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The present study is one of the first attempts to exploit the GOAHEAD data base to perform a code-to-
code evaluation on complete helicopter aerodynamics. The numerical results of two GOAHEAD partners,
the German Aerospace Center (DLR) and Politecnico di Milano (PoliMi) are presented and compared
to experimental measurements. The study also addresses an evaluation of two different approaches to
predict helicopter flows. The first, applied by DLR, accounts for rotor trim and elastic effects by weak
fluid-structure coupling. The PoliMi approach, on the other hand, enforces a prescribed kinematics, taken
directly from the experiment, on a rigid blade. The simulations refer to a complete helicopter wind-
tunnel model, featuring a scaled NH90 fuselage, the ONERA 7AD main rotor, a scaled BO105 tail rotor, a
rotor hub and a pylon, all located inside the 8 m x 6 m test section of the DNW low-speed wind tunnel.
The flight conditions correspond to cruise flight at Ma = 0.204 and fuselage attitude o = —2.5°. The
comparisons demonstrate the capability of present unsteady RANS solvers to predict flow fields around
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1. Introduction

Computational Fluid Dynamics (CFD) has evolved as a predic-
tion tool in the helicopter research and development field over the
past two decades. Application of CFD to the simulation of viscous
flow over individual components of the aircraft, such as the fuse-
lage and the rotor, was carried out successfully [30], demonstrating
the usefulness of CFD in the early design phase of the aircraft.

To consider the complete rotor-fuselage configuration has been
however much more challenging, because of: i) the geometrical
complexity and the resulting grid requirements, both in terms
of dimensions and generation effort; ii) the need to handle the
relative motion between rotor blades and fuselage, thus requir-
ing sophisticated numerical techniques, like the overlapping grid
Chimera method [1] or the sliding mesh approach [32].

For these reasons early attempts focused on either the simula-
tion of a realistic fuselage geometry coupled with a steady actuator
disk model of the rotor (see [27] for a code-to-code comparison),
or the simulation of a fully unsteady rotor flow over a simplified
shape fuselage, like the Georgia Tech experiment [19] or the ROBIN
test case [7,15,33].

Simulations of the viscous, fully unsteady flow over a complete
helicopter configuration of industrial relevance have been carried
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out only very recently. Renaud et al. [26] presented a compari-
son with experimental pressure measurements for a Dauphin 365N
model in which the fenestron tail rotor was not included. In the
same publication the NH90 helicopter, with both main and tail
rotors, was also simulated, although in this latter case no experi-
mental validation was possible. The BO105 complete configuration
at wind-tunnel model scale has been simulated in [18], where a
limited comparison with experimental unsteady pressures over the
fuselage and both rotors was presented. These early attempts of
considering the complete helicopter were carried out using multi-
block, structured grids and the Chimera method, with rigid blades
and prescribed rotor kinematics. A noteworthy comparison of dif-
ferent computational methodologies using prescribed kinematics is
reported in [24], where overset grid and unstructured grid solu-
tions were evaluated.

One of the reasons that prevented a careful validation of the
present helicopter CFD capability has been the lack of a suitable
experimental database. This motivated the launch in 2005, by a
consortium of leading research institutes and helicopter manufac-
turers, of the EU project GOAHEAD [22]. The main objectives of
the project were to create an experimental database for the vali-
dation of CFD codes in helicopter related applications, and to apply
this database to validate modern CFD tools. The measurements
were successfully carried out at the German-Dutch low speed
wind tunnel (DNW) in spring 2008. The GOAHEAD test campaign
included detailed steady and unsteady surface pressure measure-
ments on the helicopter fuselage and rotors, transition locations,
wind-tunnel inflow velocity and turbulence kinetic energy levels
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and PIV velocity field measurements for a wide array of flight and
rotor loading conditions. A code validation activity was carried out
separately within the project. The blind validation computations
from several partners were briefly documented in [6].

Elastic deformation of loaded helicopter main rotor blades is
undoubtedly a major factor affecting the performance of the rotor.
Torsional, flapping and lead-lag oscillations alter the direction of
the flow relative to the blade, leading to a deviation in rotor forces
with respect to its performance under rigid blade assumption [23].
There have been two main approaches to include blade elasticity:
weak (or loose) coupling or strong coupling with a flight and struc-
tural mechanics tool; both options increase the complexity and
computational costs considerably. Nevertheless, the most recent
advances in helicopter CFD account for complete helicopter con-
figurations with weak CSD/CFD coupling. In [4] the two-rotor CH-
47 helicopter was considered, while the GOAHEAD wind-tunnel
model was simulated in [12,17]. A preliminary comparison of the
trimmed blind calculations for the GOAHEAD model with experi-
ments was presented in [16].

Obviously, the significance of fluid-structure coupling increases
as the stiffness of the blades decreases. For moderately loaded
stiff blades, as those employed in model rotor tests, it is not clear
how far elastic effects may affect the accuracy of the numerical
predictions, and whether these differences justify the additional
computational overhead. This consideration motivated the code-to-
code comparison reported in the present work. The contributions
of DLR and PoliMi to the post-test validation activity of GOAHEAD
are reported. The numerical predictions are evaluated against the
GOAHEAD experimental database to assess the ability and accuracy
of DLR and PoliMi URANS solvers to predict the complex flow phe-
nomena related to helicopters. Both codes rely on similar overset
grid methods, but differ in the treatment of the rotor blade kine-
matics: while a weak fluid-structure coupling to trim the rotor is
applied by DLR, in PoliMi approach the blade motion is directly
taken from the experiment and the blade are considered rigid. In
this way, the effect of elastic deformation on the stiff ONERA 7AD
blade may be assessed by comparison of the two different simula-
tion approaches.

The numerical methods are briefly described in Section 2, while
some details on the simulated helicopter model, computational
grids and flow conditions are given in Section 3. Section 4 is ded-
icated to the numerical results and their comparison with the ex-
perimental data. Finally, the conclusions are listed in the fifth and
last section of the paper.

2. Numerical methods

The numerical simulations presented and discussed hereinafter
are based on the time-accurate solution of the Reynolds (Favre)
averaged Navier-Stokes equations in three dimensions by means
of two CFD block-structured, finite volume codes: FLOWer [20,21]
by DLR and ROSITA [5] by PoliMi.

Several features of the numerical methods employed in the
present study are similar among the two solvers: cell-centered fi-
nite volume spatial discretization on multi-block structured grids,
formulated as to account for moving and deforming meshes sat-
isfying the geometry conservation law, central discretization of
the viscous fluxes, implicit time integration using the dual-time
stepping method, moving Chimera technique to facilitate the grid
generation process and represent the motion of the blades in the
simulation, characteristic-type boundary conditions, parallelization
making use of the MPI framework.

There are however some noticeable differences in the presented
simulations, regarding the spatial discretization of the convective
fluxes, the turbulence model, the details of the adopted Chimera
algorithm and the fluid-structure coupling.

2.1. Convective fluxes

In the present FLOWer simulations, the convective fluxes are
discretized with second order central differences. Third order nu-
merical dissipation is added to the convective fluxes to ensure
numerical stability. These dissipative contributions are reduced to
first order when a shock is detected. Smooth transition from the
third to the first order is realized by linear combination of both
terms.

The ROSITA solver makes use of the Roe’s scheme. Second or-
der accuracy is obtained through the use of MUSCL extrapolation
supplemented with a modified version of the Van Albada limiter
introduced by Venkatakrishnan [34].

2.2. Turbulence model

FLOWer contains a large array of statistical turbulence mod-
els, ranging from algebraic and one-equation eddy viscosity mod-
els [28] to seven-equation Reynolds stress model. In this work a
slightly modified version of Wilcox’s two-equation k-w model is
used [35]. Unlike the main flow equations, Roe’s scheme is em-
ployed to compute the turbulent convective fluxes.

The one-equation Spalart-Allmaras model [31] is used in the
ROSITA simulations.

2.3. Chimera algorithms

The implementation of the Chimera approach in FLOWer fol-
lows the ideas of Benek [2]. Theoretically, an unlimited number
(up to the code dimension limits) of hierarchies of relative motions
can be specified in time, and applied to the different elements of
the geometry. Each level of the hierarchy defines a separate ref-
erence frame in which motions can be specified independently of
the inertial frame of reference, thus allowing any combination of
translation and rotation motions to be realized by a series of sim-
ple co-ordinate transformations. The search for cells, required for
interpolation, is performed by an Alternating Digital Tree (ADT)
search method. The hole cutting procedure does not imply any hi-
erarchical mesh dependencies: to mark points being inside a solid
body, a simple auxiliary grid which encloses the solid body must
be provided by the user. All points of the grid inside the auxiliary
grid are excluded from the flow calculation. This leaves uncon-
trolled the extent of the overlapping regions within the domain.
Special corrections are applied to overlapping regions located close
to solid walls [29].

PoliMi’s approach has a similar generality about the relative
motion of the solid bodies, but follows a different approach for
hole cutting and tagging, which is derived from that originally
proposed by Chesshire and Henshaw [9], with modifications to im-
prove robustness and performance. The tagging procedure accounts
for a hierarchical grid ordering and attempts to minimize the over-
lap regions. To speed up the search of donor points, both oct-tree
and ADT data structures are considered.

Both codes employ non-conservative tri-linear interpolation to
transfer information among the different grids. For integration of
the aerodynamic forces on overlapping surface grids, a special
treatment proposed by Chan and Buning [8] is used.

2.4. Fluid-structure coupling

This feature represents the main difference in the simulation
approaches used in the present study. While the ROSITA computa-
tions are run with a rigid blade prescribed kinematics, measured
during the experimental tests, the FLOWer results are gathered us-
ing a weak CSD/CFD coupling.
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Hight above tunnel floor
in zero pitch = 3.5 m

Fig. 1. Left: Front view of the GOAHEAD model and experimental setup inside the wind tunnel. Right: Overview of the computational model showing its main components.

Wind tunnel section not shown.
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Fig. 2. Surface grid on the model and wind tunnel walls. Left: DLR grid. Right: PoliMi grid.

In the DLR computations, the rotor was trimmed using the
stand alone flight mechanics tool HOST (Helicopter Overall Sim-
ulation Tool) [3] to generate the experimental weight, lateral and
propulsive force coefficients. The resulting rotor controls and elas-
tic deformation were used to modify the blade surface geometry
following the approach presented in [10,11,13]. The process, de-
scribed in detail in [12,17], is repeated until the variations in elas-
tic blade deformation and rotor control angles have fallen below a
user defined tolerance.

3. Computational details and experimental conditions

The GOAHEAD helicopter model considered in the present work
consists of a 41 m long NH90 fuselage, the ONERA 7AD main ro-
tor, with blade radius of 2.1 m, a reduced scale BO105 tail rotor
and a main rotor hub, which is simplified to a cylindrical element
and an elliptical fairing. Both main and tail rotors are represented
by isolated blades. The tail rotor hub is not included in the com-
putational model.

The fuselage shape reproduces the complex geometrical details
of the engine exhausts. It corresponds to the actual wind-tunnel
model geometry which has been carefully measured before the test
campaign.

The simulations consider the helicopter model installed within
the 8 m x 6 m, 20 m long test section of the DNW wind tunnel,
as shown in Fig. 1. The model is mounted on a faired support. It
should be noted that the main rotor rotates in clockwise direction

Table 1

Summary of DLR and PoliMi Grid dimensions.
No. of points (x10%) PoliMi DLR
Fuselage 17.4 18.1
Main rotor blade (x4) 1 0.87
Tail rotor blade (x2) 0.5 0.35
Rotor hub 2 2.12
Strut 1.3 0.9
Wind tunnel 1.3 0.3
Total (Mil. point) 27 25.6

as seen from above. The upper vertical tail rotor blade is advancing
and the lower vertical blade is retreating.

Among the several flight conditions reproduced during the
GOAHED tests, this work consider the cruise/tail shake condition
that corresponds to a forward flight at Mach number M = 0.204,
advance ratio n = 0.33 with —2.5° fuselage pitch angle. Careful
measurements of the inflow characteristics have been carried out
during the tests to achieve well defined boundary conditions for
the simulations [25].

3.1. Numerical grids

Multi-block grids around the different elements were subdi-
vided into 10 Chimera components: fuselage, rotor hub, four main
rotor blades, two tail rotor blades, model strut and wind tunnel
walls. Fig. 2 shows the surface grid for the complete helicopter
configuration, while Table 1 lists the major characteristics of the
numerical grids used.
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Fig. 3. Normalized force and moment coefficients for the complete fuselage configuration. Red curves: DLR. Blue curves: PoliMi. Black curves: experiment. (For interpretation
of the references to color in this figure, the reader is referred to the web version of this article.)
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Fig. 4. Normalized force and moment coefficients for the main rotor. Red curves: DLR. Blue curves: PoliMi. Black curves: experiment. (For interpretation of the references to

color in this figure, the reader is referred to the web version of this article.)

Table 2
Summary of DLR and PoliMi computational parameters.
PoliMi DLR

Azimuthal step (°) 1 1-2
N. of time steps in pseudo-time 50 50-100
CFL number 4 55
CSD/CFD iterations 0 4
N. of main rotor revolutions 4 5
N. of processors 240 8
Type of processor Xeon 5660 NEC-SX8
Total memory requirement (GB) 25 30
CPU-time per revolution (h) 47 80

3.2. Computational details

The most relevant computational details for the two solvers are
summarized in Table 2. In the coupled DLR simulation some pa-
rameters were modified during the iterative process: for instance
the azimuthal step was kept at 2° for the initial phase of the itera-
tion and then modified to 1°. The number of time steps employed
in pseudo-time corresponds to a reduction of the residual of 2-3
orders of magnitude.

4. Results

Due to the complexity of the unsteady flow around the com-
plete helicopter model, the analysis and comparison of the results
is not a trivial task. We will then proceed towards a direction

of greater detail, going from the examination of the global loads
down to the investigation of some features of the flow field in lo-
calized regions.

4.1. Global loads

Global force and moment coefficients are reported in normal-
ized form, due to contractual obligations. The actual coefficients
are scaled with arbitrary reference values. The coefficients refer to
wind tunnel, i.e. wind axes, for both fuselage and main rotor loads.
Measurements are phase averaged over 32 rotor revolutions.

Normalized coefficients for the complete fuselage configuration
(cabin, engine casing, tail boom, tail fin, horizontal stabilizer and
rotor head) are shown in Fig. 3. Both simulations yield very simi-
lar results, with some noticeable differences with the experimental
data. The experimental drag coefficient is characterized, in addi-
tion to a 4/rev frequency, by a 2/rev occurrence, with peaks at
¥ =130° and ¥ = 310°, that is not represented by the numerical
results. This occurrence seems due to the interaction with the main
rotor, which propulsive force (see Fig. 4a) shows a similar 2/rev
component with a 20° phase advancement. The negative lift of
this configuration is slightly underestimated by both simulations.
The numerical yawing moment results are dominated by the 4/rev
influence of the main rotor, while the experimental signal shows
mainly the effect of the tail rotor: the rotation speed of the two-
blade tail rotor is fivefold the main rotor rotation speed, so that
the tail rotor characteristic frequency is 10/rev.
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Fig. 5. Location of the fuselage cross-sectional planes and unsteady sensor positions
used for comparison amongst CFD and experiment.

Normalized loads for the main rotor are reported in Fig. 4. Also
in this case the two codes achieve very similar results. The thrust
level is underestimated, with respect to the experimental values.
However the agreement for torque is fairly good. Quantitatively,
the calculated main rotor power reaches 99.7% of the experimental
value for the DLR results, while only 85% for PoliMi results, thus
indicating that the rigid blade assumption underestimates power
consumption. Fluid-structure coupling considerably improves the
power prediction with an error of 0.3% only.

4.2. Pressure on fuselage

The fuselage is equipped with a total number of 130 unsteady
pressure sensors. The location of some selected sensors is depicted
in Fig. 5. Strong oscillations were found in the experimental pres-
sures [16], which in some cases are probably due to vibration of
the model inside the tunnel. The experimental data shown in the
forthcoming figures were obtained by averaging the pressure sig-
nals recorded for each azimuthal position over 130 revolutions.

One preliminary observation needs to be done on the compari-
son of the pressure time-histories on the fuselage. The simulations
reproduce carefully the actual wind-tunnel model geometry, as
measured. However, the actual location of the pressure sensors
on the model has not been measured during the test. The only
available information was the sensor location as defined on the
nominal model geometry, that used for the blind-test calculations.
Since actual and nominal geometries of the fuselage do not match
precisely, the extraction of the numerical results in correspondence
of the single sensor location has to be considered only approx-
imate, especially for those sensors that are placed in regions of
the body surface where strong spatial gradients are present, like
the fin leading edge for instance. This inaccuracy is reduced when
comparing pressure sectional distributions. Furthermore, such a
problem is not encountered for the blade pressure sensors, since
their position is known accurately.

Fig. 6 compares the computed pressure signals with the exper-
iment for 12 selected sensors. Broadly good agreement between
measurements and computations can be observed for the sensors
on the nose (Fig. 6a) and on the windscreen (Fig. 6b and 6¢) re-
gions. The influence of the rotor is well captured in the computa-
tions in terms of frequency and phase. Note how the overpressure
due to the blade passage is larger at the upwind side of the wind-
screen (Fig. 6b), leading to an asymmetry of the pressure distribu-
tion. PoliMi results show slight underestimation of pressure on the

nose and the advancing blade side. Both sets of CFD results predict
higher pressure values on the retreating side (Fig. 6¢).

The pressure signals on the upper side of the tail boom, in
Fig. 6d and 6e, are still characterized by a strong influence of the
blade passage, i.e. feature a dominant 4/rev frequency, although
some higher frequencies are observed since the sensors are lo-
cated within the wake of the hub fairing. The raw experimental
data present however much higher oscillations, which are damped
out during the averaging process over the 130 revolutions. These
high frequency oscillations can be observed also in the numerical
results, especially on the advancing blade side. The average value
over one revolution is in fact well predicted by both codes. High
frequency oscillations are observed in the computations also on
the lower side of the tail boom (Fig. 6f and 6g). PoliMi results are
closer to the experiment on the advancing side as shown in Fig. 6f
but with strong overshoots of the peak values, while DLR results
follow the experimental trend but at a nearly constant offset. As
far as the average values are concerned, the agreement becomes
better on the retreating side (Fig. 6g).

The effect of the main rotor cannot be easily identified in the
tail fin signals depicted in Fig. 6h and 6i, due to strong interference
between the fuselage and main rotor wakes with the tail rotor and
tail fin. DLR results show however an evident 4/rev pattern. PoliMi
data is dominated by high frequency oscillation but remains close
to the measurements. It has to be noticed that for these sensors,
close to the fin leading edge, the approximation of the extraction
of the numerical results is the largest.

Fig. 6j-1 contains the pressure data on the advancing side
(Fig. 6j), symmetry plane (Fig. 6k) and the retreating side (Fig. 61)
of the back door. Inspection of the measured data reveals slight
decrease in average pressure from the advancing side towards the
retreating side (Fig. 6j to I). Pressure pulses are observed on the
advancing side sensor indicating influence of the rotor on the flow
in this region. The amplitude of the suction becomes almost uni-
form as the symmetry plane is approached and increases slightly
on the retreating side. A similar behavior cannot be observed in
the numerical data. DLR and PoliMi predictions overestimate the
pressure level and do not show any harmonic evolution with the
azimuth angle, but the influence of a turbulent wake.

Snapshots of surface pressure distributions along the fuselage
symmetry plane at several azimuth angles are illustrated in Fig. 7.
Accurate prediction of the rapid pressure drop on the leading edge
of the fuselage and the subsequent pressure recovery downstream
the mast fairing can be clearly seen in the figure. DLR and PoliMi
results show similar level of accuracy except in the nose and wind
shield areas where the DLR results are slightly closer to the ex-
perimental data. The pressure recovery zone downstream the mast
fairing is another area where differences in the numerical data can
be seen. The differences between the numerical results are how-
ever small.

In summary, we can conclude that both codes feature a fairly
good agreement, among themselves and with the experiments, on
the unsteady pressure distribution at the front part of the fuse-
lage. The comparison of the unsteady pressure signals in the aft
parts of the fuselage (tail boom, fin, back door), were a complex
turbulent wake take place, is less satisfactory, but it should be re-
membered that the reported experimental data are averaged over
130 rotor revolutions while the computed results are not. The dif-
ferences among DLR and PoliMi results - obtained with different
turbulent models - induce to put unsteady turbulence models un-
der scrutiny.

4.3. Pressure on rotors

Computed and measured pressure coefficients on the main ro-
tor blade are compared in Figs. 8 to 10. The figures respectively
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Fig. 6. Evolution of computed and measured pressure signals at selected locations on the fuselage - M = 0.204, ffyselage = —2.5°. Red curves: DLR. Blue curves: PoliMi.

Symbols: experiment. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

show the pressure at selected radial positions: r/R = 0.500, 0.825
and 0.975, for one main rotor revolution at azimuthal spacing of
30°, in order to represent all flow conditions encountered by the

blade. The unsteady pressure sensors were distributed on three
blades, but are gathered together to have a meaningful chordwise
distribution. For each blade a different color is used in the fig-
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Fig. 7. Comparison of computed and surface pressure coefficient at symmetry plane - M = 0.204, Ofyselage = —2.5°. Red curves: DLR. Blue curves: PoliMi. Symbols: experiment.
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

ures. The experimental data shown were averaged over 150 rotor
revolutions, but in this case the differences with raw data are min-
imal.

Qualitatively, the computations captured the pressure pattern
well over the whole revolution for the three radial locations. At the
inboard radial station, PoliMi pressure values are generally higher
than the DLR pressure on the suction side (Fig. 8). At r/R = 0.825,
Fig. 9, the computational results are very close to the experimen-
tal data. Apart from discrepancy on the suction side in the range

¥ =30° to 90°, and at ¥ = 150°, the numerical results match
the measurements very well. Similar good agreement is found in
Fig. 10 for the radial location r/R = 0.975. A reduction in the ad-
vancing range discrepancy found in Fig. 9 is observed.

The differences between DLR and PoliMi results diminish with
radial distance, where instead the largest differences between the
two modeling approaches should be expected. The elastic effects
are therefore not large and were most probably compensated in
PoliMi’s calculations by a different blade kinematics, which leads
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Fig. 8. Computed and measured main rotor sectional pressure at r/R = 0.500 over a complete revolution. Red curves: DLR. Blue curves: PoliMi. Symbols: experiment. Symbols
of different colors denote different blades. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

finally to a similar local effective angle of attack. Fig. 11 reports the
normalized pitch and flap combinations for the two calculations.
We recall that PoliMi simulations were run using the measured
kinematics, while in DLR simulations the pitch and flap variations
are obtained from the computed trim and blade dynamics. It is
noticeable how the computed DLR pitch is rather similar with the
experimental one, while somewhat larger differences can be ob-
served in the flap motion.

The good agreement found for the unsteady pressure on the
main rotor is confirmed plotting the sectional loads versus az-
imuth, see Fig. 12, where numerical and experimental results are
reported. The numerical sectional loads, extracted from the com-
puted pressure distributions, are not fully consistent with the ex-
perimental data, since during the integration all available pressure
values are utilized and not only those gathered at the same chord-
wise locations than the experimental sensors. Despite some quan-
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Fig. 9. Computed and measured main rotor sectional pressure at r/R = 0.825 at over a complete revolution. Red curves: DLR. Blue curves: PoliMi. Symbols: experiment.
Symbols of different colors denote different blades. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

titative differences, the qualitative behavior is well represented by
both codes during the whole blade revolution.

Tail rotor pressures at the radial locations r/R = 0.97 are pre-
sented respectively in Fig. 13. Similar to the main rotor data, sec-
tional pressure plots are shown with azimuthal spacing of 30°. DLR
computations were performed using the experimental pitch values
while the commands for the flap motion were taken from the blind
test matrix. This obviously impaired the accuracy of predictions be-
low the level of the blind test computations reported in [16]. On
the other hand, PoliMi adopted the experimental values for both

pitch and flap control angles, but this did not lead to a noticeable
better agreement with the experimental data. It has to be noted
that the tail rotor simulations were surely under-resolved in time,
since the tail rotor has a fivefold rotational speed with respect to
the main rotor.

4.4. Flow field

The complexity of the flow field around the complete helicopter
can be appreciated from a qualitative visualization, using the Q-
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Fig. 10. Computed and measured main rotor sectional pressure at r/R = 0.975 over a complete revolution. Red curves: DLR. Blue curves: PoliMi. Symbols: experiment.
Symbols of different colors denote different blades. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

criterion [14], of the rotor and hub wakes as shown in Fig. 14.
Note that the value of the iso-contour is optimized based on PoliMi
results.

Three-dimensional velocity field PIV data were gathered during
the experimental campaign [25] in several cross-planes, described
in Fig. 15. The data were ensemble averaged at a given azimuth
over 10 to 100 images, depending on the quality of the images
themselves. The out-of-plane vorticity component was computed
during post-processing. For the cruise test case here analyzed,

only PIV1 (above the tail boom) and PIV2 (behind the back door)
planes were considered, at different X distances along the fuselage
axis.

To analyze the hub wake, we will consider a PIV1 plane ap-
proximately 1 meter behind the rotor hub. Unfortunately, PoliMi
results are not available at the same azimuthal angles at which ex-
perimental data are provided; therefore we will first compare DLR
results with experiments and then with PoliMi computations at a
nearby azimuth. Figs. 16 and 17 plot the out-of-plane component
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of the vorticity and velocity vectors at ¥ = 22.5°, together with
pseudo-stream traces. The structure of the hub wake predicted by
DLR computations looks more asymmetric than the experimental
one: since the measured data are ensemble averaged, this seems
to imply a strong unsteadiness of the wake itself. It has to be
noticed that the trace of the passing blade wake, clearly seen in

the upper part of Fig. 16, is well resolved by the computations.
A code-to-code comparison at ¥ = 30° is carried out in Figs. 18
and 19. Looking at the DLR velocity results at the two azimuthal
values (Figs. 17 and 19), it can be stated that the computed flow
is evolving smoothly. Both codes manage to capture the passing
blade wake and the asymmetry of the hub wake, but show also
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Fig. 13. Computed and measured tail rotor sectional pressure at r/R = 0.97 at for

a complete revolution. Red curves: DLR. Blue curves: PoliMi. Symbols: experiment. (For

interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

noticeable differences in the flow field. It has to be observed that
the vorticity plots are affected by the difficulty of the plotting pro-
gram to deal with a region of overlapping meshes. The PoliMi grids
depicted on the right side of Fig. 18 are an example of how the
blade grid is blanking out the fuselage grid in the overlapping re-
gion.

Finally, we consider two PIV2 cross-sectional planes behind the
fuselage back door, at distances respectively of 1.16 and 1.46 me-
ters from the hub. Plots in Figs. 20 and 21 show again the out-
of-plane velocity component together with pseudo-stream traces.
The wake here is characterized by the presence of two well or-
ganized counter-rotating vortices that are fairly well resolved by
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Fig. 14. Wake visualization with Q-criterion. Left: PoliMi results. Right: DLR results.
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Fig. 15. Steady and unsteady pressure sensors locations on the fuselage and PIV
measurement position.

the numerical simulations, although quantitative differences re-
main.

5. Conclusions

Results of the simulations of a complete helicopter flow filed,
performed by DLR and PoliMi within the GOAHEAD project, were
examined by comparison with experimental data. The comparison
means to assess the capability of present CFD codes in predicting

the aerodynamic loading of a full helicopter configuration and to
ascertain the importance of elastic effects on the predictions, since
different models were utilized: weak fluid-structure coupling was
iteratively applied by DLR to trim the main rotor while PoliMi ap-
plied the experimental rotor controls with rigid blades.

Good agreement between computed and measured pressure
signals on the front upper part of the fuselage in terms of phase
and magnitude could be found. On the tail boom, tail fins and
fuselage back door a less satisfactory comparison was observed.
Both CFD approaches predicted fuselage surface pressure with sim-
ilar accuracy, indicating a negligible influence of the modeling ap-
proach on the fuselage loads.

Some discrepancy between DLR and PoliMi was found on the
chordwise pressure distribution at the inboard stations of the main
rotor blades. However, the observed differences decreased rapidly
in the direction of the blade tip. Furthermore, the agreement of
sectional loads with experimental data is rather satisfactory.

The lack of accurate description of the tail rotor motion resulted
in an evident mismatch between the CFD results and the experi-
mental data.

Fluid-structure-flight mechanics coupling is an essential ap-
proach for accurate prediction of main rotor power. Coupled sim-
ulation predicted the power with an accuracy of 0.3%, while rigid
blade assumption predicted 15% less power.
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Fig. 16. Out-of-plane vorticity component and pseudo-stream traces in a PIV1 plane at X =0.970 m, v =22.5°: DLR results (left), experiments (right).
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Fig. 20. Out-of-plane velocity component and pseudo-stream traces in a PIV2 plane at X = 1.160 m, 1y = 30°: DLR results (top left), PoliMi results (top right), experiments
(bottom).
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Fig. 21. Out-of-plane velocity component and pseudo-stream traces in a PIV2 plane at X = 1.463 m, y = 30°: DLR results (top left), PoliMi results (top right), experiments

(bottom).
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