lie in a 2-D subspace.
Finally, we note that, from this perspective, Φ is bound to take
partitioned measurements, in that only one column is measured
at a time. For further details on this kind of distributed sensing
setting, we refer the reader to [18].

V. EXPERIMENTAL RESULTS

For validation purposes, we used a stack of ten focused
and coregistered SAR images obtained by processing fully
polarimetric L-band data. These data were acquired by the
E-SAR airborne sensor of DLR during a campaign near
Dornstetten, Germany, in 2006. Fig. 2 shows the histogram of
the corresponding irregular baseline distribution. Fig. 3 shows
the amplitude image of this area. The center frequency used was
1.3 GHz, and the nominal altitude above ground was about
3200 m. The resolutions were 0.66 and 2.07 m in azimuth and
range, respectively [8].

The tomographic reconstruction was conducted as follows.
We recast (6) as

min
β̃

λ‖β̃‖2,1 + ‖ΦWT β̃V −D2‖2F (7)

with appropriate physical constraints, as developed in
Section IV-B. Thus, in this formulation, λ trades row sparsity
for data mismatch. The sparsifying basis W ∈ R

128×128 was
based on the Daubechies Symmlet wavelet with four van-
ishing moments and three levels of decomposition. Next, we
selected several azimuth positions at a fixed range distance of
4816.30 m, as indicated by the yellow rectangle in Fig. 3. In or-
der for (2) to hold, we computed the sample covariance matrix

Fig. 3. Polarimetric SAR image of the test site near Dornstetten, Germany
(red: |hh− vv|/

√
2; green:

√
2|hv|; blue: |hh+ vv|/

√
2). The targets of

interest are located within the yellow rectangle along azimuth.

by taking a 20× 20 m2 estimation window. In this respect, we
employed the Sum of Kronecker Products (SKP) decomposi-
tion [7] using different window sizes in order to heuristically
find the smallest window that allowed for the separation of
SMs. Since the value of λ is not known a priori, we proceeded
heuristically as well. First, we performed the reconstruction (in
the Lexicographic basis) repeatedly with increasing λ starting
from 0 (i.e., no regularization). We then chose the smallest
value such that all the recovered profiles exhibited no spikes,
so as to be consistent with the assumption that the unknown
vertical profiles are sparse in the wavelet domain. In this regard,
we note that spikes or rather spatially sparse solutions are ex-
pected in this kind of optimization when it is not regularized but
nonnegativity constraints are imposed (see, for example, [19]).
For this specific tomographic slice, we decided upon λ = 2.
As a result, we obtained slices in the azimuth and elevation
directions of dimensions 300 m by 40 m, respectively. Figs. 4–6
show a comparison of the reconstructed profiles for the hh, vv,
and hv channels, respectively. The tomograms found by means
of the outlined methodology are shown first, followed by a
conventional linear inversion of the Ki,j matrices previously
defined but considering only two SMs. As conveyed by the
figures, the CS reconstruction is able to counter the artifacts
exhibited by the linear reconstruction, which originate from the
irregular baselines. Additionally, Fig. 7 shows the correlations
between the vv and hh channels (as taken from Z̃), which
clearly manifest more strongly at the ground level. In order
to estimate the effective dimensionality of Z̃, we computed
WZ̃ and sorted its rows according to their L2 norms. Then,
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Fig. 4. Tomographic slices in the hh channel (300 m by 40 m) using a 20× 20 m2 window (normalized to the maximum value of the tomogram), obtained
(a) by means of the data-adaptive CS approach and (b) by a conventional linear inversion.

Fig. 5. Tomographic slices in the vv channel (300 m by 40 m) using a 20× 20 m2 window (normalized to the maximum value of the tomogram), obtained
(a) by means of the data-adaptive CS approach and (b) by a conventional linear inversion.

we observed that, for every azimuth position, the largest seven
rows (out of 128) retain at least 91% of the energy, whereby we
conclude that � ≈ 7.

The solver that we used was CVX, which is a package for
specifying and solving convex programs [20]. For large-scale
processing, we refer the reader to [14] for a detailed discussion
on how to reduce the size of this kind of problem.

VI. CONCLUSION

In this letter, we have extended the existing CS-based
methodologies by considering the multiple dimensions in
which polarimetric covariance matrices, i.e., polarimetric sig-
natures, manifest. Thus, we have been able to perform joint

recovery by exploiting the fact that vertical structures, as well
as polarimetric signatures, can be sparsely approximated in
appropriate domains. For this purpose, we have made use of
a wavelet basis and a data-adaptive basis, respectively, thereby
reducing the degrees of freedom to carry out the tomographic
reconstruction. In this regard, we emphasize that the outlined
approach is not limited to wavelets as, in fact, any suitable basis
could be used. Also, we stress the fact that the implementation
of this technique can be effectively tailored by means of exist-
ing tools, such as the SKP decomposition. Future publications
will focus on analyzing the robustness of the proposed approach
by considering different range distances and multibaseline con-
stellations, and by comparing it with other traditional spectral
estimators.
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Fig. 6. Tomographic slices in the hv channel (300 m by 40 m) using a 20× 20 m2 window (normalized to the maximum value of the tomogram), obtained
(a) by means of the data-adaptive CS approach and (b) by a conventional linear inversion.

Fig. 7. Correlations between the vv and hh channels obtained by means of the data-adaptive CS approach (300 m by 40 m) using a 20× 20 m2 window
(normalized to the maximum value of the tomogram).
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