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Abstract—Recently, it has been shown that the spectral un-
mixing can be regarded as a sparse approximation problem.
In our studies we employ predefined dictionaries containing
the measured spectra of different materials in a hyperspectral
image, where for each pixel the abundance vector can be
estimated solving the /; optimization problem. This results in an
automation of the unmixing procedure and enables using complex
overcomplete dictionaries. However, the reflectance spectra of
most materials are highly coherent and this could result in
confusion in the mixture estimation. In this work we present a
novel approach for spectral dictionary coherence reduction and
discuss the feasibility of the methodologies in terms of mutual
coherence and approximation error values using overcomplete
dictionaries. We compare standard sparse unmixing procedures
with our novel derivative method. The presented method was
tested on both simulated hyperspectral image as well as on a
AVIRIS data.

Index Terms—Hyperspectral image, unmixing, sparse approx-
imation, basis pursuit, spectral derivative, coherence.

I. INTRODUCTION

Hyperspectral imaging and algorithms for the hyperspectral
data processing are recently one of the most studied techniques
in the remote sensing. Each hyperspectral pixel consists of
hundreds of contiguous and narrow spectral bands covering
typically the visible to short infrared wavelength range. So, hy-
perspectral image is typically L - dimensional data cube where
L is number of channels. This huge amount of information
provided by the hyperspectral sensors presents new challenges
to the standard algorithms for image processing and analysis.
Wide spectral range and resolution takes advantage of classical
spectroscopy enabling detailed spectral investigation for each
pixel including material detection and quantitative analysis of
material content for each pixel. However, the compactness of
channels results in the limitation of the pixel size. Modern
hyperspectral space borne cameras have normally a ground
resolution of about 30 m. Due to this relatively low spatial
resolution, mixing of several sources (materials) may occur
in one hyperspectral image pixel which makes detailed pixel
based analysis difficult. On the other hand, the high spectral
resolution enables the use of source separation methods in
order to retrieve basic sources of which the pixel is composed.
After separation of the basis sources, known as endmembers
in imaging spectroscopy, a mixture of endmembers for each
pixel can be approximated by the fractional abundances. The

method for recovery of endmembers and estimation of their
amount for each pixel is called spectral unmixing.

Recently, spectral unmixing is intensively studied by many
researchers resulting in many methods where the endmembers
can be retrieved from the image vertex component analy-
sis - VCA, pixel purity index - PPI, N-FINDR, iterative
error analysis - IEA, independent component analysis ICA-
EA [1], [2]) or manual selection from existing databases of
endmembers. Alternatively endmembers can be preselected
from the spectral library. However, this method requires expert
knowledge. The quantitative approximation of the abundances
in the HSI data is often regarded as least squares problem.
While many existing algorithms are excellent tools for the
community and experienced users these methods can however
work only with a limited number of endmembers restricted
by the dimensionality of the HSI data. If the number of
endmembers exceeds the dimensionality of the spectral feature
space, fewer equations than unknowns lead to an infinite
number of solutions for this problem. Constrained versions of
least squares, proposed in [3] and studied in [4], can be used
to solve these linear problems, however with some limitations
which will be further discussed in this paper.

To deal with these shortcomings, spectral unmixing can
be also addressed as a sparse approximation problem. If we
assume that the mixing of endmembers is a linear process,
then each measured pixel can be described as a product of
a known dictionary and a sparse coefficients vector using ¢;
norm as minimizer. In this case the dictionary is overcomplete,
which means that it consists of more endmembers than the
dimensionality of the signal. Dictionaries can be created from
existing databases containing hundreds of spectra of different
materials, measured using field or laboratory spectrometers.
Tordache at al. [5] tested several sparse approximation meth-
ods for spectral unmixing with different preselected spectral
libraries.

In this work we discuss the use of sparse approximation
methods for hyperspectral unmixing and the influence of the
coherence between the elements of the overcomplete spectral
dictionaries. We introduce a novel usage of spectral derivatives
to increase the endmember detection rate. Our approach was
evaluated using both, simulated hyperspectral image and real
AVIRIS image scene and compared with one of the state of
the art method.
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Fig. 1.

II. METHODS

In the following section we describe the methods used in our
studies. E.g. sparse approximation methods for hyperspectral
unmixing. This method enables semi-automatic endmember
selection as well as estimation of the fractional abundances for
each pixel. We also discuss the usage of spectral derivative as
a dictionary coherence reduction method and its application to
sparse spectral unmixing.

A. Spectral unmixing

Usually most HSI pixels are mixed i.e. they consist of
signals from more than one source (endmember). The mixing
process can be modeled as a transformation 7" over the matrix
MIEXN] containing N endmembers to describe the pixel ¥

y=T{M} +e¢, (1)

where € is an additive noise and L is the dimensionality of
the pixel y. If we assume that the transformation 7" is linear
i.e. only single scattering occur for each detected photon, then
the mixing model can be formulated as

y=Ma+e, 2)

where a > 0 is a coefficient vector which defines the fractional
abundance of each material [1]. Linear spectral unmixing aim-
srecovery of the endmembers and their abundances contained
in a pixel.

B. Spectral unmixing using overcomplete dictionaries

In order to automate the unmixing process we could use
a large overcomplete mixing matrix containing all available
spectra (e. g. measured in field or in laboratory). If each
column of the mixing matrix is normalized to ¢ unit length
it is called dictionary D with the columns as atoms . Then
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(b) Transformed dictionary.

Coherence matrices for the dictionaries: a) containing original spectra and b) containing derivatives of original spectra.

a hyperspectral pixel y!Z*1 can be interpreted as the mea-
surement of a sparse signal. Hence, the redundant dictionary
DIEXN] ig in this case a measurement matrix,

y = Dz, 3)

and zV*1] is the coefficient vector. Through D with N > L,
the system of equations is underdetermined and has normally
an infinite number of solutions. Therefore, instead of having
y = Dx we can find such a solution z that minimizes
| Dz — yl||> where ||-||2 is the euclidean ¢ norm with ||z, =
/2 |walP.

Since we expect that each pixel is a mixture of only few
endmembers we can look for a sparse approximation of z.
If we denote by ||z|lo = k the pseudo-norm ¢, indicating the
number of non-zero elements of the vector x, then the x vector
is k-sparse.

4)

where £ > 0 is the tolerance value. The solution of the above
problem is called the sparse solution to equation. 3.

1) Basis Pursuit: Since equation 4 is a non-convex, com-
binatorial optimization problem, it is difficult to solve. Instead
we can use the /1 norm as a minimizer which also promotes
the sparsest solution. This minimization problem can be writ-
ten as

min ||z|o s.t. | Dz —yll2 <&,

(&)

known as basis pursuit (BP) [6] or LASSO (least absolute
shrinkage and selection operator) [7].

2) Non negative least squares: Non negative least squares
(nnls) is the state of the art method for spectral unmixing and
abundance estimation [1], [2], [3], [4].

min ||z|j1 s.t. || Dz — yll2 <&,

(6)

Since the least squares approximation is not capable of unmix-
ing signals from the overcomplete dictionaries, it is proved that

min ||Dz —yl2 s.t. © >0,
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its constrained non-negative version, under certain condition
can recover sparse solution for the underdetermined system of
equations [8], [9].

3) Coherence of the dictionary: BP does not recover the
solution for problem 4 directly, but under certain condition it
is able to recover the sparsest solution for the underdetermined
system. One of the most important condition in sparse approx-
imation methods is the mutual coherence. Mutual coherence
is a measure of maximum coherence between pairs of atoms
o of the dictionary.

p=maz o] - g4 (7
i#]
However, mutual coherence is a worst-case measure, in princi-
ple the smaller the coherence between the atoms, the sparser
abundance vector which can be approximated using the ¢
minimization [10].

C. Derivative of spectrum

The differentiation of the function estimates the slope over
the changing independent variable. In our case the independent
variable is the band number. We calculate the derivative of a
spectrum in the following way

oy y(by) —y(b;)

(b) Presented method.

(b) Presented method.
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(c) Non negative least squares.

RGB representation of the mixtures. Red channel represents abundance of the endmember no. 275, green no. 559 and blue no. 700.
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RGB representation of the mixtures. Red channel represents abundance of the endmember no. 275, green no. 559 and blue no. 700.

where b is a hyperspectral band, Ab = b; —b; and b; > b;. The
differentiation of spectra does not result in more information
that is contained in the in original bands but it is possible to de-
crease background reflectance and can therefore considerable
improve detection of convoluted weaker absorption features
[11]. We calculate the derivatives for each atom in the library.
The comparison of the coherence matrices for original and
transformed one using derivative method can be seen on fig. 1.

III. EXPERIMENTAL RESULTS

We have tested our method with simulated as well as real
AVIRIS data [12]. The algorithm has been assessed for the
detection rate, the /5 approximation error. We have compared
results of our method with one of the state of the art method
nnls.

A. Spectral dictionary

For the experiment we use the USGS spectral library [13].
The library consists of 1365 spectra, but due to missing read-
ings of many spectra, and incorrect values we have reduced
the size of the library atoms to 813. Each atom was re-
sampled to 224 bands according to the AVIRIS airborne sensor
as described in [14]. From the dictionary we have excluded
atmospheric absorption and noisy bands. After selection 154
spectral bands were used for further experiments. The final
dictionary size is D[154x813]
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Fig. 4. Abundance maps created using the proposed method.

B. Simulated image

The simulated image was created using three spectra se-
lected from the dictionary described above. The image consist
of 32 x 32 pixels and each pixel is sampled with 153 channels.
The endmembers are distributed and mixed like in the figure
2. (a). A Gaussian noise is added to the simulated image with
a SNR = 400, which is a realistic value for the hyperspectral
sensors. Abundances values are calculated for this image, for
both original and derivatives of spectra. Results for this test
are shown in fig. 2, 3. The selected spectra are Microcline
(no. 275), Kaoline (no. 559) and Plastic PTE (no. 700). The
coherence between the endmembers no. 275 and no. 559 is
0.99, between no. 275 and no. 700 is 0.90 and coherence for

the pair no. 559, no. 700 equals 0.9. The coherence between
the spectra derivatives pairs is 0.43, 0.04 and 0.02, respec-
tively. The mean approximation error for the whole image is
0.054 using our method, while using non negative least squares
for the original spectra the error is 0.005. The reconstruction
error using state of the art method is significantly lower and
the abundances are not recovered correctly (fig. 2 (c)). The
fig. 3 (b) and (c) shows all recovered endmembers using both
methods. The derivative method provides sparser results and
detects endmembers correctly which is not the case for the
nnls. To assess the detection accuracy we calculate the ¢
error between the original abundance vectors and the estimated
ones. The detection error for our method is 0.20, while for nnls



it is 0.63.

C. AVIRIS data

For this test we have used freely available AVIRIS hyper-
spectral image data [12]. From this image we have selected
a region of 612 x 512 pixels with 154 out of 224 spectral
bands. The abundances for each differentiated pixel have
been approximated using BP technique. The elements of the
dictionary DU!54x813] have been differentiated, too. Mean
||||o for all pixels in the image is about 3.06. In this study case
we concentrated on material detection and approximation of
abundance values. Here we imply that all material on ground
are available in the dictionary. Selected abundance maps are
shown in fig. 4.

IV. CONCLUSIONS

In this work we propose to use sparse approximation meth-
ods with large overcomplete dictionaries for spectral unmixing
and material detection. To deal with detection confusion
caused by high coherence of the dictionary, we introduce
derivatives of spectra. This transformation of the signal sig-
nificantly decreases overall coherence of the dictionary in
comparison to the original spectra.

Experiments on simulated data show that the reduced coher-
ence of differentiated dictionary enables sparser approximation
and thus smaller detection confusion in comparison to nnls.
However, use of the derivative method increases the approxi-
mation error. Hence, the improvement of the trade off between
error and detection of actual endmembers is an important issue
for future work.

We also show the applicability of the proposed method using
real hyperspectral image data producing reasonable sparse
results.
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