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ABSTRACT

Super-resolution imaging via compressed sensing (CS) based
spectral estimators has been recently introduced to synthetic
aperture radar (SAR) tomography. In the case of partial scat-
terers, the mainstream has so far been twofold, in that the
tomographic reconstruction is conducted by either working
directly with multiple looks and/or polarimetric channels or
by exploiting the corresponding single-channel second order
statistics. In this paper, we unify these two methodologies
in the context of covariance fitting. In essence, we exploit
the fact that both vertical structures as well as the unknown
polarimetric signatures can be approximated in a low dimen-
sional subspace. For this purpose, we make use of a wavelet
basis in order to sparsely represent vertical structures. Addi-
tionally, we synthesize a data adaptive orthonormal basis that
spans the space of polarimetric signatures. Finally, we vali-
date this approach by using fully polarimetric L-band data ac-
quired by the E-SAR sensor of the German Aerospace Center
(DLR).

Index Terms— Compressed sensing (CS), distributed CS
(DCS), polarimetry, synthetic aperture radar (SAR) tomogra-
phy, wavelets, kronecker basis.

1. INTRODUCTION

Multibaseline polarimetric measurements allow us to resolve
a vertical structure via well-established synthetic aperture
radar (SAR) imaging principles. Also, they provide an ad-
ditional dimension to further describe the response of illu-
minated objects, which, in the case of partial scatterers, is
commonly captured in the form of a polarimetric covariance
matrix. However, the achievable resolution of conventional
estimators is highly dependent on the extension of the el-
evation aperture. Moreover, the sampling rate dictated by
the well-known Nyquist frequency imposes an additional
requirement, namely dense, regular sampling [1].

Recently, alternative sparsity driven non-linear recon-
struction algorithms have been put forward in order to attain
low sidelobe and ambiguity levels with a reduced number of
irregular passes. In particular, the authors in [2] extended the

work in [3,4] and proposed a compressed sensing (CS) based
joint reconstruction technique that takes advantage of pos-
sible intersignal structural correlations between neighboring
azimuth–range pixels as well as between polarimetric chan-
nels. Also, a single-channel covariance fitting methodology
was introduced in [5], that employs sparse representations of
the vertical backscattered power in the wavelet domain. In
this paper, we combine all these lines of research and intro-
duce the concept of polarimetric signature awareness, thus
not only exploiting structural correlations, but also taking
advantage of the fact that polarimetric signatures, as charac-
terized by the so-called coherency/covariance matrix (from
now on referred to as polarimetric covariance matrix) [6],
can be approximated in a low dimensional subspace [7]. For
this purpose, we form a data adaptive orthonormal basis that
spans the space of polarimetric signatures.

The remainder of the paper is organized as follows. In
Section 2, we formulate the inverse problem from a multi-
baseline polarimetric covariance matrix perspective in such a
way that we are able to decouple the scattering mechanisms’
structures from their polarimetric signatures. Subsequently,
Section 3 revisits the concept of joint sparse reconstruction.
Section 4 casts the covariance fitting problem as an instance
thereof and reformulates it so as to be able to restrict the po-
larimetric signatures to lie in a low dimensional subspace. In
Section 5, we present results obtained using fully polarimet-
ric L-band data acquired by one of the airborne sensors of
the German Aerospace Center (DLR), namely E-SAR. Lastly,
Section 6 concludes the paper.

2. PROBLEM FORMULATION

Let Ki,j ∈ Cm×m be the multibaseline covariance matrix re-
sulting from m parallel passes [1, 8] and two polarimetric
channels i and j at a specific azimuth–range position; with
1 ≤ i, j ≤ 3. For example, i and j could denote the hh and hv
channels, respectively. Then, we can construct D ∈ Cm2×9

as follows

D =
[
vec(K1,1) vec(K2,1) · · · vec(K3,3)

]
(1)



where vec(·) is the matrix to vector operator. Additionally,
under suitable assumptions [5,7,9], D can be written out as a
sum of contributions of S scattering mechanisms (SMs)

D = Φ

S∑
s=1

θsC
T
s = ΦZ (2)

where Φ ∈ Cm2×n is a partial Fourier matrix, θs ∈ Rn≥0 ac-
counts for the vertical power distribution of the sth SM (i.e.
its vertical structure), Cs ∈ C9 refers to the polarimetric sig-
nature of the sth SM (which can be rearranged into a 3 by 3
polarimetric covariance matrix), and hence Z ∈ Cn×9. Ac-
cordingly, we will focus on reconstructing Z, albeit always
driven by the structure conveyed by θs and Cs. Further, even
though (2) clearly neglects any source of decorrelation, this
aspect will be incorporated as a part of the tomographic re-
construction (see Section 4).

3. MULTISIGNAL CS

Multisignal CS enables the joint recovery of signal ensem-
bles by exploiting intersignal structural correlations. It gen-
eralizes the concept of a signal being sparse to the concept
of an ensemble of signals being jointly sparse [10, 11]. In
particular, it proposes taking linear measurements of the form
B = AX + Y ; where X ∈ Cn×L indicates L sparse sig-
nals of interest that exhibit common support, A ∈ Cm×n is
a sensing matrix with m usually much smaller than n, and
Y ∈ Cm×L is an unknown perturbation term. The theory as-
serts that, under suitable conditions [2, 10, 12], X can be re-
covered by mixed norm minimization

min
X̃

∥∥∥X̃∥∥∥
2,1

subject to
∥∥∥AX̃ −B∥∥∥

F
≤ ε (3)

where ε is an upper bound on the perturbation level, ‖·‖F is
the Frobenius matrix norm, and ‖·‖2,1 is a mixed norm (sum
of the L2 norms of the rows of a matrix) that basically pro-
motes sparsity along columns, while minimizing the energy
along rows. As a consequence, joint reconstruction guaran-
tees recovery, even when m < n, by promoting row sparsity.

4. COVARIANCE FITTING VIA MULTISIGNAL CS
AND POLARIMETRIC SIGNATURE AWARENESS

In this section, we formulate the reconstruction of Z as de-
fined in (2) from a multisignal CS perspective. To that end,
we first observe that forested areas are generally dominated
by few effective SMs. Specifically, the assumption of sim-
ply two SMs has recently proved to be a valid approxima-
tion [7, 9, 13]. In addition, the power distribution θs of these
different SMs is quite regular [7,8,13,14], thereby giving rise
to sparse representations in the wavelet domain and allowing
for a CS viewpoint [5]. Consequently, if we let W ∈ Rn×n

be a sparsifying basis for θs, with s ≤ 2, it follows that Z can
be represented by a row-sparse matrix α ∈ Cn×9, such that
Z = WTα. Incidentally, the condition s ≤ 2 can be readily
satisfied by replacing D with its best rank-2 approximation,
which will be denoted byD2. As thoroughly discussed in [7],
this can be efficiently obtained by means of a singular value
decomposition (SVD).

4.1. The Naive Approach

As a stepping-stone towards a robust formulation, we can sim-
ply take equations (2) and (3), and let B = D2, A = ΦWT ,
X = α. Then, we could recover α by carrying out the fol-
lowing optimization

min
α̃
‖α̃‖2,1 subject to

∥∥ΦWT α̃−D2

∥∥
F
≤ ε (4)

where ε is an upper bound on the model mismatch that poten-
tially captures any source of decorrelation as well as insuffi-
cient level of multi-looking [5]. In turn, we would compute
Z̃ = WT α̃. Although intuitive and simple, this approach
falls short of ideal, in that it ignores the inherent properties
and low dimensionality of the subspace of polarimetric signa-
tures, which is the subject of Section 4.2.

4.2. The Data Adaptive Approach

As previously mentioned, the SVD of D provides an efficient
way of computing its best rank-2 approximation. Nonethe-
less, of equal importance is the fact that the adjoint of the cor-
responding right singular vectors defines a data adaptive or-
thonormal basis for the unknown polarimetric signatures [7].
As a result, if we consider only two SMs, i.e. D2, it follows
that every row of Z will be bound to lie in a two-dimensional
subspace. And so, once two orthonormal vectors, v1 and
v2 ∈ C9, that span the polarimetric space have been obtained
and a matrix V ∈ C2×9

V =

[
vT1
vT2

]
(5)

has been formed, we can formulate a polarimetric signature
aware reconstruction as

min
β̃

∥∥∥β̃∥∥∥
2,1

subject to
∥∥∥ΦWT β̃V −D2

∥∥∥
F
≤ ε (6)

where β ∈ Rn×2 and proper constraints must be set on the
rows of Z, so that every row of Z (when rearranged in a 3
by 3 matrix) results in a positive-semidefinite matrix. Just as
in Section 4.1, ε is an upper bound on the model mismatch.
Then, we compute Z̃ = WT β̃V . For a detailed discussion
on how to reduce the size of this kind of problem and ensure
positive semidefiniteness, we refer the reader to [13] and the
references therein.



Interestingly, this approach can be understood from a
slightly different, yet instructive, viewpoint. Specifically,
rather than considering Z to be composed of nine 1-D sig-
nals (column vectors), we can think of it as one 2-D signal.
As a result, Z can be represented in a 2-D basis, readily
formed by computing the outer product of all 1-D wavelet
basis vectors and all 1-D polarimetric signature basis vectors,
i.e. a Kronecker basis. Thus, just as the former allows for
sparse expansions of the vertical backscattered power, the lat-
ter provides a sparse expansion of the polarimetric signature.
However, since we only consider two SMs, the support of
the polarimetric signature transform coefficients is known a
priori. Finally, we note that, from this perspective, Φ is bound
to take partitioned measurements, in that only one column
is measured at a time. For further details on this kind of
distributed sensing setting, we refer the reader to [15].

5. EXPERIMENTAL RESULTS

For validation purposes, we used a stack of 10 focused and
coregistered SAR images obtained by processing fully polari-
metric L-band data. These data were acquired by the E-SAR
airborne sensor of DLR during a campaign near Dornstetten,
Germany, in 2006. Fig. 1 shows the histogram of the corre-
sponding irregular baseline distribution. The center frequency
used was 1.3 GHz and the nominal altitude above ground was
about 3200 m. The resolutions were 0.66 m and 2.07 m in az-
imuth and range, respectively [8].

Specifically, we recast (6) in Lagrangian form [3], with
λ = 2. The sparsifying basisW was based on the Daubechies
Symmlet wavelet with 4 vanishing moments and 3 levels of
decomposition. Thus, we reconstructedZ at a fixed range dis-
tance of 4816.30 m for several azimuth–range positions. As
a result, we obtained slices in the azimuth and elevation di-
rections of dimensions 300 m by 40 m, respectively. In order
for (2) to hold, we computed the sample covariance matrix by
taking a 20 × 20 m2 estimation window. In this respect, we
employed the SKP decomposition [7] using different window
sizes in order to find, heuristically, the smallest window that
allowed for separation of SMs.

Fig. 2 (a), (b), and (c) present the reconstructed tomo-
graphic slices for the hh, vv, and hv channels (as taken from
Z), respectively. Additionally, Fig. 2 (d) shows the correla-
tions between the vv and hh channels, which clearly manifest
more strongly at the ground level.

6. CONCLUSION

In this paper, we have extended the existing CS based method-
ologies by considering the multiple dimensions in which po-
larimetric covariance matrices, i.e. polarimetric signatures,
manifest. Thus, we have been able to perform joint recovery
by exploiting the fact that vertical structures as well as po-
larimetric signatures can be sparsely approximated in appro-

Fig. 1. Histogram of baseline distribution corresponding to
10 irregular parallel passes.

priate domains. For this purpose, we made use of a Wavelet
basis as well as a data adaptive basis, respectively. In this
regard, we emphasize that the outlined approach is not lim-
ited to Wavelets. In fact, any suitable basis could be used. In
addition, we have introduced the concept of polarimetric sig-
nature awareness, thereby reducing the degrees of freedom to
carry out the tomographic reconstruction. Finally, we stress
the fact that the implementation of this technique can be ef-
fectively tailored by means of existing tools, such as the SKP
decomposition.
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