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Abstract— The technological progress in the field of robotics
results in more and more complex manipulators. However,
having an increasing number of degrees of freedom raises the
question of how to use them effectively. In turn, establishing
manipulators in human environments, e.g., as service robots,
calls for the fulfillment of various constraints and tasks at
the same time. In the context of torque controlled robotic
systems, we provide an approach to simultaneously deal with
a multitude of tasks and constraints which are arranged in a
hierarchy, utilizing the large number of actuated joints of the
manipulator. To this end, we propose a continuous null space
projection technique to consider unilateral constraints, singular
Jacobian matrices and dynamic variations of the priority order
within the hierarchical structure. We show that activating and
deactivating tasks as well as crossing singularities does not lead
to a discontinuous control law. Simulations and experiments on
the humanoid Justin of the German Aerospace Center (DLR)
validate our approach. The presented concept is supposed to
contribute to whole-body control frameworks.

I. INTRODUCTION

Compared to industrial applications in which task executi-
on is a low-dimensional issue, having robots in human envi-
ronment calls for the fulfillment of various multi-dimensional
tasks simultaneously. That comprises, for example, the in-
teraction with unstructured environment and humans in the
workspace of the manipulator. Systems like the humanoid
Justin [1] are equipped with a large number of degrees of
freedom (DOF) to be capable of meeting that criterion.

Being in need of executing several tasks at the same time
naturally raises the question of a task hierarchy since in
general it is not possible to realize all tasks simultaneously.
Methods for such a prioritization have been thoroughly
developed in the last decades. Most of them utilize null space
projection techniques [2], [3] to provide a redundancy resolu-
tion. Based on that, sophisticated frameworks to incorporate
a variety of different objectives have been designed [4], [5].
However, some open questions remain, e.g., how to deal
with constraints within the hierarchy which are not active
permanently. One example is reactive collision avoidance
which only becomes relevant when an object is approaching
the robot or a self-collision is close [6], [7], [8], see Fig. 1.
Usually, one does not want to “lock” DOF just to reserve
them for a (momentarily deactivated) task. In this context,
various methods have been developed. In [9], the so-called
dynamical systems approach is used to scale task contributi-
ons online. Self-collision avoidance movements are blended
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with a whole-body motion control to change the priority
order in [10]. Brock et al. propose a dynamic hierarchy [11].
Therein, obstacle avoidance is realized in the null space of a
task. However, it is given a higher priority if that null space
reveals not to be sufficient to avoid the collision. A suitable
coefficient is calculated online to induce such a transition.
Continuity is provided by smoothing the transition instead
of modifying the control law in [12]. The framework acts on
the kinematic level where joint velocities are the inputs to the
robot. Another elaborate approach on the kinematic level has
been proposed by Mansard et al. [13]. The paper introduces a
new inversion operator to ensure continuity and applies it to a
visual servoing scenario. In [14], an extension for a hierarchy
of tasks and unilateral constraints is made. The extension to
the dynamic level is provided in [15], but leads, however, to
very complex formulations which are difficult to parametrize
and use. Another method to deal with discontinuous inverses
is to utilize damped least-squares techniques [16], leading to
the question of the proper parameterization of the damping
terms. These singularity-robust inverses (SRI) are widely
used in the field of inverse kinematics. However, a simple
and intuitive solution, which provides full control over the
critical directions and slopes of the transition, is still missing.

This paper provides a framework for a dynamic hierarchy
based on a new and very simple formulation for the null



space projection computation. In contrast to most of the state
of the art approaches, we do not rely on the kinematic but
the dynamic level with joint torque interface. Our approach
manages to deal with singular Jacobian matrices, dynamic
hierarchies and unilateral constraints with respect to null
space projector calculations. In the latter case, the mentioned
undesired locking” can be completely avoided. Our main
contribution is the theoretical derivation and evaluation of
a null space projection shaping technique which allows to
selectively regulate the torque gradient during the transition
process, independent of the singular values of the Jacobian
matrix. We close the gap between the abstract mathematical
structure of a task hierarchy and the directed influence on
real physical values in the robotic system such as torques.
Discontinuities can be stretched” and distributed over a
well-defined range to comply with any physical constraints.
While controlling and fully specifying the exact transition
behavior, we ensure that no errors from the ideal behavior
occur outside this transient phase. The approach is based on
a very intuitive interpretation of null space projections and
poses no numerical problems when approaching singularities.
We show that only the behavior in the critical directions is
altered by the transition shaping while the other directions
remain unaffected. We provide simulations and experimental
results on the torque controlled robotic system Justin to
show the performance of our redundancy resolution concept.
Amongst others, the practically relevant application of self-
collision avoidance [6] has been chosen as an example.
Our approach is equally applicable for a velocity interface
in terms of well-directed limiting of joint accelerations.
However, the kinematic case is beyond the scope of this
paper and will be highlighted in a subsequent work. Here,
we restrict to the force/torque interface.

The paper is organized as follows. First of all, we recall
some basic knowledge about null space projection and point
to the arising of discontinuities in Sec. II. In Sec. III, we de-
rive our null space projection shaping equations. Simulations
and experimental data are given in Sec. IV.

II. FUNDAMENTALS AND PROBLEM STATEMENT

A common way to induce a task hierarchy is to utilize null
space projection techniques [2]. Given a robot with n DOF
and joint position vector ¢ € R"™, a primary task from priority
level 1 (highest priority level) with dimension m < n shall
be described by a virtual constraint f(g) = 0 to which a
Jacobian matrix J = 8)57(:) € R™*"™ belongs. Initially, J is
supposed to be non-singular. The torques 74, € R™ from a
lower priority level 2 (secondary task) may then be projected

into its null space via the projection matrix
N=1-—J%g*tt (1)
so that the commanded torque equals
Temd = I Fpim + NTgec )

The primary task force is represented by F'p,.i, € R™. The
matrix J 7 in (1) expresses the generalized inverse of J. That
operation is not unique and has to be further parameterized.

Inverting J requires the definition of a weighting matrix
W e R™*™:

JEW —wlgTagw gt (3)

Frequently, W is set to the identity matrix I. The resulting

J 1 is then called the Moore-Penrose pseudoinverse'.
From a numerical point of view, the inversion is mostly

done by applying a singular value decomposition (SVD):

J=USvT “4)

with U € R™*™ being a unitary matrix, S € R"™*" a
rectangular diagonal matrix containing the singular values
o1 to 0, and V' € R™ ™ a unitary matrix. Subsequently,
the inversion of J by means of (3) with W = I expressed
in SVD components is?

JT=JT gt (5)
=vstuhwsvivsTu™)!
=vst(ssh~tu”
=vstuT. (6)

Commonly, the inversion of S in (6) is implemented by
inverting the diagonal elements and cancelling the singular
values for ST that are smaller than a specified tolerance
¢ € R*. That operation can be interpreted as omitting the
respective right-singular vectors in V' or giving up the control
of these directions. Recall that the columns in V' form an
orthonormal basis of R™. It shall be noted that cancelling the
singular values less than ¢ is an arbitrary choice to deal with
the singularity while inverting the diagonal elements of S.
However, the occurence of discontinuities becomes evident
at this point and is actually induced by this arbitrary choice.
If the rank of the Jacobian matrix changes, threshold ¢ is
crossed, causing a discontinuous S as the corresponding
diagonal element jumps from 1/¢ to 0. That effect propagates
back to (1) and causes discontinuous projected torques from
the lower levels.

Another alternative to cope with the inversion problem is
to set a lower bound before inverting the singular values or
to utilize damped least-squares techniques (SRI) [16], e.g.,

J=JNJIJ" £t (7)

Herein, superscript * indicates the damped inversion opera-
tion. A damping parameter A € R* can be specified which
smoothes the transition. So far, various different approaches
concerning damped least-squares methods have been propo-
sed, e.g., to handle the problem of singularities in inverse
kinematics. First solutions like choosing a constant damping
factor [17] quickly revealed a crucial problem: Accuracy of
the inverse away from the singularity and ensuring a smooth
transition simultaneously is fairly unfeasible. Later designs
based upon variable damping factors, e.g., dependent on the

! Alternatively, the so-called dynamically consistent pseudoinverse can be
chosen using the inertia matrix M (q) such that W = M (q). See [3] for
a detailed discussion.

2As of now, the weighting matrix is omitted in the notation of the
pseudoinverse as we set W = I.



distance to the singularity [18] or its time derivative [19].
However, some problems remain. The choice of A is not
intuitive and the direct consequence on physical values of
the system is not defined as the treatment is done on an
abstract mathematical level.

One always has to keep in mind that all projection-based
methods are local redundancy resolutions and are not capable
of providing a globally optimal performance [20].

III. CONTINUOUS NULL SPACE PROJECTION
SHAPING

In this section, we will provide a new solution for a
continuous null space projection which does not have the
disadvantages of the existing techniques mentioned in the
previous section. Our method allows to specifically limit the
torque derivative during the transition phase. That closes the
gap between the mathematical mechanisms of the projector
calculation and the physical values of the real system. At
first, let us take a closer look at the structure of the null
space projector based on (1), (4) and (6).

A. Intuitive Interpretation of the Null Space Projector

Expressed in SVD components, (1) is described by

N=1-vstuT(vstu™)’ (8)
=I1-vstutusttv?® )
=I1-vststTy?, (10)

N—_——
A
Herein
A:dla‘g (a17a27"'aam701><(n7m)) (1])
with
if o; )
I LIV (12)
1 otherwise

In (10) it becomes evident that only the right-singular
vectors in V are relevant for the null space projector’,
whereas matrix U and the absolute singular values in S
do not have any influence on the result. The latter can be
observed when considering the so-called activation matrix
A € R™ ™. This matrix is supposed to contain either 1
(active) or O (inactive) diagonal elements. The i-th diagonal
element refers to the i-th column vector in V' and either
activates that direction or locks it, when close to a singularity.

Since the singular values of the Jacobian matrix are not
relevant, we need to consider only the directions of the
constraint.

B. Considering a 1 DOF System

A n =1 DOF system is illustrated in Fig. 2. The depicted
mass may move horizontally, its location is described by z.
At z = zpot, a repulsive, unilateral potential field begins in
order to avoid a collision with the wall. The potential shall
be the high priority task, whereas arbitrary tasks determine

repulsive potential

wall

Fig. 2. 1 DOF system with primary task (repulsive potential) to avoid a
collision of the mass with the wall.

the mass behavior in the null space of the collision avoidance
task. The Jacobian matrix of the primary task is simply

J=0J1x1 (13)
where the direction J1x; = [—1] is invariant and the singular
value o is extracted from J beforehand. A SVD of (13)
leads to (4) with U = [1], V = [-1], S = [o0]. Due to

the consideration of a 1 DOF system, simplifications in the
calculation of the null space projector follow:

N=1-85t=1-aq; . (14)

All matrices from (10) degenerate to scalars herein.

C. Desired Transition Behavior for the 1 DOF System

The discontinuity stated in (12) raises the question: Which
behavior for the null space projector do we actually desire?
Evidently, at least a continuous transition between 0 and 1
is required. Moreover, a desired behavior would be to spe-
cifically influence the transient behavior of values which are
affected in the end: the projected torques or their derivatives,
respectively. In this respect, we shape N = Nges(z). The
variable z determines the state of the activation. An example
for z is a joint angle to describe the state of activation
of a repulsive potential to avoid a mechanical end stop.
Other examples are the distance between manipulator and an
external object to describe the closeness to a collision (see
Fig. 2) or the singular value o itself to express the distance
to the singularity of the Jacobian matrix.

Following (14), the required activator is

a1,des = 1-— Ndes(z) . (15)

A desired behavior could be to limit 9 Nqes(2)/0t. Projecting
a secondary task 7y into the null space of the primary task,
we obtain the control input

Tsec,proj — Nges (Z)Tsem (16)
. ONges(2) 0z .
Tscc,proj = TETSCC + Ndcs(Z)Tscc . (17)

Obviously, Nges(2) must be at least of type C! in order to
ensure continuity of (17). For the further analysis, we make
the following assumptions:

3Actually, only the first m column vectors in V' are relevant here. Thus,
a reduced SVD suffices.



1) We neglect 7. This is valid as we assume the
transition to be faster than the changing of torque 7y
from a regular task.

2) A maximum or worst case Tgec can be specified. If this
is not possible, an online calculation or measurement
is provided.

3) We are able to estimate a maximum oOr worst case
value for Jz/0t. If this is not possible, we are able
to calculate or measure 0z/9% online.

Concerning Nges(2), we suggest a piecewise defined functi-
on containing a third order polynomial, i.e.,

1 ifz <2z
Naes(2) =< g(z) ifz1 <2< 2 (18)
0 otherwise
g(2) =122 et F ety (19)

with [z1,29] defining the interval from unconstrained
null space projection to full locking. Limiting the term
N! .. = max (|JO0Nges(2)/0z|) allows to “stretch” the tor-
que change/discontinuity over a well-defined range. More
precisely, a maximum torque derivative Teec,proj,max can be
specified*:

0z -1

a Tsec

One choice for Tgec,proj,max 1S @ parameterization according
to the performance of the torque controller. We set the fol-
lowing conditions for (19): g(z1) =1, ¢'(z1) =0, g(22) =
0, ¢/'(22) = 0. max(lg'(z)]) = —¢ (252) = Np.
That over-determined system of equations can be solved by
adding the range {22 — 21 } to the set of unknown parameters
{Cl, Ca,C3, 04} from (19)

Notice that limiting N/ . for (19) is a conservative
approach to limit 7yec proj as the maximum slope of N is
only reached once within the transition interval. It will be
shown in the following simulation that using a third order
polynomial is only marginally more conservative than the
fastest continuous transition, i.e., an affine function, but it
leads to a smoother behavior.

Fig. 3 shows results for constant values of N/, =
2, 5, 20. The upper plots depict the activator. At z =
Zpot = 0.8, the primary task is fully activated, the respective
Jacobian matrix has full rank, and the DOF is locked for
all lower priority tasks than the highest one. The parame-
terization NV}, can be identified in the bottom plots when
regarding the maximum slope of N.

As described above, other transition functions than (19)
may be used. Applying an affine relation would bring the
benefit of a constant 9N (z)/0z within the transition phase
instead of the quadratic ones shown in Fig. 3 (bottom). It
can be shown generally that the interval size would reduce
to 2/3 of the original size. However, a lack of smoothness

would result at the beginning of the interval and at z = 0.8.

!
Nmax = Tsec,proj,max

(20)

Hf 9z /Ot or Tsec are taken from measurements or estimations online, a
loop is closed. In order to ensure passivity, a separate proof has to be made.
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Fig. 3. Examples for transition shaping in the case of a 1 DOF system
(normalized/dimensionless coordinate z).

D. Considering a (1 x n) Constraint

The 1 DOF case is trivial as the null space projector
equals a complete fade-out of the secondary task torque at
the activation point of the constraint. Now, we will extend
the mechanism to the nontrivial (1 X n) case such that
J = 0J1xn € RY™. Hence, J1y, is already normalized.
Starting from (10), we apply the desired diagonal activator
matrix Ages and obtain

N=1I-VA4uVT (21)
=I—-J], 014 1xn - (22)

Herein, only the first element a1 ges Of Agqes is relevant.
Due to the SVD of row vector J, the first column of the
V-matrix yields v; = J ?Xn. Knowing the general relation
of (22) brings along a major advantage: The SVD becomes
unnecessary. The null space projector is obtained by pure
multiplications.

Unilateral constraints of multi-DOF manipulators are typi-
cally of this kind.

E. The General (m x n) Case

We now consider the Jacobian matrix J = J,,,», € R™*"
for the general case m < n. This case is relevant if a
general Jacobian matrix J,, x,, becomes singular. The arising
singularity can be dealt with by choosing Ages = Agdes(0)
such that the singular values o € R™ are consulted.

The question arises how to design a1 ges 10 Gy des TO In-
terpret (10) and (11) in this case, we introduce the projection
P of N into the directions of V. Recall that the columns
of V span an orthonormal basis.

P, =v/N

(3

=v! — viTVAdeSVT

3

= (1 —aiges) vl V1<i<m. (23)

see (14)



We observe that (23) is similar to (14) but projected into the
direction v;. Therefore, shaping of the transition function in
the (m x n) case has to be regarded as a multidimensional
design of the “’stretching” in the first m directions vy to v,,.
Of course, the projections into the remaining n—m directions
are not affected by the transition:

Pi=vIN=v] Vm<j<n. (24)

That invariance of the remaining directions is one main
benefit of the approach compared to most of the scaling
and blending techniques wherein secondary tasks may be
completely disabled when higher priority ones become active
[9], or the priority order is never ensured completely [21].

F. Desired Transition Behavior in the General (m x n) Case

Nevertheless, the question of the design of Ages in the
(m x m) case is still open. One approach to handle the
complexity is to decompose the lower level torques, to
consider the contributions in the critical directions, and to
apply the methods from Sec. III-C. Notice that an online
decomposition and a feedback into the generation process
of Ages closes an additional loop. However, as stated in
assumption 1), the transition is supposed to be significantly
faster than the changing of torques from the lower levels.
Thus, the effect is expected to be quite limited. An off-
line consideration is more conservative but does not close
a further loop. The simplest, still quite effective solution
would be to choose constant transition behaviors for all m
directions. At this point it shall be noted that the design in
the (1 x n) case is straightforward when applying such an
online decomposition. As m = 1, the simplification

Pl - (]- - al,dcs) ']1><n (25)

follows due to the fact that v7 = J;y,. Therefore, the
lower level torques are supposed to be projected just into
the primary task direction J1x,.

IV. SIMULATIONS AND EXPERIMENTS ON
UNILATERAL CONSTRAINTS

In this section, we provide some simulations and experi-
mental results to validate the proposed method for unilateral
constraints. Mostly in literature, reactive collision avoidance
is not handled as a primary task exactly due to the described
discontinuity problem, but rather as a low level task. That
does not correspond to real demands of the applications. The
proposed framework can optimally handle this issue which
will be shown in the experiments on the real robotic system
at the end of Sec. IV.

A. Simulations on the 3 DOF System

We performed simulations for a planar system as depicted
in Fig. 4 (left). It consists of three links and three revolute
joints. Viscous joint friction is modeled and the masses are
decoupled. As task with low priority, a Cartesian impedance
is chosen whose goal it is to lead the tool center point
(TCP) to the goal configuration. The primary task is de-
fined by a singularity avoidance which is designed via a

joint 2 tool center point (TCP) goal TCP location
o. .
joint 3
L joint 1

initial configuration

singular configuration

Fig. 4. Schematic structure of the 3 DOF system.
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Fig. 5.  Activation of a unilateral constraint during a 3 DOF system
simulation. The transition is specified by N/, = 30. (z: manipulability
measure of Jsec; Tprim: singularity avoidance torques; Tsec: Cartesian
impedance torques).



Time [s]

Fig. 6. Contribution of the projected lower priority task torques in the
constraint direction (continuous null space). While the constraint is fully
activated, no secondary torque passes.

repulsive potential based on the kinematic manipulability
measure [22] of the Jacobian matrix Jg.. related to the
Cartesian impedance. That avoidance with torque command
Tprim 1S a unilateral constraint which gets activated if the
manipulability measure falls below a specified value. The
Cartesian reference trajectory of the TCP (Fig. 4 left) is
designed such that the singularity indicated in Fig. 4 (right) is
approached. A conflict between the tasks is provoked. Recall
that the singular configuration could never be reached by
the Cartesian impedance in a steady state. The primary task
would outplay the Cartesian impedance finally. Fig. 5 depicts
the results for the first 6 s of the simulation. Within this time
interval, a full transition occurs which will be analyzed in
the following.

Starting from the initial configuration (Fig. 4 left), the end
effector moves towards the singular configuration (right). The
primary task gets activated at ¢ = 1.8 s for the first time. The
transition with N/ ... = 30 can be observed in the upper plot
of Fig. 5 with z expressing the manipulability measure. The
second plot shows Nges(t). In this experiment, we designed
the primary task (third diagram) to start from z; on. The
bottom diagrams show the Cartesian impedance torques Tgec
and their projections Tgec proj into the null space of the
primary task. We want to draw attention to the projected
torques when the primary task becomes activated. As the
singularity avoidance mainly requires intervention at the third
joint (1.8s < t < 3.65), the respective projected impedance
torque alters the most.

When the unilateral constraint is fully activated, no projec-
tion of the Cartesian impedance torques may remain in the
primary task direction. Therefore, we multiply Teec,proj by
J ;rriTm. Fig. 6 shows the results. Within the time interval of
full activation (shaded rectangle), no torque comes through.
Hence, the condition of an undisturbed priority order is met.
The control inputs Tcmd = Tprim + Tsec,proj are depicted
in Fig. 7 (top). In contrast, a discontinuous null space
projection (bottom) based on a common matrix inversion
leads to significant discontinuities in the torques. These can
be observed at time 1.8s, 3.6s and 5.4s.

In this simulation, a steady state in the continuous case is
reached after 6s asymptotically. In that final configuration,
z is a little lower than z; as indicated in Fig. 5 (upper
plot). No further full transition occurs after 6s since the
intervention V 1.8s < ¢ < 3.6s induced a null space or

continuous null space projection
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Fig. 7. Control inputs for different null space projection methods.
Significant discontinuities in the case of a common null space projection
can be identified.

commanded
TCP trajectory |

Fig. 9. The robot avoids a self-collision between the hands. The snapshot
is taken in the intermediate configuration at t = 4s.

internal motion that reconfigured the manipulator to comply
with the singularity avoidance constraint.

B. Experiments on the Humanoid Justin

We performed experiments on Justin to verify our algo-
rithm. In the following, we use a 6 DOF Cartesian impedance
of the right tool center point (TCP) as the secondary task. The
commanded trajectory of the TCP is illustrated by the red,
dashed line in Fig. 9. The maximum translational velocity
is set to 0.5m/s. The primary task is a repulsive potential
to achieve self-collision avoidance between left and right
hand. The respective algorithm for that avoidance application
is explained in detail in [6]. The repulsive potential is
depicted by the green sector in Fig. 9. The transition interval
is illustrated by the adjacent corridor. Fig. 8 shows the
results of the experiment. The activation/deactivation of the
primary task can be observed in the upper left plot. The
corresponding measured joint torques Teas (left, bottom) do
not indicate any discontinuities during the transition phase.
As the goal TCP configuration is set to be infeasible, torques
from the Cartesian impedance remain in the intermediate
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Fig. 10. The robot avoids a collision with the table.

configuration which is shown in Fig. 9. However, they are
largely filtered out by the null space projection as it can be
seen in the right diagrams of Fig. 8. The bottom plot on the
right shows the ratio r = || Tsec,proj|| / || Tsec|| to indicate the
feasibility of the secondary task. Notice that the direction of
the primary task changes permanently during the experiment
corresponding to the locations of both hands.

In the second experiment we also use the 6 DOF Cartesian
impedance of the right tool center point (TCP) as the secon-
dary task. The continuous trajectory of the TCP describes
a motion of 0.3 m downward along the vertical axis. After
0.25m, the primary task gets activated which is defined by
a unilateral constraint, i.e., a repulsive potential to avoid a
collision with the table, see Fig. 10. In the left diagrams of
Fig. 11, the behavior for the shaped null space projection
is shown. The upper plot depicts Nqes, Whereas the lower
plots show torques measured at selected joints. Except for
some measurement noise, the signals appear smooth. The
right diagrams show the results for a common null space
projection based on singular value cancellation as described
in (12). Obviously, the two tasks compete at the discrete
activation border. Particularly between 7s and 8s, several
transitions are provoked which lead to the respective peaks
in the torque measurements. Amplitudes up to 50 Nm can
be identified. Notice that the lower plots display the real

torques that appear at the joints. The commanded torques
attain values of almost 90 Nm but they are not feasible due
to the high frequency of the transitions.

The supplementary video shows some exemplary scenes
demonstrating the null space projection shaping. That inclu-
des comparisons between continuous and discontinuous null
spaces in simulation as well as an experiment on Justin.

V. CONCLUSIONS

Multi-DOF robotic systems require a proper redundancy
resolution to handle the numerousness of degrees of freedom.
If multiple tasks are to be executed simultaneously, a hier-
archy between them has to be introduced. In this paper, we
provided the framework for such a prioritization in the case
of torque control. We considered unilateral constraints and
singular Jacobian matrices within the hierarchy and proposed
an approach that did not lead to a discontinuous control
law. We selectively shaped the transition in the respective
direction while the other directions remained unaffected.
Moreover, we had full control over the duration and shape
of the transition, avoiding the exceeding of any physical
limitation.

Simulations and experimental results on the humanoid
Justin of the German Aerospace Center (DLR) validated our
method for three different kinds of unilateral constraints, i.e.,
singularity avoidance, self-collision avoidance and collision
avoidance with external objects.

Future works will focus on the design of a unified frame-
work to allow multi-objective, dynamic mobile manipulation
based on our recent work [23]. Therein, the issue of discon-
tinuous null space projections has not been treated yet. In
this context, the dynamic hierarchy approach proposed here
will play an important role. Moreover, we will formulate the
proposed approach for velocity controlled systems.
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