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Large scale three dimensional aerodynamic shape optimization based on the compress-
ible Euler equations is considered. Shape calculus is used to derive an exact surface formu-
lation of the gradients, enabling the computation of shape gradient information for each
surface mesh node without having to calculate further mesh sensitivities. Special attention
is paid to the applicability to large scale three dimensional problems like the optimization
of an Onera M6 wing or a complete blended wing-body aircraft. The actual optimization is
conducted in a one-shot fashion where the tangential Laplace-operator is used as a Hessian
approximation, thereby also preserving the regularity of the shape.

Nomenclature

 Adiabatic exponent

� Angle of attack

q Design vector

� Additive mean curvature

�� Laplace{Beltrami operator

�i;k Kronecker symbol

� Density

E Total energy

‘ Scalar constraints, e.g. lift or structural constraints

� Smoothing parameter

� Unknown boundary to be optimized

�0 Euler slip wall, i.e. the aircraft surface

a Rotation of the coordinate system
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� Adjoint variable

L Lagrangian

� Adjoint variable for vector constraints

n Outer normal

� Adjoint variable for scalar constraints


 Domain occupied by the uid

p Pressure

y State vector

~Dxz Reduced Jacobian of quantity z with respect to x

U Vector of conserved variables

V Smooth vector �eld prescribing the deformation direction

u Velocity vector

Ai Euler Flux Jacobian matrices

B Reduced Hessian

c Vector contraints, e.g. ow solver residual

CD Drag coe�cient

CL Lift coe�cient

CP Pressure coe�cient

Dxz Jacobian of quantity z with respect to x

dz[V ] Material derivative of quantity z in direction V

f Objective function, standard optimization problem

g Shape gradient

H Enthalpy

Hz1z2 Second partial derivative of the objective with respect to z1 and z2

I Identity matrix

J Objective function, shape optimization problem

Tt Bijective family of mappings applying the shape deformation

UH Conserved variables with enthalpy as last component

x1 Coordinate axis, chord direction

x2 Coordinate axis, span direction

x3 Coordinate axis, thickness direction

z0[V ] Shape derivative of quantity z in direction V
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I. Introduction

Applied aerodynamic shape optimization, especially for industry size problems, has in the past almost
always followed a parametric approach, meaning that parts of the aircraft like the wing cross-sections are
deformed by adding smooth ansatz functions such as the popular Hicks{Henne functions1 to the geometry.
Other approaches frequently encountered for CAD-free fully three dimensional parameterizations are for
example perturbing the control points of spline surfaces or free-form deformations. All of these approaches
have in common that the actual optimization problem is considered post parameterization, meaning the
gradient is computed according to the standard Lagrange formula

dJ

dq
=
@J

@q
� �T @c

@q
; (1)

where � is the corresponding adjoint variable solving�
@c

@y

�T
� =

@J

@y
: (2)

The adjoint ow solver is therefore independent of the shape optimization nature of the problem as only the
derivatives with respect to the ow states are needed. However, in order to construct the gradient out of
the primal and adjoint states, the parameterization of the shape must be considered. Especially the term
@c
@q requires knowledge of the sensitivity of the ow solver residual with respect to mesh nodes positions
e�ected by the parameterization q. While this approach is known to be applicable and well working, one is
often forced into �nite di�erencing for these terms.2,3 This often makes very �ne parameterizations such as
using the mesh node positions itself rather impractical if not prohibitive, as the time to compute the adjoint
ow solution is indeed independent of the number of design parameters, but the gradient computation
actually is not. While it is possible to counter this problem by introducing another adjoint for the mesh
deformation, using e.g. algorithmic di�erentiation on the mesh deformation tools in reverse mode4 or a
continuous approach,5 special care must be taken not to run into memory limitations by considering the
entire design chain at once, as usually the resulting gradient expression is not an exclusive surface quantity.

The alternative is to treat the problem in a non-parametric fashion. In the past, non-parametric ap-
proaches have been used to derive optimal shapes for certain ow situations on a theoretical level. For
example in6,7 a rugby-ball like shape is shown to be optimal for creeping Stokes ows, while in8 optimal-
ity of the so-called Sears{Haack body for inviscid compressible ow is shown. Non-parametric approaches
can also be found in,9,10 but they are hardly used for any actual computations. The idea considered in the
present work is to use shape calculus to di�erentiate the aerodynamic forces directly with respect to the input
geometry, thereby arriving at a form of equation (1), which is speci�c for shape optimization problems and
does not need explicit knowledge of the problematic partial derivatives. Shape calculus or shape sensitivity
analysis describes the mathematical topic when the shape of a domain is the unknown. Pioneered in,11,12 it
can be used to arrive at exact surface formulations of the gradients for shape optimization problems, which
is often termed the Hadamard form

dJ(�) =
Z
�

hV; ni g dS: (3)

Once g is known, a steepest descent algorithm can easily be conducted according to

�k+1 := fx+ �g(x)n(x) : x 2 �kg;

where � is the step-length of the algorithm. Therefore, using the surface mesh node positions is a natural
choice and furthermore, the deformation of the volume mesh is completely removed from the derivative
chain. While the volume mesh nodes must of course still be somehow adapted to the new surface geometry,
the derivative of the mesh deformation and the variation of the ow residual with respect to the design are
not required for an exact gradient evaluation because they are included in g on an analytic level. There are
previous works in aerodynamic shape optimization that use all surface mesh node positions,13 but usually
the considerable overhead in computing the gradient based on formula (1) has made this approach very
ine�cient.14
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Here, the shape gradient g is used in a one-shot optimization strategy similar to.15,16 Being a reduced
SQP method, one-shot depends on a proper approximation of the reduced Hessian, for which the surface or
tangential Laplace operator is used. Pseudo-di�erential operator symbol calculus conducted in17,18 suggest
using a Hessian approximation based on an anisotropic operator with anisotropies in chord and span direction
would be best, but we found isotropic di�usion to be working very well also. Sometimes called gradient
smoothing or Sobolev gradient method, similar techniques have been used in19,20 as a means to preserve the
regularity of the aircraft shape.

While the applicability to two dimensional airfoil optimizations using the compressible Euler equations
has been previously considered in,21,22 the aim of this paper is to study the applicability to large scale
three dimensional problems. To this end, the optimization of both the Onera M6 wing as well as the
optimization of a complete blended wing-body aircraft is shown. Special emphasis also lies on the correct
computation of the respective surface quantities needed for evaluating the shape derivative on triangulated
unstructured surface meshes. Further considerations for the incompressible Navier{Stokes equations can be
found in.21,23,24 Potential ow inverse design is considered in.25

II. Shape Calculus

II.A. Problem Introduction: Aerodynamic Forces

A very brief review of shape calculus is given next. More details on shape sensitivity analysis in general can
be found in.11,12 The inviscid uid forces acting on the aircraft surface �0 are given by

J(U;
) =
Z
�0

hp � a; ni dS; (4)

where U := (�; �u; �E) are the conserved Euler state variables with � being the density, u = (u1; u2; u3)T

is the velocity vector, and E is the total energy of the uid. Furthermore, the pressure p is linked to the
conserved state variables by the prefect gas law

p = ( � 1)�
�
E � 1

2
kuk2

�
with  � 1:4 being the adiabatic exponent of air. The normal to the aircraft surface is denoted by n and a
is the rotation of the coordinate system, meaning for an angle of attack �, choosing

aD := (cos�; 0; sin�)T

leads to J being the aerodynamic inviscid pressure drag force. Similarly, chosing a as

aL := (� sin�; 0; cos�)T

will result in J being the lift force. In the following, it is thus su�cient to consider surface functionals only.
Also, lift and drag forces do not need to be treated separately.

II.B. Shape Calculus for Surface Functionals

A �nite deformation of the aircraft surface is thought to be given by

�t0 := Tt(�0) = fTt(x) : x 2 �0g;

where Tt is a family of bijective mappings usually given by either the perturbation of identity

Tt(x) = x+ tV (x)

or the speed method

@x

@t
= V (t; x); x(0) = x0 2 �0:
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Thus, the actual perturbation direction is given by the vector �eld V . For �rst order calculus, both the
perturbation of identity and the speed method are known to be equivalent.11,12 Assuming enough regularity
such that the chain rule holds, the preliminary shape derivative of (4) is given by

dJ(U)[V ] =

264 d
dt t=0

Z
�t

0

hp � a; ni dSt

375+
Z
�0

hp � a; dn[V ]i dS +
Z
�0

hp0[V ] � a; ni dS: (5)

Using standard shape di�erentiation techniques and tangential calculus,11,12,21,22 one arrives at

d

dt t=0

Z
�t

0

hp � a; ni dSt =
Z
�0

hV; ni
��

@p

@n
� a; n

�
+ �hp � a; ni

�
dS (6)

for the �rst term in (5). Using the same techniques, one can also arrive atZ
�0

hp � a; dn[V ]i dS =
Z
�0

hV; ni [div� (p � a)� �hp � a; ni] dS; (7)

where div� is the surface or tangential divergence operator.

II.C. Shape Calculus for the Local Shape Derivative of the State Equation

Adjoint calculus must now be used to remove the local shape derivative of the pressure p0[V ] in (5), which
will be conducted analogously to.26,27 Let the local shape derivatives of the conserved variables be given by

U 0[V ] = (�0[V ]; (�u)0[V ]; (�E)0[V ])T :

They satisfy the linearized Euler equations given by

@

@x1
(A1U

0[V ]) +
@

@x2
(A2U

0[V ]) +
@

@x3
(A3U

0[V ]) = 0 (8)

inside the ow domain. Letting � solve the adjoint compressible Euler equations

�AT1
@

@x1
��AT2

@

@x2
��AT3

@

@x3
� = 0 in 
;

integration by parts in (8) shows that

0 =
Z
@


3X
k=1

�nkAkU
0[V ] dS:

As discussed in26,27 and given proper far�eld adjoint boundary conditions, the relation

0 =
Z
�0

�

3X
k=1

nkAkU
0[V ] dS =

Z
�0

�UHhu0[V ]; ni+ (�2; �3; �4)np0[V ] dS (9)

holds, where UH is given by

UH := (�; �u1; �u2; �u3; �H)T :

Due to the uid velocity satisfying the Euler slip boundary condition

hu; ni = 0

on the aircraft surface, the local shape derivative of the velocities are then correspondingly given by

hu0[V ]; ni = �hV; ni
�
@u

@n
; n

�
� hu; dn0[V ]i:
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For more details see.21,22 Inserting this into (9), one arrives at

0 =
Z
�0

� hV; ni�UH
�
@u

@n
; n

�
� �UHhu; dn[V ]i+ (�2; �3; �4)np0[V ] dS:

Adding the above to the preliminary gradient (5) and using (6) but not yet (7), one can see that

dJ(U)[V ] =
Z
�0

hV; ni
�
@p

@n
ha; ni+ �pha; ni � �UH

�
@u

@n
; n

��
+hpa� �UHu; dn[V ]i+ p0[V ] [ha; ni+ (�2; �3; �4)n] dS:

If the adjoint boundary condition

(�2; �3; �4)n+ ha; ni = 0

is satis�ed on the wing, the gradient will further simplify to

dJ(U)[V ] =
Z
�0

hV; ni
�
@p

@n
ha; ni+ �pha; ni � �UH

�
@u

@n
; n

��
(10)

+hpa� �UHu; dn[V ]i dS:

This especially means that existing adjoint ow solvers need not be modi�ed to be useable for the computation
of non-parametric shape derivatives, because both the adjoint �eld equation and the boundary conditions
stay the same as in the classical approach. Using now also (7), one arrives at

dJ(U)[V ] =
Z
�0

hV; ni
�
@p

@n
ha; ni � �UH

�
@u

@n
; n

�
+ div� (pa� �UHu)

�
dS; (11)

which is the �nal form of the gradient.
Comparing (10) with (11) one can see that the �nal Hadamard form of the gradient requires the evaluation

of the tangential divergence operator on the unstructured surface mesh of the aircraft, but this can be traded
for the computation of the mean curvature � and the variation of the normal dn[V ]. Due to more literature
being available concerning mesh curvature of unstructured triangulated surfaces and the normal variation
dn[V ] being quite easily computable on a discrete level, the latter approach was chosen.

As discussed in,21 the variation dnT [Vk](xk) of the face normal nT in direction Vk(xi) = n(xk)�i;k with
linear interpolation in-between surface mesh nodes is given by

dnT [Vk](xk) =
nk � (xi � xi+1)

jT j
;

where T is the surface triangle patch centered around node xk with vertices xi. The normal at the node xk
is denoted by nk = n(xk). The mean curvature � of the surface mesh is computed as described in.28

III. One-Shot Optimization and Hessian Approximation

III.A. Overview of the One-Shot Method

In order to motivate the one-shot method, a standard minimization problem is considered:

min
(y;q)

f(y; q)

subject to

c(y; q) = 0
‘(y; q) = 0;
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where c(y; q) = 0 refers to the ow solution residual beeing zero and ‘(y; q) = 0 means that additional
constraints such as lift, volume, or bending sti�ness are kept. Using Newton’s method to solve the necessary
optimality conditions of the above problem, the system26664

Hyy Hyq (Dyc)T (Dy‘)T

Hqy Hqq (Dqc)T (Dq‘)T

Dyc Dqc 0 0
Dy‘ Dq‘ 0 0

37775
0BBB@

�y
�q
��
��

1CCCA =

0BBB@
�ryL
�rqL
�c
�‘

1CCCA ;

needs to be solved with the actual design update given by

(yk+1; qk+1; �k+1; �k+1)T = (yk; qk; �k; �k)T + (�y;�q;��;��)T :

Here, L denotes the Lagrangian. Assuming there exists an approximation of the Hessian of the form"
Hyy Hyq

Hqy Hqq

#
�

"
0 0
0 B

#
and further assuming (Dyc)�1 exists, a block Gauss-elimination and replacing �� with �k+1 = �k + ��
results in the system "

B ~D‘

( ~D‘)T 0

# 
�q
�k+1

!
=

 
� ~Df

�‘+ �‘c

!
: (12)

In the context of a standard minimization problem, the reduced gradient ~Df of the objective function is
given by

~Df = rqf � (Dqc)T (Dyc)�Tryf;

with an analogous de�nition of the reduced gradient ~D‘ of the scalar constraints. Here, however, the
respective shape derivatives will be used directly for ~D, resulting in a shape one-shot method.

An additional aspect of the one-shot method, not directly visible in (12), is the fact that the state
and adjoint ow variables are usually computed by an iterative ow solver. This usually results in any
optimization procedures essentially becoming a two loop approach: An outer optimization loop with several
inner loops for the primal and respective adjoint iterative ow solvers. For the problems considered here,
this two loop approach is broken up by only performing a limited number of solver and adjoint iterations
to compute the derivatives needed in (12). Thus, optimality of the design and feasibility of the ow state is
computed simultaneously, thereby greatly reducing the wall-clock runtime.

III.B. Hessian Approximation

Crucial for the performance of one-shot is having a good approximation of the reduced Hessian operator B.
A natural choice would be the shape Hessian of the problem. However, shape Hessians are fairly complex
objects even for moderate problems. While they have been successfully used in solving shape optimization
problems numerically,29,30 it is often much more convenient to use a suitable approximation, especially in
cases where the Hessian is not positive de�nite away from the optimum.

An analysis of the operator symbol of the Hessian for the Euler shape optimization problem conducted
in17,18 suggests it is best to approximate the Hessian by an anisotropic operator in chord and span direction,
where chord-wise, the Hessian closely resembles a di�usive operator like the Laplacian. Due to this fact and
the previous successes of gradient smoothing techniques,19,20 we approximate the Hessian according to

B � ���� + I; (13)

where �� is the tangential Laplace operator on the curved two dimensional aircraft surface mesh and I is
the identity. Further studies of shape Hessians for a variety of other uid dynamics problems can be found
in.23,25 During computation, the tangential Laplacian is computed as described in.31 The e�ects of this
preconditioning on the drag gradient of the Onera M6 wing can be seen in �gure 1. As discussed in21,25 on
an experimental level, such a Hessian approximation has the potential for mesh independent optimization
convergence.
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Figure 1. E�ects of the Laplace{Beltrami preconditioner (13) on the drag gradient for � = 0; 10�2; 10�1; 100 on the Onera
M6 wing.

IV. Onera M6

The �rst problem under consideration is the shape optimization of an Onera M6 wing at cruise condition
of Mach 0:83 and 3:01� angle of attack. In this con�guration, the computed lift coe�cient is CL = 2:762�10�1,
which is to be kept constant. The inital drag coe�cient is given by CD = 1:058�10�2. Primal and adjoint ow
state are computed using vertex centered �nite volumes with the DLR ow solver TAU. The mesh consists of
18; 285 surface mesh nodes. Since the volume mesh is perturbed using the algebraic mesh deformation tool
that is part of the TAU suite, the planform had to be �xed as otherwise the deformation tool was very often
unable to make volume meshes of satisfying quality. Due to this reason, the surface mesh nodes were also
moved in x3-direction only, meaning the gradient was evaluated according to equation (10) for a movement
of each node in direction of the normal in the current optimization iteration at that node. However, before
any actual mesh deformation is applied, there is a projection of this gradient with respect to a movement in
x3-direction only. We therefore expect a better performance of formula (10) when more sophisticated mesh
deformation tools are available. Fixing the planform reduces the e�ective number of unknowns for the shape
to 16; 792. Since most inviscid meshes feature a numerically sharp trailing edge with potentially in�nite
curvature, any possible problems stemming from this point are therefore also circumvented. Counting the
�eld nodes also, there are 541; 980 unknowns for the Euler uid state. In order to prevent a degeneration of
the shape, the total volume is to be kept constant in addition to preserving the lift coe�cient.

Initial and optimized airfoil cuts are shown in �gure 4 and the respective CP distributions are shown
in �gure 3. The optimized Onera M6 wing has a drag coe�cient of CD = 7:567 � 10�3, which corresponds
to an improvement of 28:47%. Also, the optimized wing has a lift coe�cient of CL = 2:723 � 10�1, which
means the lift was preserved up to 1:41%. The optimal solutions where found after 70 one-shot iterations
with 10 inner iterations in each adjoint ow solver and 20 iterations in the primal. Looking at the pressure
distributions in �gure 3, one can see that the optimized wing is indeed shock free over the complete span.
Since the cross-sectional thickness of each airfoil was not �xed, but only the total volume of the wing, one
can see that the optimized wing has become thinner at the root and thicker towards the tip, which is less
than prefect from a structural point of view. However, a similar shift of thickness to the tip did not occur for
the VELA case and there was no mathematical constraint to account for structural requirements, making
this acceptable for the purpose of the present work.

V. VELA Blended Wing-Body

The second test is the optimization of the \Very E�cient Large Aircraft (VELA)", a blended wing-body
concept. The tetrahedral mesh consists of 115; 673 surface mesh points, of which 113; 956 remain as design
unknowns after �xing the planform. The mesh has a total number of 1; 061; 433 nodes in the �eld. The ow
and both the adjoints for lift and drag are again computed using the DLR ow solver TAU. As in the Onera
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Figure 2. Initial and optimized Onera M6 wing.
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Figure 3. Pressure distributions across airfoil cuts for the initial and optimized Onera M6 wing. Total span wise extend
is x2 2 [0; 15:2].
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Figure 4. Airfoil cuts for the initial and optimized Onera M6 wing. Total span wise extend is x2 2 [0; 15:2].
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M6 case, the gradient is again computed according to equation (10). After one update of the aircraft surface,
the new volume mesh is created by deforming the mesh from the previous iteration using the algebraic mesh
deformation tool that is part of the TAU software. Due to this tool having di�culties in deforming the
volume mesh for perturbations of the type Vk(xi) = n(xk)�i;k with linear interpolation in between points,
the gradient is again projected for a movement in x3-direction only.

The initial and optimized aircraft is shown in �gure 5. Some CP plots are shown in �gure 6 while the
respective airfoil cross-sections are presented in �gure 7. At 1:8� angle of attack and a cruise condition
of Mach 0:85, the initial con�guration has a drag coe�cient of CD = 4:770 � 10�3 and a lift coe�cient of
CL = 1:787 � 10�1. The optimal solution is found after 151 one-shot iteration steps with 40 inner iterations
for each of the two adjoint solvers and 80 inner iterations for the primal ow solver. The optimized design
has a drag coe�cient of CD = 3:342 � 10�3 and a lift coe�cient of CL = 1:775 � 10�1. In total, drag was
reduced by 29:93%, while lift was almost precisely kept with a relative loss of only 0:67%. The total amount
of time needed for each shape update is around 390 seconds including the evaluation of the shape derivative
for all 113; 956 design unknowns and one solution of the surface Laplace gradient smoothing operator. The
precise timings are shown in table 1. Note that the timings do not exactly add up to 390, as some servicing

Operation Time in seconds

Volume mesh deformation 36
Dual mesh construction and partitioning 49
Curvature computation 4
Primal ow solver (80 iterations) 101
Adjoint ow solver (drag, 40 iterations) 57
Adjoint ow solver (lift, 40 iterations) 57
Shape derivative evaluation 26
Derivative of volume constraint 4

Table 1. Time spent during each VELA optimization step

steps and the solve with the surface Laplacian are not accounted for. The ow and adjoint solvers were
running on four cores of an AMD Phenom II 2.8 GHz PC, while the other steps were computed on one core
only.

Looking at �gure 5 and the CP plots in �gure 6, one can see that the shock wave on the upper and lower
side of the wing could be removed for almost the whole span, while the pressure distribution of the fuselage
is also somewhat improved. Observing the airfoil cuts in �gure 7, one can see that during optimization, the
twist of the wing-fuselage near the root has has slightly decreased, while the twist of the wing near the tip
as increased. However, with such a �ne parameterization available, the optimizer can achieve a shock-free
or almost shock-free aircraft geometry that is very close to the original layout, which appears to be very
bene�cial for the actual design process, because usually, larger deformations for improving aerodynamics are
often problematic from a structural point of view. This is especially true if the actual design process of the
aircraft is already in a more advanced state.

VI. Outlook: Viscous Fluids

The extension of the shape optimization technique presented here to also include viscosity is straight
forward and preliminary theoretical studies for the compressible laminar Navier{Stokes equations can be
found in.21 The actual application to viscous compressible uids is part of current research. The situation
becomes somewhat more delicate when turbulent ows are considered. Most of the standard turbulence
models have elements for which a formal derivation of the continuous adjoint equation or the partial shape
derivative is not straight forward. A good example would be the wall-distance functions of the Spalart{
Allmaras turbulence model or some of the boundary conditions in the k-� and the k-! model. While these
di�culties can easily be circumvented by considering a frozen the eddy viscosity, there are also reports of
successful uses of analytically adjointed turbulence models.32 Given the fact that for example the partial
derivative of the wall-distance functions or even the complete turbulent ow solver could also be treated
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Figure 5. Initial and optimized VELA aircraft. Black lines indicate where the CP plots and airfoil cuts are computed.
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Figure 6. Pressure distributions across airfoil cuts for the initial and optimized VELA aircraft. Total span wise extend
is x2 2 [0; 48:5].
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Figure 7. Airfoil cuts for the initial and optimized VELA aircraft. Total span wise extend is x2 2 [0; 48:5].
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e�ciently on a discrete level using e.g. algorithmic di�erentiation,33 the shape optimization method presented
here appears to be also applicable to turbulent ows, although the derivation is probably not straight forward
and might require some form of hybridization.

VII. Conclusions

Large scale aerodynamic shape optimization for the compressible Euler equations in three dimensions is
considered. By using the Hadamard form of the shape gradient, a sensitivity information for the aerodynamic
forces can be computed extremely e�ciently, such that each surface mesh node position can be used as a
design parameter. Being an analytic exact surface expression, the partial derivatives of the mesh deformation
tool and the mesh sensitivity Jacobians are not required. Using these shape gradients as the reduced gradients
in a one-shot optimization strategy creates a shape one-shot method for which the Hessian is approximated
using the surface or tangential Laplace operator. Feasibility of the method for large scale aerodynamic
problems is shown through the optimization of an Onera M6 wing with 16; 792 unknowns of the shape and
the optimization of the VELA blended wing-body concept aircraft using 113; 956 surface mesh node positions
as design parameters.
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